

CERTIFICATION TEST REPORT

FOR THE

MICROWAVE VIDEO TRANSMITTER MODULES, TX888MOD-P+/TX888MODMOD-O/TX888MOD-P

FCC PART 90 COMPLIANCE

DATE OF ISSUE: OCTOBER 8, 1999

PREPARED FOR:

PREPARED BY:

Advanced Electronics Group, Inc. 12530 Beatrice Street Los Angeles, CA 90066 (P.O. Box 642057 Los Angeles, CA 90064) Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No: Check W.O. No: 72515

Date of test: September 13-17 & 20, 1999

Dennis Ward

Report No: FC99-032

DOCUMENTATION CONTROL:

ragest heels

APPROVED BY:

Tracy Phillips

Documentation Control Supervisor

CKC Laboratories, Inc.

Dennis Ward Director of Laboratories

CKC Laboratories, Inc.

This report contains a total of 101 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Report No: FC99-032

Page 1 of 101

TABLE OF CONTENTS FOR CERTIFICATION TEST REPORT

Administrative Information	3
Summary Of Results	
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
Peripheral Devices	4
2.1033(c)(4) – Type(s) of Emissions	5
2.1033(c)(5) – Frequency Range	5
2.1033(c)(6) – Range of Operating Power	5
2.1033(c)(7) – Maximum Power Rating	5
2.1033(c)(8) – DC Voltages	5
2.1033(c)(9) – Tune-Up Procedure	5
2.1033(c)(10) – Frequency Stabilization, Modulation, & Spurious Radiation	5
2.1033(c)(13) – Description of Modulation	5
2.1033(c)(14)/2.1046 - RF Power Output	6
2.1033(c)(14)/2.1047(a) - Modulation Characteristics - Audio Frequency Response	12
$2.1033 (c) (14)/2.1047 (b) - Modulation \ Characteristics - Modulation \ Limiting \ Response$	12
2.1033(c)(14)/2.1049 - Occupied Bandwidth	13
2.1033(c)(14)/2.1051/90.210 - Spurious Emissions at Antenna Terminal	38
2.1033(c)(14)/2.1053 - Field Strength of Spurious Radiation	45
2.1033(c)(14)/2.1055/90.213- Frequency Stability	62

Report No: FC99-032 Page 2 of 101

ADMINISTRATIVE INFORMATION

DATE OF TEST: Date of test: September 13-17 & 20, 1999

PURPOSE OF TEST:To demonstrate the compliance of the

Microwave Video Transmitter Modules, TX888MOD-P+/TX888MODMOD-O/TX888MOD-P with the requirements for

FCC Part 90 devices.

MANUFACTURER: Advanced Electronics Group, Inc.

12530 Beatrice Street Los Angeles, CA 90066 (P.O. Box 642057

Los Angeles, CA 90064)

REPRESENTATIVE: Richard Hirsch

TEST LOCATION: CKC Laboratories, Inc.

22105 Wilson River Hwy Tillamook, OR 97141

TEST PERSONNEL: Kevin Daniel & Adam Ross

TEST METHOD: FCC Part 2 and Part 90

EQUIPMENT UNDER TEST:

Microwave Video Transmitter Module Microwave Video Transmitter Module

Manuf: Advanced Electronics Manuf: Advanced Electronics

Group, Inc.

Model: TX888MOD-P+ Model: TX888MOD-O

Serial: 3001-P+ Serial: 1001-O FCC ID: (pending) FCC ID: (pending)

Microwave Video Transmitter Module

Group, Inc.

Manuf: Advanced Electronics

Group, Inc.

Model: TX888MOD-P

Serial: 1001-P FCC ID: (pending)

Report No: FC99-032

Page 3 of 101

SUMMARY OF RESULTS

The Microwave Video Transmitter Module, TX888MOD-P+/TX888MODMOD-O/TX888MOD-P was tested in accordance with FCC Part 90 for compliance with the transmitter characteristic requirements of the FCC Rules.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 90.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Microwave Video Transmitter Modules, 2.473 GHz, for transmitting video and audio signals for use primarily by Law Enforcement agencies in Security/Surveillance applications.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ±4dB measurement uncertainty.

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device:

Power Supply (12 VCD, 400 mA)

Manuf: RF Link Technology

Model: LPS-1240 Serial: None

FCC ID: N/A

Report No: FC99-032 Page 4 of 101

2.1033(c)(4) - Type(s) of Emissions

65MO F8W

2.1033(c)(5) – Frequency Range

2473 MHz + 10 MHz

2.1033(c)(6) –Range of Operating Power

.000022W - .041W. Operating power level is fixed in all three modules. There is no means for variation within either module.

2.1033(c)(7) – Maximum Power Rating

Worst case module was the TX888MOD-P+, at .041W.

2.1033(c)(8) - DC Voltages

All modules accept 12 VDC input. Actual voltage draw is 8.6 volts ± 10%. The TX888MOD-P & TX888MOD-O draws 160mA. The TX88MOD-P+ draws 220mA.

2.1033(c)(9) – Tune-Up Procedure

Modules are received from the original manufacturer, RF Link Technology, pre-tuned and require no special tuning during modification by Advanced Electronics Group, Inc., or by the end user.

2.1033(c)(10) – Frequency Stabilization, Modulation, & Spurious Radiation

Original schematics for pre-modified modules are on file with the FCC under FCC ID#: MFEMODTX24-01 (RF Link Technology). The portion of the original transmitter modules that have been modified to boost power by Advance Electronics Group, Inc. (causing the need to resubmit for a new FCC ID#) will be uploaded to the FCC via the "Add Attachments" process.

2.1033(c)(13) – Description of Modulation

Not applicable to this unit.

Report No: FC99-032

Page 5 of 101

2.1033(c)(14)/2.1046/90.210- RF Power Output

Test Data: (ERP or EIRP)

Power Output = InvLog(dBuV-107/10)

InvLog(123.2dBuV-107/10)

InvLog(1.62)

Power Output = 41.6869mWatts

Spec Limit Per 90.205(1)
Maximum Output Power = 5 Watts

Report No: FC99-032 Page 6 of 101

Test Data:

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: fcc90.210

Work Order #: **72515** Date: Fri Sep-17-1999

Test Type: Maximized Emissions Time: 12:04:23
Equipment: Video Audio Transmitter Sequence#: 19

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P+

S/N: SMA

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	SMA

Support Devices:

Function	Manufacturer	Model #	S	/N	
Power Supply (12 VCD, 40	0 mA) RF Link Technology		LPS-1240	none	

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	Measurement Data: Reading listed by frequency.			Test Distance: None							
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2466.400M	99.3					+0.0	99.3	144.0 Peak unmelow audio		None
2	2479.000M	99.3					+0.0	99.3	144.0 Peak unme hi audio ca		None

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	Measurement Data:		Reading listed by frequency.				Test Distance: None				
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2472.650M	123.2					+0.0	123.2	144.0	-20.8	None
									unmodula	ted video	
									carrier		

Report No: FC99-032 Page 7 of 101 Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: Fcc90.210

Work Order #: **72515** Date: Fri Sep-17-1999

Test Type: Maximized Emissions Time: 10:32:56
Equipment: Video Audio Transmitter Sequence#: 16
Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: None

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	none

Support Devices:

Function	Manufacturer	Model #	S/.	N
Power Supply (12 VCD)	, 400 mA) RF Link Techi	nology	LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	urement Data:	nent Data: Reading listed by frequency.				Te	st Distan	ce: None			
#	Freq MHz	Rdng DBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2466.450M	90.7					+0.0	90.7	144.0 Peak unmelow audio		None
2	2479.050M	90.5					+0.0	90.5	144.0 Peak unme hi audio ca		None

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measurement Data:		Rea	Reading listed by frequency.				Test Distance: None				
#	Freq MHz	Rdng DBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2472.670M	111.5					+0.0	111.5	144.0	-32.5	None
									unmodula carrier	ted video	

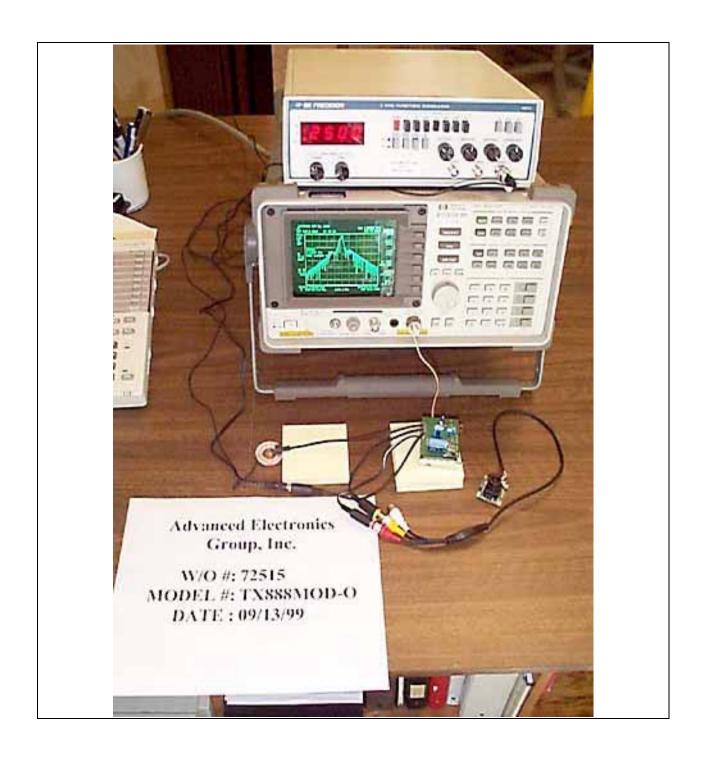

Report No: FC99-032 Page 8 of 101

Photo Of Test Setup Used for RF Power Measurement:

Report No: FC99-032 Page 9 of 101

Photo Of Test Setup Used for RF Power Measurement:

Report No: FC99-032 Page 10 of 101

<u>Test Equipment Used</u>:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A	3010A01076	07/15/1999	07/15/2000	0
HP 8593EM	3624A00159	10/12/1998	10/12/1999	2111
HP 8447D	2727A05392	02/23/1999	02/23/2000	10
HP 83017A	3123A00321	10/26/1998	10/26/1999	2114
Chase CBL6111C	2455	08/30/1999	08/30/2000	1992
EMCO 3115	9006-3414	02/24/1999	02/24/2000	327
EMCO 3301B	9101-3083	06/30/1999	06/30/2000	0
HP 84125-80008	961178-006	01/13/1999	01/13/2000	0
Cable 125 ft.	n/a	02/04/1999	02/04/2000	2086
Cable 10 ft.	n/a	02/05/1999	02/05/2000	1016
Fischer LISN	none	01/13/1999	01/13/2000	14
Fischer LISN	none	01/13/1999	01/13/2000	13

Report No: FC99-032 Page 11 of 101

$\underline{2.1033(c)(14)/2.1047(a)} - \underline{MODULATION} \ \underline{CHARACTERISTICS} - \underline{Audio} \ \underline{Frequency} \\ \underline{Response}$

Not applicable to this unit.

