

FCC ID: ORIINTNODEHPV03 ATTACHMENT

**** MPE Calculations ****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$ $EIRP = 21.53 \text{ dBm} + 2.13 \text{ dBi}$ $EIRP = 23.66 \text{ dBm}$	Where, $P = \text{Power input to the antenna (mW)}$ $G = \text{Power gain of the antenna (dBi)}$
---	--

Power density at the specific separation:

$S = PG/(4R^2 \pi)$ $S = (142.23 * 1.63) / (4 * 20^2 * \pi)$ $S = 0.0462 \text{ mW/cm}^2$	Where, $S = \text{Maximum power density (mW/cm}^2)$ $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20 cm = limit for MPE)
---	--

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4 \pi)}$ $R = \sqrt{(142.23 * 1.63 / 4 \pi)}$ $R = 4.30 \text{ cm}$	Where, $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20 cm = limit for MPE)
--	--

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \text{Log}^{-1} (\text{dB antenna gain} / 10)$$

$$G = \text{Log}^{-1} (2.13 / 10)$$

$$G = 1.63$$