$\underline{2.1033(c)(14)/2.1047(b)} - \underline{MODULATION} \ \underline{CHARACTERISTICS} - \underline{Modulation} \ \underline{Limiting} \\ \underline{Response}$

Not applicable to this unit.

Report No: FC99-032 Page 12 of 101

2.1033(c)(14)/2.1049(i) - OCCUPIED BANDWIDTH

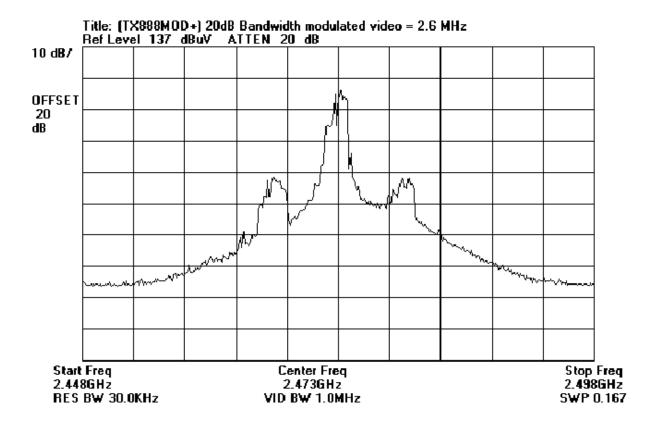
Test Conditions for Video Signal:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

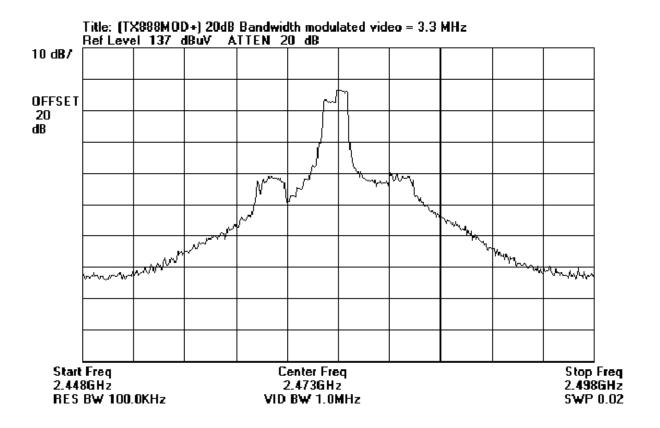
Test Conditions for Audio Signal:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

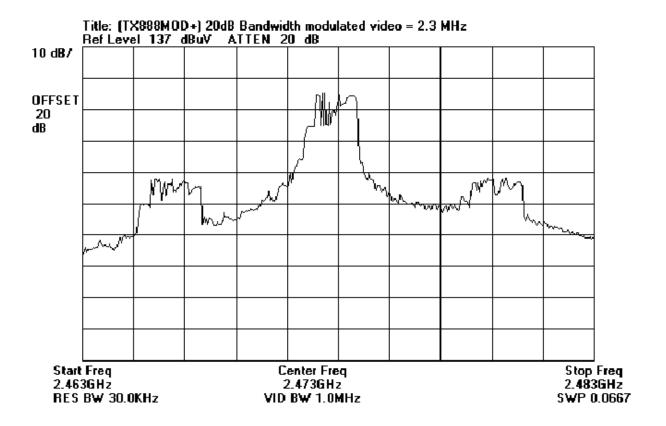
Test Setup:

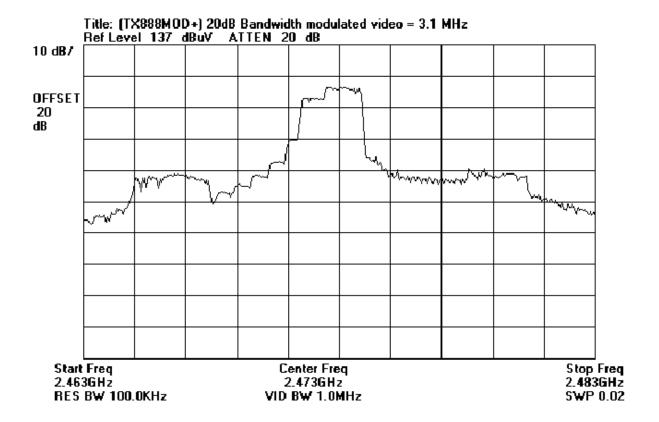

Same test setup as for 2.1033(c)(14)/2.1046/90.210 - RF Power Output. See photographs on pages 9 & 10.

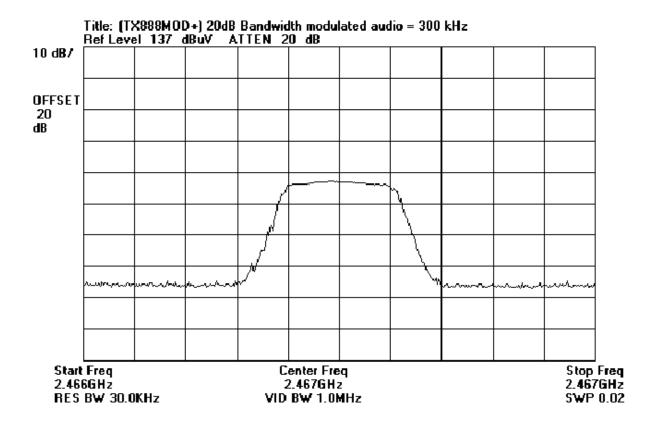
Test Equipment Used:

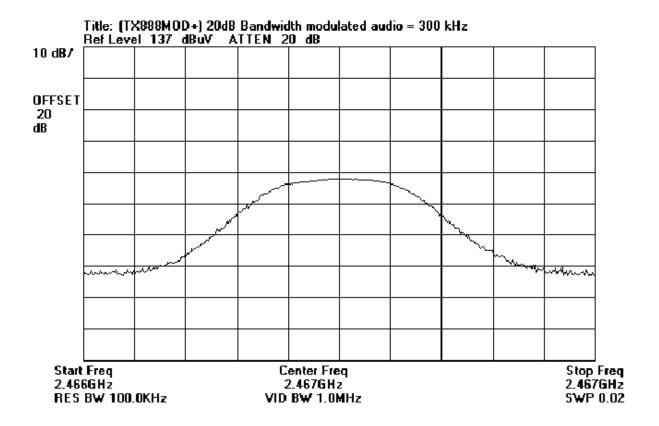

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8593EM	3624A00159	10/12/1998	10/12/1999	2111

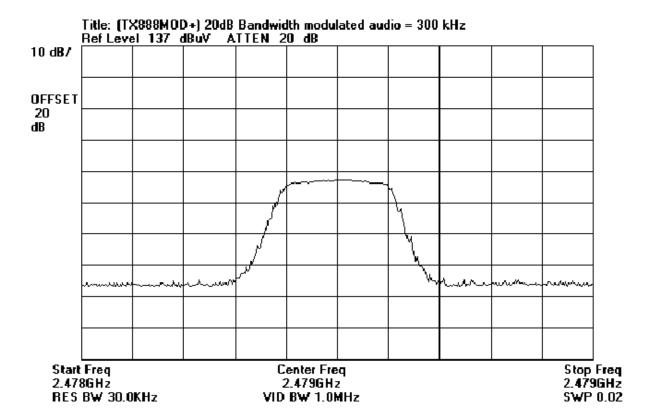
Report No: FC99-032

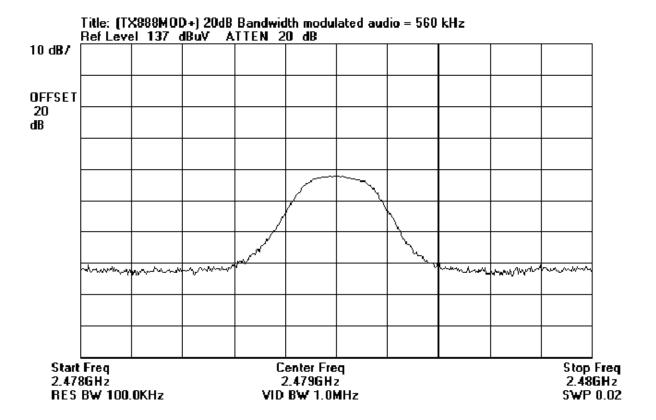

Page 13 of 101

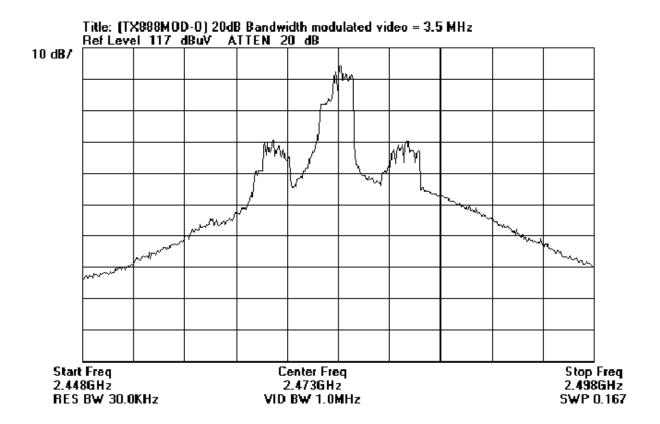

Report No: FC99-032 Page 14 of 101

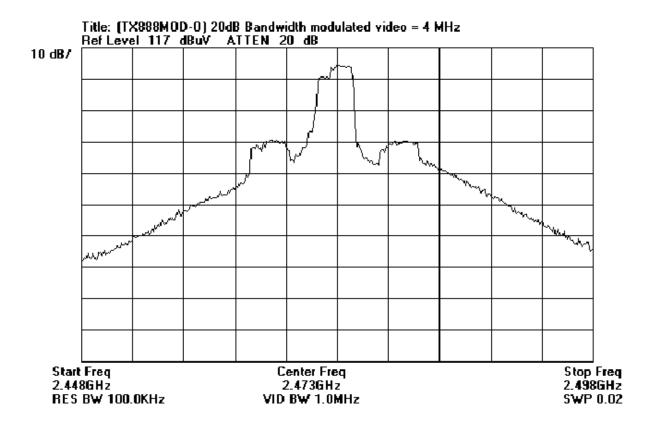

Report No: FC99-032 Page 15 of 101

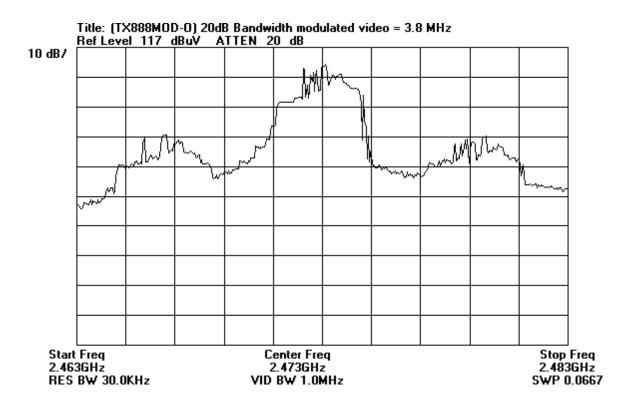

Report No: FC99-032 Page 16 of 101

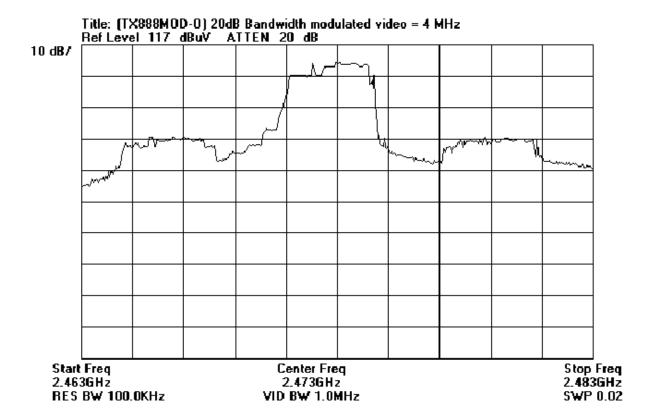

Report No: FC99-032 Page 17 of 101

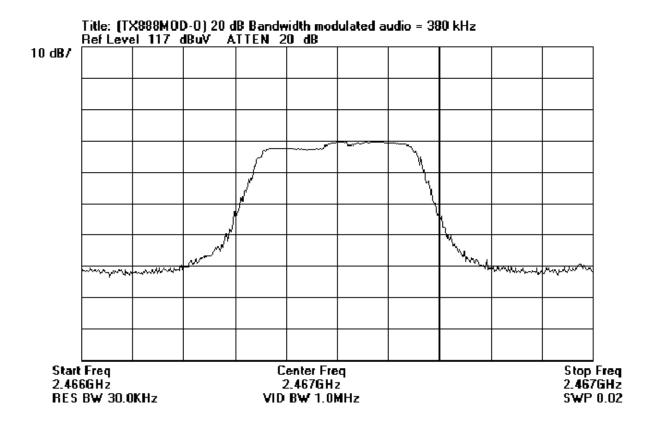

Report No: FC99-032 Page 18 of 101

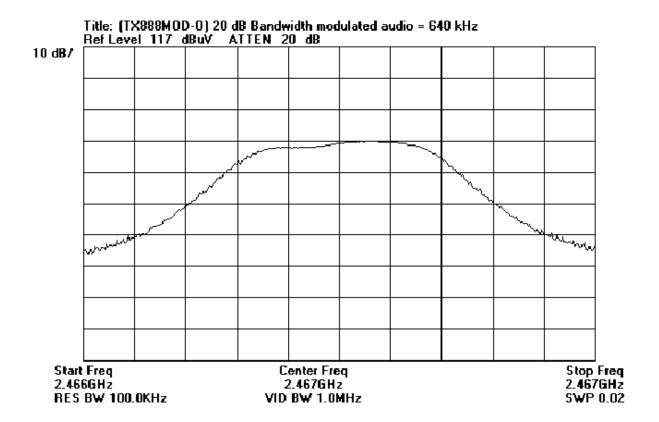

Report No: FC99-032 Page 19 of 101

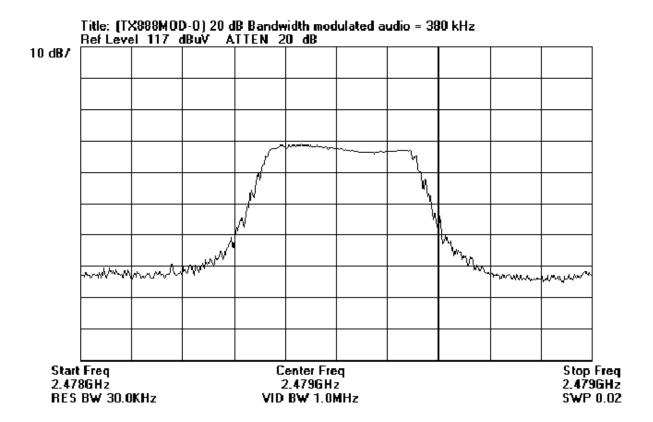

Report No: FC99-032 Page 20 of 101

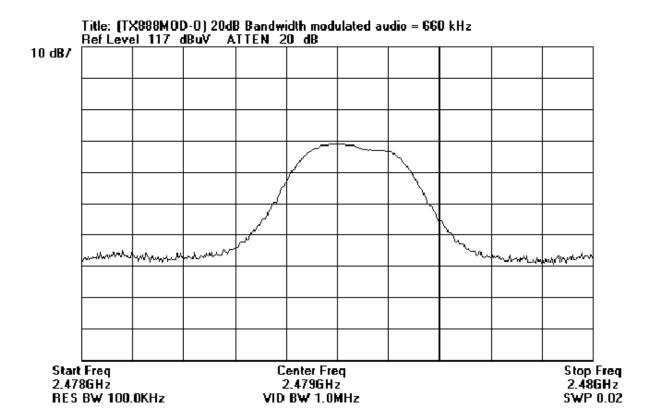

Report No: FC99-032 Page 21 of 101

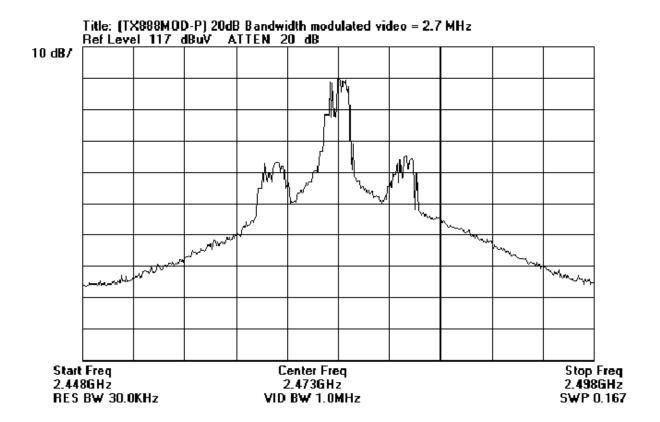

Report No: FC99-032 Page 22 of 101

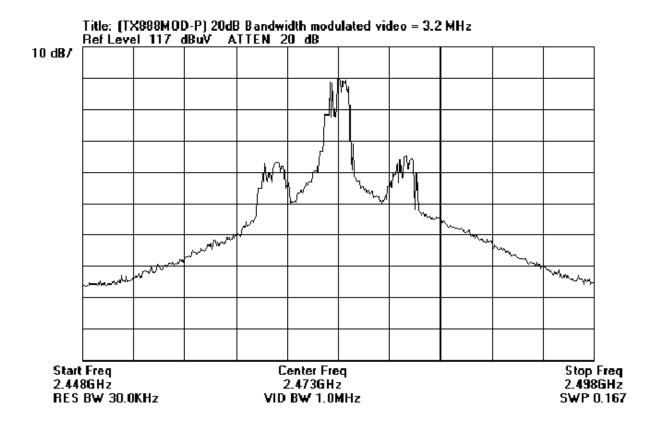

Report No: FC99-032 Page 23 of 101

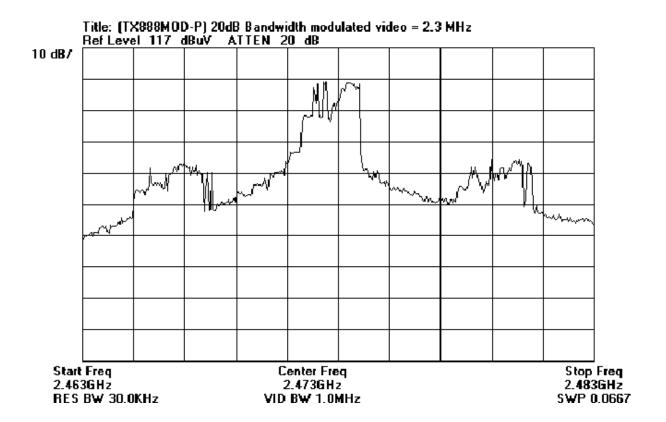

Report No: FC99-032 Page 24 of 101

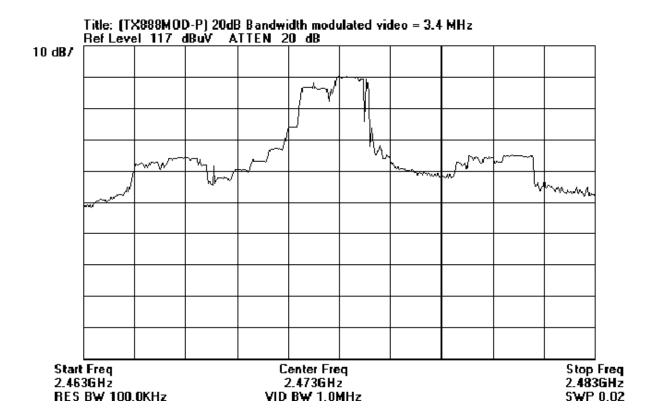

Report No: FC99-032 Page 25 of 101

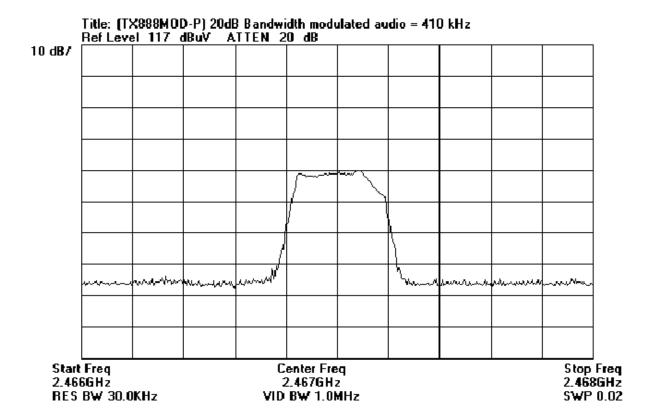

Report No: FC99-032 Page 26 of 101

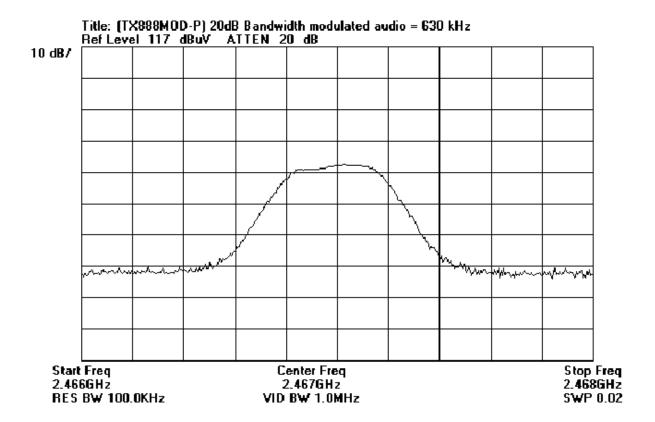

Report No: FC99-032 Page 27 of 101


Report No: FC99-032 Page 28 of 101


Report No: FC99-032 Page 29 of 101

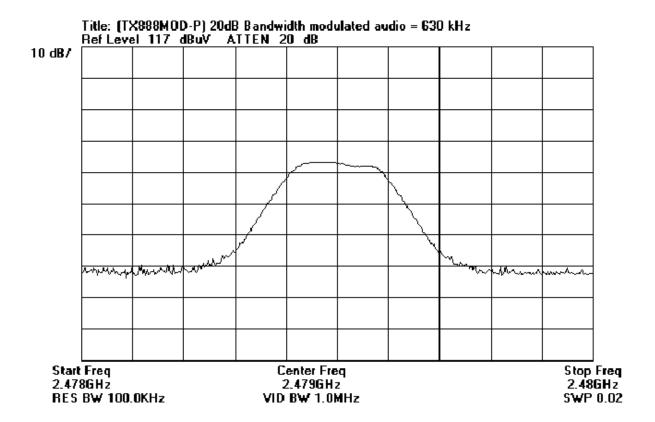

Report No: FC99-032 Page 30 of 101


Report No: FC99-032 Page 31 of 101


Report No: FC99-032 Page 32 of 101

Report No: FC99-032 Page 33 of 101

Report No: FC99-032 Page 34 of 101



Report No: FC99-032 Page 35 of 101

Report No: FC99-032 Page 36 of 101

Occupied Bandwidth Plot

Report No: FC99-032 Page 37 of 101

2.1033(c)(14)/2.1051/90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Video Bandwidth and Resolution Bandwidth Settings:

Frequency Range	Signal Analyzer
	VBW & RBW Setting
9kHz – 150kHz	200Hz
150kHz - 30MHz	9kHz
30MHz – 1MHz	120kHz
1GHz – 26GHz	1MHz

Test Setup Used for Conducted Spurious:

Same test setup as for 2.1033(c)(14)/2.1046/90.210 - RF Power Output. See photograph on pages 9 & 10.

Test Equipment Used:

Test Equipment

1 csi Equipment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A	3010A01076	07/15/1999	07/15/2000	0
HP 8593EM	3624A00159	10/12/1998	10/12/1999	2111
HP 8447D	2727A05392	02/23/1999	02/23/2000	10
HP 83017A	3123A00321	10/26/1998	10/26/1999	2114
Chase CBL6111C	2455	08/30/1999	08/30/2000	1992
EMCO 3115	9006-3414	02/24/1999	02/24/2000	327
EMCO 3301B	9101-3083	06/30/1999	06/30/2000	0
HP 84125-80008	961178-006	01/13/1999	01/13/2000	0
Cable 125 ft.	n/a	02/04/1999	02/04/2000	2086
Cable 10 ft.	n/a	02/05/1999	02/05/2000	1016
Fischer LISN	none	01/13/1999	01/13/2000	14
Fischer LISN	none	01/13/1999	01/13/2000	13

Report No: FC99-032

Page 38 of 101

Test Data:

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210

Work Order #: **72515** Date: Fri Sep-17-1999

Test Type: Maximized Emissions Time: 12:04:23 Equipment: Video Audio Transmitter Sequence#: 19

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P+

S/N: SMA

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	SMA

Support Devices:

Function Man	ufacturer	Model #	S/N	
Power Supply (12 VCD, 400 mA)	RF Link Technolog		LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70 F. The humidity is 40%.

Measi	ırement Data:	Rea	ding lis	ted by fre	quency.	Test Distance: None					
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2466.400M	99.3					+0.0	99.3	144.0 Peak unmolow audio		None
2	4939.150M	42.6					+0.0	42.6	94.0	-51.4	None
3	7411.850M	52.1					+0.0	52.1	94.0	-41.9	None
4	9884.250M	58.4					+0.0	58.4	94.0	-35.6	None
5	12356.950 M	61.2					+0.0	61.2	94.0	-32.8	None
6	14829.950 M	40.2					+0.0	40.2	94.0	-53.8	None
7	17302.550 M	42.6					+0.0	42.6	94.0	-51.4	None

Report No: FC99-032 Page 39 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210

Work Order #: **72515** Date: Fri Sep-17-1999

Test Type: Maximized Emissions Time: 12:03:56 Equipment: Video Audio Transmitter Sequence#: 18

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P+

S/N: SMA

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	SMA

Support Devices:

Function Ma	anufacturer	Model #	S/N	
Power Supply (12 VCD, 400 m.	A) RF Link Technology	7	LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	urement Data:	Rea	ding list	Reading listed by frequency.			Test Distance: None				
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2479.000M	99.3					+0.0	99.3	144.0 Peak unmenti audio c		None
2	4951.600M	44.1					+0.0	44.1	94.0	-49.9	None
3	7424.200M	53.2					+0.0	53.2	94.0	-40.8	None
4	9896.851M	59.3					+0.0	59.3	94.0	-34.7	None
5	12369.500 M	60.9					+0.0	60.9	94.0	-33.1	None
6	14842.200 M	40.1					+0.0	40.1	94.0	-53.9	None
7	17314.600 M	43.3					+0.0	43.3	94.0	-50.7	None

Report No: FC99-032 Page 40 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210

Work Order #: **72515** Date: Fri Sep-17-1999

Test Type: Maximized Emissions Time: 12:03:29
Equipment: Video Audio Transmitter Sequence#: 17

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P+

S/N: SMA

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	SMA

Support Devices:

Function	Manufacturer	Model #		S/N	
Power Supply (12 VCD, 4	00 mA) RF Link Technolo	gy	LPS-1240	none	

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	urement Data:	Rea	Reading listed by frequency.			Test Distance: None					
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2472.650M	123.2					+0.0	123.2	144.0 unmodula carrier	-20.8 ted video	None
2	4945.350M	62.0					+0.0	62.0	94.0	-32.0	None
3	7417.950M	68.4					+0.0	68.4	94.0	-25.6	None
4	9890.650M	72.1					+0.0	72.1	94.0	-21.9	None
5	12363.250 M	72.4					+0.0	72.4	94.0	-21.6	None
6	14835.950 M	50.4					+0.0	50.4	94.0	-43.6	None
7	17308.500 M	52.5					+0.0	52.5	94.0	-41.5	None

Report No: FC99-032 Page 41 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210
Work Order #: 72515

Work Order #: 72515 Date: Fri Sep-17-1999
Test Type: Maximized Emissions Time: 10:32:56
Equipment: Video Audio Transmitter Sequence#: 16

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: none

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	None

Support Devices:

Function	Manufacturer	Model #	S/I	N
Power Supply (12 VCD,	400 mA) RF Link T	echnology	LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measurement Da	ta: Rea	ading list	ed by fre	quency.		Te	st Distand	ce: None		
# Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1 2466.450N	М 90.7					+0.0	90.7	144.0	-53.3	None
								Peak unm low audio		
2 4939.190N	M 28.9					+0.0	28.9	94.0	-65.1	None
3 7412.040N	M 64.6					+0.0	64.6	94.0	-29.4	None
4 9884.6901	M 47.6					+0.0	47.6	94.0	-46.4	None
5 12357.390 M	47.4					+0.0	47.4	94.0	-46.6	None
6 14830.140 M	40.9					+0.0	40.9	94.0	-53.1	None
7 17302.890 M	30.4					+0.0	30.4	94.0	-63.6	None
8 19775.590 M	28.2					+0.0	28.2	94.0	-65.8	None

Report No: FC99-032 Page 42 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210
Work Order #: 72515

Work Order #: **72515** Date: Fri Sep-17-1999 Test Type: **Maximized Emissions** Time: 10:31:56

Equipment: Video Audio Transmitter Sequence#: 15

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: None

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	None

Support Devices:

Function	Manufacturer	Model #	S/N	V
Power Supply (12 VCD, 40	00 mA) RF Link Technology		LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measi	urement Data:	Rea	ding list	ed by fre	quency.		Tes	st Distan	e: None		
#	Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2479.050M	90.5					+0.0	90.5	144.0	-53.5	None
									Peak unme		
2	4951.490M	30.2					+0.0	30.2	94.0	-63.8	None
3	7424.090M	64.7					+0.0	64.7	94.0	-29.3	None
4	9896.740M	48.1					+0.0	48.1	94.0	-45.9	None
5	12369.540 M	47.0					+0.0	47.0	94.0	-47.0	None
6	14842.140 M	41.1					+0.0	41.1	94.0	-52.9	None
7	17314.940 M	31.3					+0.0	31.3	94.0	-62.7	None
8	19787.590 M	28.5					+0.0	28.5	94.0	-65.5	None

Report No: FC99-032 Page 43 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC90.210
Work Order #: 72515

Work Order #: 72515 Date: Fri Sep-17-1999
Test Type: Maximized Emissions Time: 10:31:08
Equipment: Video Audio Transmitter Sequence#: 14

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: None

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	None

Support Devices:

Function	Manufacturer	Model #	S/I	N
Power Supply (12 VCD	o, 400 mA) RF Link Tec	hnology	LPS-1240	none

Test Conditions / Notes:

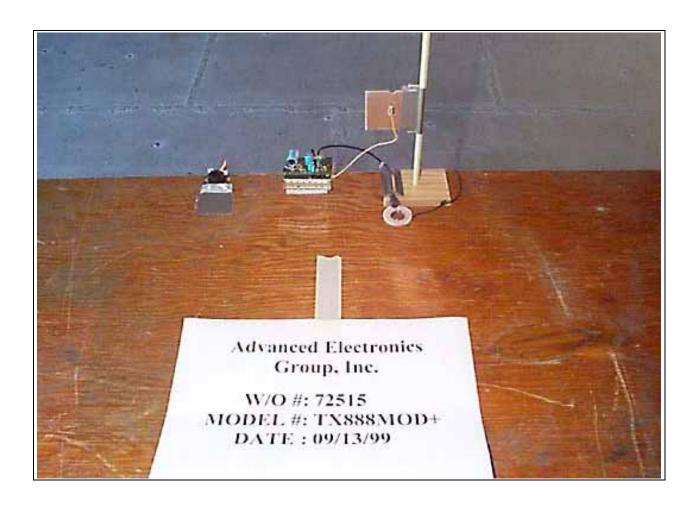
The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measurement Data	: Rea	ading lis	ted by fre	quency.		Te	st Distanc	e: None		
# Freq MHz	Rdng dBµV	dB	dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1 2472.670M	111.5					+0.0	111.5	144.0	-32.5	None
								unmodula carrier	ted video	
2 4945.390M	42.7					+0.0	42.7	94.0	-51.3	None
3 7418.040M	80.6					+0.0	80.6	94.0	-13.4	None
4 9890.790M	60.1					+0.0	60.1	94.0	-33.9	None
5 12363.440 M	57.5					+0.0	57.5	94.0	-36.5	None
6 14836.140 M	49.0					+0.0	49.0	94.0	-45.0	None
7 17308.840 M	36.3					+0.0	36.3	94.0	-57.7	None
8 19781.540 M	35.1					+0.0	35.1	94.0	-58.9	None

Report No: FC99-032 Page 44 of 101

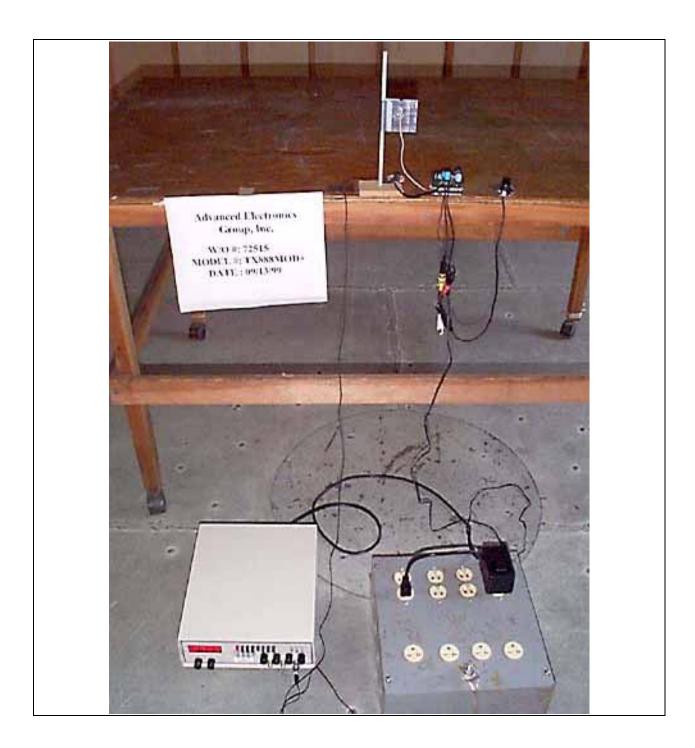
2.1033(c)(14)/2.1053 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Conditions:


All harmonics and sub-harmonics of the carrier frequency were investigated. Measurements were also made to detect any spurious emissions that were directly radiated from the EUT under normal conditions of installation and operation. All spurious emissions which were attenuated more than 20 dB below the permissible value were not reported. The information submitted includes the relative radiated power of each spurious and harmonic emissions with reference to the rated power output of the transmitter (assuming all emissions are radiated from half-wave dipole antennas).

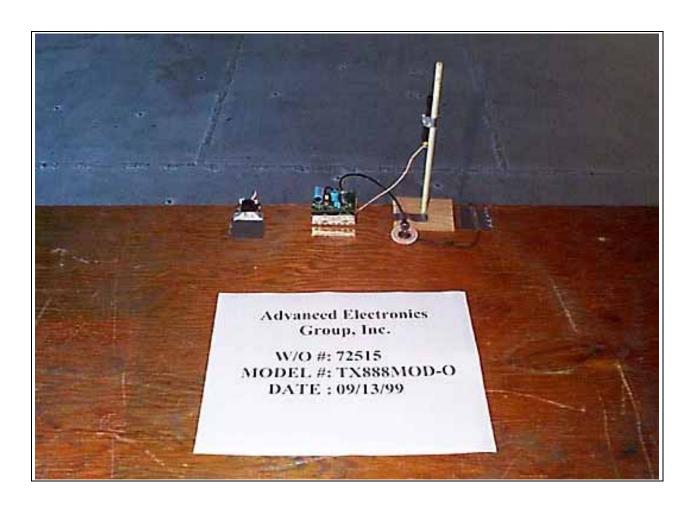
Video Bandwidth and Resolution Bandwidth Settings:

Frequency Range	Signal Analyzer
	VBW & RBW Setting
9kHz – 150kHz	200Hz
150kHz - 30MHz	9kHz
30MHz – 1MHz	120kHz
1GHz – 26GHz	1MHz


Report No: FC99-032

Page 45 of 101

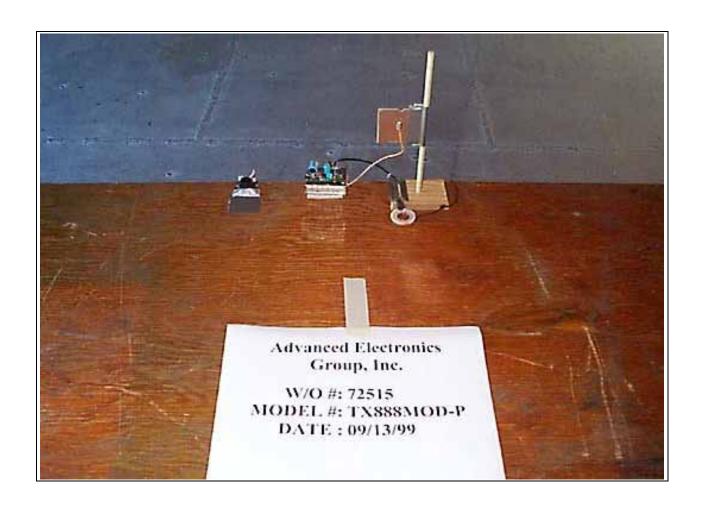
Front View - TX888MOD-P+


Report No: FC99-032 Page 46 of 101

Back View - TX888MOD-P+

Report No: FC99-032 Page 47 of 101

Photograph Showing Field Strength of Spurious Radiation


Front View - TX888MOD-O

Report No: FC99-032 Page 48 of 101

Back View - TX888MOD-O

Report No: FC99-032 Page 49 of 101

Front View - TX888MOD-P

Report No: FC99-032

Page 50 of 101

Photograph Showing Field Strength of Spurious Radiation

Back View - TX888MOD-P

Report No: FC99-032 Page 51 of 101

Test Equipment Used:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A	3010A01076	07/15/1999	07/15/2000	0
HP 8593EM	3624A00159	10/12/1998	10/12/1999	2111
HP 8447D	2727A05392	02/23/1999	02/23/2000	10
HP 83017A	3123A00321	10/26/1998	10/26/1999	2114
Chase CBL6111C	2455	08/30/1999	08/30/2000	1992
EMCO 3115	9006-3414	02/24/1999	02/24/2000	327
EMCO 3301B	9101-3083	06/30/1999	06/30/2000	0
HP 84125-80008	961178-006	01/13/1999	01/13/2000	0
Cable 125 ft.	n/a	02/04/1999	02/04/2000	2086
Cable 10 ft.	n/a	02/05/1999	02/05/2000	1016
Fischer LISN	none	01/13/1999	01/13/2000	14
Fischer LISN	none	01/13/1999	01/13/2000	13

Test Data On Following Pages:

Report No: FC99-032 Page 52 of 101

FEC Part 2.1053 Measurements required: Field stronglib of spurious radiation Operating Channel: 2466 MHz Polarity (MHz) Reading in Factor Facto	FCC Part 2,1053 Nodule TX888MOD-P+	đ,									
1 Reading in Pred 1 ABuV/m Fac 19 60.40 -34 29 60.40 -34 20 investigated was missible value were rep 20 out of band" attenual 3 Limit (VI) = 10*(-43*10) 3 Limit (VI) = 10*(-43*10) 3 Limit (VI) = 10*(-43*10) 4 Limit (VI) = 10*(-43*10) 5 Limit (VI) = 10*(-43*10) 6 Limit (VI) = 10*(-43*10) 7 L	FCC Part 2.1053 Mex	asurements rec		strength of	spurious radi	ation					
Polarity Freq Reading in ProAmp Cable Horn Corrected E VMM ERP (Watts) Spec Limit Pass or Fall	Operating Channel	. 2466 MHz									
Vertical 7411.79 60.40 -34.00 5.3 35.7 67.40 0.002344229 0.000001005 0.00005000 Pass Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spuribus and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported. CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emissions uth reference to the rated power output of the transmitter. The 43+10log/P ₂ (43+10log/P ₂) dB 'out of band' sitemusition equations equations establish this amplitude finit for spurious emissions. The 10r(-43+10) = 50 * 10r(-43		Reading in dBuV/m	PreAmp Factor	Cable Factor	Horn	Corrected E (dBuV/M)	NW	ERP (Watts)	Spec Limit Watts	Pass or Fall	
Notes: Frequency range investigated was from 9 kHz to 28 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 2008 below the permissible value were reported. CALCULATIONS Note: The data taken is retained to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB 'out of band' stlenustion equates to a 50 tW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (dBW) = 10fv(43+10) = 50 * 10*-6 W, ERP Calculations E = Vim d= distance G = Gain of Antenna (numencal gain of half wave dipole antenna 1.64) per Part 2.1053(a)	\Box		.34.00	5.3	35.7	67.40	0.002344229	0.0000001005	0.000000000	Pass	
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported. CALCULATIONS Note: The data taken is reliative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+1dlog(P) dB "out of band" attenuation equates to a 50 tW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10^(-4.3 \tild) = 50 \tild 10^{\tild} 50 \tild 10^{\tild 10^{\tild} 50 \tild 10^{\tild 10^{\tild} 50 \tild 10^{\tild											
CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB fout of band* attenuation equations emissions with reference to the rated power output of the transmitter. Spurious Emissions Limit (dBW) = 10h(4.43/10) = 50 * 10h-6 W. Spurious Emissions Limit (W) = 10h(4.43/10) = 50 * 10h-6 W. Spurious Emissions Limit (W) = 10h(4.43/10) = 50 * 10h-6 W. ERP Calculations ERP = (Ed)*30(G) E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipple antenna 1.64) per Part 2.1053(a)	Notes: Frequency ra 20dB below the perm	nge investigate itssible value w	ed was from ere reported	9 kHz to 26	GHz. All spu	rribus and harm	onic emissions :	were investigated	. All emissions d	etected that were li	iss than
CALCULATIONS Vote: The data taken is relative to the radialed power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (dBW) = 10logP - (d3+10logP) = -43 dBW. Spurious Emissions Limit (dBW) = 10logP - (d3+10logP) = -43 dBW. ERP Calculations ERP Calculations = -40 dBuV/m to V/m (invited gain of half wave dipote antenna 1.64) per Part 2.1053(a) = -40 distance G = -40 distance C = -40 distance											
Vote: The data taken is retailive to the radialed power of each spundous emission with reference to the rated power output of the transmitter. The 43+10log(P) dB fout of band* attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude finit for spurious emissions. Spurious Emissions Limit (M) = 10f(-43/10) = 50 * 10*-6 W, ERP Calculations ERP Calculations E = V/m I = distance S = Gain of Antenna (numerical gain of half wave dipole antenna 1,64) per Part 2.1053(a)						CALCULATION	ONS				
	Vote: The data taker The 43+10log(P) dB	n is relative to t	the radiated ttenustion ec	power of eaquates to a	ch spurious e 50 uW limit fo	mission with refi rany P. The fo	erence to the ra Towing equation	ded power output is establish this a	of the transmitter implitude limit for	spuribus emissians	
	Spurious Emissions I Spurious Emissions L	Limit (dBW) = 1 Limit (W) = 10%	(43/10) = 5(-10logP] = -	43 dBW.						
	ERP Calculations							Conversion of d	BuV/m to V/m	1 1000	
E = V/m J= distance 3 = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	$ERP = (Ed)^2/30(G)$							(invlog(Reading i	n dBuV/m/20)]*.0	00001 = V/m	
3 = Gain of Anlenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	E = V/m d= distance										
	3 = Gain of Antenna	(numerical ga	in of half war	ve o'pole an	tenna 1.64) p	er Part 2.1053(a	ŶĠ.				

Report No: FC99-032 Page 53 of 101

Freq Reading in PreAmp Cable Horn Corrected E V/M ERP (Watts) Street Reading in PreAmp Cable Horn Corrected E V/M ERP (Watts) Street Reading in PreAmp Pactor P		
Poliarity Freq Reading in PreAmp Cable Horn Corrected E V/M ERP (Watts) Spec Li (BuV/Im) Watts Veritical 7418.10 7418.10 73.60 -34.00 5.3 35.6 90.50 0.010592537 0.000020323 0.00000 Horizontal 7418.10 64.10 -34.00 5.3 35.6 71.00 0.003548134 0.000002303 0.0000 Horizontal 7418.10 64.10 -34.00 5.3 35.6 71.00 0.003548134 0.000002303 0.0000 Horizontal 7418.10 64.10 -34.00 5.3 35.6 71.00 0.003548134 0.000002303 0.0000 Note: The detailed was from 9 kHz to 26 GHz. All spurious amission with reference to the raled power of each spurious emission with reference to the raled power output of the train for the raled power of each spurious emission with reference to the raled power output of the train for the raled power output of the raled power output		
Vertical 7418.10 73.50 -34.00 5.3 35.6 90.50 0.010593537 0.00002305 0.00000200 Horizontal 7418.10 64.10 -34.00 5.3 35.6 71.00 0.0003548134 0.000002303 0.000000 Horizontal 7418.10 64.10 -34.00 5.3 35.6 71.00 0.0003548134 0.000002303 0.000000 Notes: Froquency range investigated was from 8 kHz to 26 GHz. All spurious and harmonic emissions were reported. All emiss 2068 below the permissible value were reported. CALCULATIONS CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the raled power output of the transformed attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude in Spurious Emissions Limit (W) = 10^(-43/10) = 50 · 10^0-5 W. Spurious Emissions Limit (W) = 10^(-43/10) = 50 · 10^0-5 W. Conversion of dBuVint to limit to dBuVint to dBuVint to limit to dBuVint to dBuVi	tts) Spec Limit Watts	Pass or Fail
Horizontal 7418.10 64.10 -34.00 -34.00 5.3 35.6 71.00 0.003548134 0.00002303 0.00002002	525 0.000050000	Pass
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the fram. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude lin. Spurious Emissions Limit (40W) = 10^4(-43/10) = 50^4 - 10^4 - 5 W. ERP Calculations ERP = {Edy ² /20(G)} ERP = V/m	303 0.000050000	Pass
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transformed in the transformed for any P. The following equations establish this amplitude in Spurious Emissions Limit (40) = 10^*(-43/10) = -43 dBW. Spurious Emissions Limit (40) = 10^*(-43/10) = 50 * 10^*-5 W. ERP Calculations	galed. All emissions de	elected that were le
CALCOLLATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the trans The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude lin Spurious Emissions Limit (48M) = 10h(43/10) = 50 * 10h-5 W. ERP Calculations ERP Calculations ERP Calculations ERP Calculations ERP Calculations Invitog(Reading in dBuV/m/)		
Note. The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the trans. The 43+10og(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude life Spurious Emissions Limit (dBW) = 10°(-43/10) = .43 dBW. Spurious Emissions Limit (W) = 10°(-43/10) = 50°10^4-5 W. ERP Calculations ERP Calculations ERP Calculations ERP = V/m		7
= 10kgP - (43+10kgP) = -43 d8W. IO*(-43/10) = 50 * 10^-5 W.	output of the transmitter. this amplitude limit for s	spurious emissions.
ations (30(G)		
(5)oc;	n of dBuV/m to V/m	
E = V/m	iding in dBuV/m/20)]".00	30001 = V/m
d≈ distance		
G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)		

Report No: FC99-032 Page 54 of 101

FCC Part 2,1053										
Module TX888MOD-P+	10-P+									
FCC Part 2:1053 Measurements required: Field strength of spurious radiation	deasurements re-	quired: Field	strength of	spurious radi	iation					
Operating Channel - 2479 MHz	el - 2479 MHz			O THE STREET IS	Department of the Company	11.1 T. S.	ALTERNATION DELICATION OF THE PERSON OF THE	WOOD STANSFORM	CONTRACTOR STREET	
Polarity Freq (MHz)	q Reading in	PreAmp Factor	Cable Factor	Horn	Corrected E (dBuV/M)	NW	ERP (Watts)	Spec Limit Watts	Pass or Fail	
Vertical 7424.39	39 59.80	-34,00	5.3	35.6	66.70	0.002152719	0,0000000356	0.000000000	Pass	
										= 575
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 2008 below the permissible value were reported.	range investigati smissible value w	ed was from vere reported	9 kHz to 26	GHz. All sp.	urious and harm	onic emissions :	were investigated	. All emissions de	stected that were I	ess than
		8								
					CALCULATIONS	ONS				
Note. The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "out of band" attenuation equales to a 50 dW limit for any P. The following equations establish this amplitude limit for spurious emissions.	ken is relative to IB "out of band" a	the radiated ittenuation er	power of ea	ich spurious e 50 uW limit fo	mission with ref r any P. The fo	erence to the ra flowing equation	ted power output is establish this a	of the transmitter mplitude limit for a	spurious emission	
Spurious Emissions Limit (dBW) = $10\log P \cdot (43\pm10\log P) = -43 \text{ dBW}$. Spurious Emissions Limit (W) = $10^{\circ}(-43/10) = 50^{\circ}\cdot10^{\circ}G$ W.	ns Limit (dBW) = 10°	10logP - (43· Y-43/10) = 5i	+10legP) = .	-43 dBW.						
	3						and and and	Outstand by Minn		3
ERP = $(Ed)^2/30(G)$							[invlog(Reading in dBuV/m/20)]*	[invlog(Reading in dBuV/m/20)]* 000001 = V/m	00001 = V/m	
E = V/m										
d= distance						1				
G = Gain of Antenna (numerical gain of half wave dipole antenna 1 64) per Part 2.1053(a)	na (numerical ga	ain of half wa	ve dipole ar	Henna 1,64) p	ver Part 2,1053(a	a)				

Report No: FC99-032 Page 55 of 101

Depression Change	leasurements re	quired: Field	strength of	FCC Part 2.1053 Measurements required: Field strength of spurious radiation	ation				
THE PRINCE	Operating Channel - 2466 MHz								
Polarity Freq (MHz)	Reading in dBuV/m	PreAmp Factor	Cable Factor	Horn	Corrected E (dBuV/M)	NIM	ERP (Watts)	Spec Limit Watts	Pass or Fail
Vertical 7411.74	74 57.90	-34.00	5.3	35.7	64.90	0.001757924	0.000000565	0.00050000	Pass
Notes: Frequency range investigated w 20d8 below the permissible value were	range investigate missible value w	ed was from 9	9 KHz to 26	GHz. All spu	rious and hamp	anic emissions	were investigated	All emissions de	Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 2008 below the permissible value were reported.
		The state of			CALCULATIONS	ONS			
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB fout of band* attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for a	cen is relative to I	the radiated ;	power of eaquates to a	ch spurious er 50 uW limit fo	mission with ref	erence to the ra llowing equation	ited power output its establish this a	of the transmitter mplitude limit for:	Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB fout of band* attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions.
Spurious Emissions Limit (dBW) = 10logP - (43+10logP) = -43 dBW	s Limit (dBW) = 1	10logP - (43+	-10lagP) = -	43 dBW.					
Spurious Emissions Limit (M) = 10^(.43/10) = 50 * 10^-6 W.	s Limit (W) = 10^	(-43/10) = 50	0.10^6 W.						
ERP Calculations ERP = (Ed) ² /30/G)	300						Conversion of dBuV/m to V/m Tinylog(Reading in dBuV/m/20))*	Conversion of dBuV/m to V/m Invlog(Reading in dBuV/m/20)1* 000001 = V/m	30001 = V/m
E = V/m									
d= distance									
G = Gain of Antenna (numerical gain of	a (numerical ga	in of half way	ve dipole an	d (1991) p	half wave dipole antenna 1.64) per Part 2.1053(a)	(8)			

Report No: FC99-032 Page 56 of 101

Operating Channel - 2473 MHz Polarity Freq Reading		FCC Part 2.1053 Measurements required: Field strength of spurious radiation	strength of		duali				STROTTING CO.
Freq	2473 MHz								
(m)	Reading in dBuV/m	PreAmp Factor	Cable	Horn	Corrected E (dBuV/M)	N/W	ERP (Watts)	Spec Limit Watts	Pass or Fail
Vertical 7418.04	67.70	-34.00	5.3	36.6	74.60	0.005370318	0.000005276	0.000050000	Pass
Horizontal 7418.09	61.50	-34.00	5.3	35.6	68,40	0.002630268	0.000001266	0.000000000	Pass
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported.	ge investigate sible value w	d was from 9	9 kHz to 26	GHz. All spu	rious and hamic	onic emissions v	were investigated.	. All emissions de	lected that were les
					CALCULATIONS	ONS			
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (dBW) = 10logP - (43+10logP) = -43 dBW.	is relative to the suit of band" at mit (dBW) = 1	tenuation eq	custes to a tologP) = -	ch spurious e 50 uW limit fo 43 dBW.	mission with refi r any P. The fol	erence to the ra flowing equation	led power output is establish this a	of the transmitter mplitude limit for	spurious emissions.
Spurous Emissions Limit (w) = 10 (45/10) = 50 - 10 -6 w	(wy) = (wy)	10 = (n n = n)	5						
ERP Calculations ERP = (Ed) ² /30(G)	þ						Conversion of dBuV/m to V/m [inviog(Reading in dBuV/m/20)]* 000001 = V/m	BuV/m to V/m n dBuV/m/20)]* 0	00001 = V//m
E = V/m									
o= orstance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	numerical gai	n of half wav	ne dipole an	tenna 1.64) p	er Part 2.1053(8	8			

Report No: FC99-032 Page 57 of 101

PCC Part 2.1063 Measurements required. Field strength of spurious rediation Operating Channel - 2479 MHz Polarity Freq Reading in PreAmp Cable Horn (data/M) Vertical 7424.29 57.90 -34.00 5.3 35.6 64.80 0.001737801 0.000000652 0.00005000 Pass Nation Vertical 7424.29 57.90 -34.00 6.3 35.6 84.80 0.001737801 0.000000652 0.00005000 Pass Nation Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions defected that were lesponded. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = 10/cy2 - (43+10/ogP) = -43 dBW. Spurious Emissions Limit (dBW) = -43 dBW. S	PCC Part 2.1053 Measurements requi	The state of the state of		Spurious radi	ading				
Polarity Freq Reading in PreAmp Factor Factor Factor Factor Antenna (dBuVM) Factor	5 5	red. Field	strength of		anone.				
Pojarity Freq Reading in PreAmp Cable Horn Corrected E VM ERP (Watts) Spec Limit Pass or Fall Pass or Fall Watts Vertical 7424.29 57.90 -34.00 5.3 35.6 64.80 0.001737801 0.00000562 0.000050000 Pass Pass or Fall Vertical Ver	5 .								
Vertical 7424.29 57.90 -34.00 5.3 35.6 64.80 0.001737801 0.000000562 0.00005000 Pass Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were legated. All emissions detected that were legated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were legated. Mote: The data taken is relative to the radiated power of each spurious emission with reference to the rated power of the rangellad power of each spurious emission with reference to the rated power output of the transmitter. The 43+10/og/P) dB "out of band" alternualion equales to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10"(-43/10) = 50 * 10"-6 W. Conversion of dBuV/m to V/m E = Vim (inviog(Reading in dBuV/m/20)]*.00001 = V/m d= distance G = Oain of Antenna (aumerical gain of half wave dipole antenna 1.64) per Part 2.1055(a)	7424.29 57.90	PreAmp Factor	Cable Factor	Horn	Corrected E (dBuV/M)	ViM	ERP (Watts)	Spec Limit Watts	Pass or Fail
Notes: Frequency range investigated was from 9 kHz to 2% GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported. CALCULATIONS Note: The data taken is relative to the radialest power of each spurious emission with reference to the rated power output of the transmitter. The 43+10(og/P) dB "out of band" alternuation equales to 8.50 u/W limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10^(-43^{\circ}10) = 50 \cdot 10^{\circ}4 W. ERP = Eq. (*30(G) EVIII EVIII EVIIII EVIIIII EVIIIIII EVIIIII EVIIIII EVIIIII EVIIIII EVIIIII EVIIIII EVIIIII EVIIIII EVIIIIII EVIIIII EVIIIIII EVIIIII EVIIIII EVIIIII EVIIIIII EVIIIII		-34.00	5.3	35.6	64.80	0.001737801		0.00050000	Pass
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were last than 2006 below the permissible value were reported. CALCULATIONS Note: The data taken is relative to the natisted power of each spurious emission with reference to the rated power output of the transmitter. The 43+10/og(P) dB "aut of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10^4(-43+10/ogP) = -43 dBW. ERP Calculations ERP = (Ed) ² /30(G) E = Vim d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)									
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log/P) dB "aut of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (4M) = 10^4(-43/10) = 50 * 10^46 W. ERP Calculations ERP Calculations E = V/im d= distance G = Gain of Antenna (aumerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	Notes: Frequency range investigated 20dB below the permissible value wen	was from 9 e reported	9 kHz to 26	GHz All spu	rious and harm	onic emissions	were investigated	. All emissions d	etected that were
CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10/og(P) dB "aut of thand" alternualion equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10^(-43/10) = 50 * 10^{-6} W. ERP Calculations ERP Calculations ERP = (Ed) ² /30(G) E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)									
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "aut of band" alternation equales to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (48W) = 10h(-43/10) = 50 * 10h(-6 W). ERP Calculations ERP Calculations ERP = (Ed) ² /30(G) E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)					CALCULATI	ONS			
nissions Limit (dBW) = 10logP - (43+10logP) = -43 dBW. nissions Limit (W) = 10^(-43/10) = 50 * 10^-6 W. ations '30(G) Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	Note: The data taken is relative to the The 43+10log(P) dB "aut of band" atte	radialed p	cower of ea quales to a	ich spurious e 50 uW limit fo	mission with ref	ference to the raildowing equation	ited power output is establish this a	of the transmitter mplitude limit for	spurious emission
ations ?20(G) Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	Spurious Emissions Limit (dBW) = 10! Spurious Emissions Limit (W) = 10^(~	ogP - (43* (3/10) = 50	10logP) = -	-43 dBW.					
(130(G) Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	ERP Calculations			y J	5		Conversion of a	BuV/m to V/m	
Antenna (numerical gain	$ERP = (Ed)^2/30(G)$						[invlog(Reading)	n dBuV/m/20)]".0	D0001 = V/m
Antenna (numerical gain	E = V/m								
	d= distance								
	G = Gain of Antenna (numerical gain	of half way	ve dipole an	q (54) p	er Part 2,1053((8)			

Report No: FC99-032 Page 58 of 101

Operating Channel - 2466 MHz Pred	Module TX888MOD-P FCC Part 2.1053 Messurements required: Field strength of spurious radiation	D-P feasurements	required: Fie	id strength o	f spurious radi	ation				
Freq Reading in (MHz) ABuV/m ABuV/m ABuV/m 64.50 7411.70 64.50 requency range investigated ow the permissible value were (Diog(P) dB "out of band" atternissions Limit (W) = 10°(-4 Emissions Limit (W) = 10°(-4 Emissions Limit (W) = 10°(-4 Emissions Limit (M) = 10°(-4 Emission	Operating Chann	el - 2466 MHz								
Vertical 74:1.70 64:50 -34.00 5.3 36.7 71:50 0.003758374 0.000002684 0.000002000 Pass Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions delected that were less to selected that were resorted. Zode Below the permissible value were resorted. CALCULATIONS Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log/P) dB "out of band" attenuation equates to a 50 wW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (MbW) = 10Y(-43x10) = 50 * 10*-6 W. Conversion of dBuV/m to V/m ERP calculations EE Vim de distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.54) per Part 2.1053(a) Conversion of adbuV/m to V/m	Polarity From	q Reading	.s		Horn	Corrected E (dBuV/M)	NIN	ERP (Watts)	Spec Limit Watts	Pass or Fail
Notes: Froquency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less to 20d8 below the permissible value were reported. CALCULATIONS Note: The 43+10bog/P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (48W) = 10^o(-43+10) = 50 * 10^o-6 W. ERP Calculations ERP = (Eq) ² /30(G) E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)			-34.00	5.3	35.7	71.50	0.003758374		0.00050000	G SS SS SS SS SS SS SS SS SS SS SS SS SS
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (VB) = 10°(-43°10) = 50 * 10°-6 W. ERP = (Ed)*/30(G) ERP = (Ed)*/30(G) ERP = (Ed)*/30(G) ERP = V/m d= distance G = (Sain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	Notes: Frequency 20dB below the pe	range investig	lated was from a were reporte	n 9 kHz to 28 rd.	I S GHz. All spu	urious and harmo	onic emissions	were investigated	. All emissions d	l elected that were le
Nate: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10og(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (dBW) = 10ogP = (43+10ogP) = -43 dBW. Spurious Emissions Limit (W) = 10^(-43/10) = 50 * 10^-6 W. ERP Calculations E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.54) per Part 2.1053(a)										
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power of each spurious emissions. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions. Spurious Emissions Limit (W) = 10^4/43/10 = 50 * 10^6 W. ERP Calculations ERP Calculations E = V/m d= distance G = Gain of Antenna (numerical gain of half wave dipole anlenna 1.64) per Part 2.1053(a)				100000000000000000000000000000000000000		CALCULATI	ONS			
43 dBW. lerina 1.54) per Part 2.1053(a)	Note: The data ta The 43+10log(P) of	ken is relative i 18 "out of band"	to the radiated	d power of es equates to a	ach spuribus e 50 uW limit fo	mission with refi cany P. The fol	erence to the ra llowing equation	ited power output is establish this a	of the transmitter mplitude limit for	spurious emissions
of half wave dipole antenna 1.64) per Part 2.1053(a)	Spurious Emissior Spurious Emissior	is Limit (dBW) is Limit (W) = 1	= 10logP - (4)	3+10logP) = 50 * 10^6 W	-43 dBW.					
of half wave dipole antenna 1.64) per Part 2.1053(a)	ERP Calculations			Š				Conversion of d	BuV/m to V/m	
e = vm. d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	ERP = (Ed) ² /30(G	_						[invlog(Reading)	n dBuV/m/20)[*.0	30001 = V/m
G = Gain of Antenna (numerical gain of half wave dipote antenna 1.64) per Part 2.1053(a)	d* distance									
	G = Gain of Anten	na (numerical	gain of half w	ave dipole a	nlerina 1.54) p	er Part 2.1053(s	(6			

Report No: FC99-032 Page 59 of 101

perating	Channel -	Operating Channel - 2473 MHz				1000				
Polarity	Freq (MHz)	Reading in dBuV/m	PreAmp Factor	Cable Factor	Hom Antenna	Corrected E (dBuV/M)	W/A	ERP (Watts)	Spec Limit Watts	Pass or Fail
Vertical	7418.05	77.20	-34.00	5.3	35.6	84.10	0.016032454	0.000047019	0.000000000	Pass
Horizontal	7417.97	99.30	-34.00	5.3	35.6	73.20	0.004570882	0.000003822	0.000500000	Pass
lotes: Fre	squency rar v the permi	Notes: Frequency range investigated was from 9 20dB below the permissible value were reported	d was from the reported	9 kHz to 26	GHz. All spu	urious and harmo	onic emissions	were investigated	. All emissions de	Notes: Frequency range investigated was from 9 kHz to 25 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported.
						CALCILIATIONS	SNO			
ote: The	data taken log(P) dB "	Note: The data taken is relative to the The 43+10log(P) dB "out of band" atter	he radiated p	power of ea	ch spurious e 50 uW limit fo	mission with refix x any P. The fol	erence to the ra llowing equation	radiated power of each spurious emission with reference to the raled power output of the transmitter nuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for	of the transmitter mplitude limit for a	Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB "out of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions.
purious E	missions L	Spurious Emissions Limit (dBW) = $10\log P \cdot (43+10\log P) = -43$ dBW. Spurious Emissions Limit (W) = $10^{\circ}(-43/10) = 50^{\circ}\cdot 10^{\circ}-6$ W.	DlogP - (43+	-10logP) = -	43 dBW.					
ERP Calculations ERP = (Ed) ² /30(G) E = V/m	ulations)²/30(G)							Conversion of dBuV/m to V/m [invlog(Reading in dBuV/m/20]]*	Conversion of dBuV/m to V/m [Invlog(Reading in dBuV/m/20)]*.000001 = V/m	30001 = V/m
d= distance G = Gain of	e f Anteona	numerical gail	n of half was	ve dipole an	tenna 1.64) p	d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	6			

Report No: FC99-032 Page 60 of 101

CONTRACTOR OF THE PARTY OF THE	module concernors.	Pieron Field	oftonoth of	emurione radio	ation					
Operating Channel - 2479 MHz	. 2479 MHz		a de la constante de la consta			S. T. L. S.				
Polarity Freq (MHz)	Reading in dBuV/m	PreAmp Factor	Cable Factor	Horn	Corrected E (dBuV/M)	NiA	ERP (Watts)	Spec Limit Watts	Pass or Fail	
Vertical 7424.30	64.90	34.00	5.3	35.6	71.80	0,003890451	0.000002769	0.00050000	Pass	
Notes: Frequency range investigated was from 9 kHz to 26 GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20d8 below the cermissble value were reported.	nge investigate issble value w	d was from the reported	9 kHz to 26	GHz. All spu	rious and harmo	onic emissions i	were investigated	. All emissions de	elected that were les	ss than
					CALCULATIONS	SNO				
Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated power output of the transmitter. The 43+10log(P) dB fout of band" attenuation equates to a 50 uW limit for any P. The following equations establish this amplitude limit for spurious emissions:	n is relative to t "out of band" at	he radiated ; tlenustion of	power of ea	sch spurious e 50 uW limit fo	mission with refe r any P. The fol	erence to the ra llowing equation	ted power output is establish this a	of the transmitter mplitude limit for s	spurious emissions.	
Spurious Emissions Limit (dBW) = 10logP - (43+10logP) = .43 dBW. Spurious Emissions Limit (W) = $10^{\circ}(-43/10) = 50^{\circ}\cdot10^{\circ}\cdot6$ W.	Umit (dBW) = 1 Umit (M) = 10^	(dlogP - (43+	-10logP) = .	43 dBW.						
ERP Calculations ERP = (Ed) ² /30(G) E = V/m							Conversion of dBuV/m to V/m [invlog(Reading in dBuV/m/20)]*	Conversion of dBuV/m to V/m [invlog(Reading in dBuV/m/20)]*.000001 = V/m	00001 = V/m	
d= distance G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64) per Part 2.1053(a)	(numerical ga	in of half war	ve dipole ar	nlenna 1.64) p	er Part 2.1053(s	(6				

Report No: FC99-032 Page 61 of 101

2.1033(c)(14)/2.1055/90.213 - FREQUENCY STABILITY

Test Conditions:

The EUT is placed in the temperature chamber with the antenna-port connected to the spectrum analyzer. The transmitter is continuously transmitting unmodulated audio and video carriers. The humidity is 40%.

Photo of Test Setup Used for Test:

Temperature Testing - 888MOD+

Report No: FC99-032 Page 62 of 101

Photo of Test Setup Used for Test:

Temperature Testing - 888MOD-O

Test Equipment Used:

- 1. Spectrum Analyzer, HP, Model 8593E, S/N 3624A00159. Calibration date: December 10, 1998. Calibration due date: December 10, 1999.
- 2. Thermotron Temperature Chamber, Model S1.2 Mini-Max. Calibration date: August 6, 1999. Calibration due date: August 6, 2000.
- 3. Mini Hygrothermograph, Oaktron, Model 8369-70, S/N 031155. Calibration date: January 28, 1999. Calibration due date: January 28, 2000.
- 4. Multimeter, Fluke, Model 70 Series II, S/N 55230270. Calibration date: November 9, 1998. Calibration due date: November 9, 1999.

Report No: FC99-032 Page 63 of 101

Test Data:

Frequency in GHz

			rrequen	Ly III GIIZ		
		TX888MOD-O			ΓX888MOD-P+	-
	video channel	left audio channel	right audio channel	video channel	left audio channel	right audio channel
Ambient 120 VAC	2.47265	2.46666	2.47866	2.47265	2.46664	2.47865
Ambient 102 VAC	2.47266	2.46666	2.47867	2.47265	2.46664	2.47865
Ambient 138 VAC	2.47265	2.46665	2.47866	2.47266	2.46665	2.47866
-30°C	2.47267	2.46665	2.47868	2.47264	2.46664	2.47866
-20°C	2.47267	2.46664	2.47869	2.47265	2.46668	2.47864
-10°C	2.47268	2.46664	2.47867	2.47265	2.46666	2.47868
0°C	2.47261	2.46665	2.47868	2.47266	2.46669	2.47867
10°C	2.47266	2.46664	2.47866	2.47266	2.46665	2.47866
20°C	2.47266	2.46664	2.47866	2.47265	2.46665	2.47866
30°C	2.47265	2.46664	2.47869	2.47264	2.46664	2.47866
40°C	2.47266	2.46664	2.47869	2.47266	2.46664	2.47866
50°C	2.47266	2.46665	2.47868	2.47265	2.46665	2.47867

Report No: FC99-032 Page 64 of 101

PART 15 SUBPART B CLASS B VERIFICATION FOR THE DIGITAL PORTION OF THE EUT

Test Equipment Used:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A	3010A01076	07/15/1999	07/15/2000	0
HP 8593EM	3624A00159	10/12/1998	10/12/1999	2111
HP 8447D	2727A05392	02/23/1999	02/23/2000	10
HP 83017A	3123A00321	10/26/1998	10/26/1999	2114
Chase CBL6111C	2455	08/30/1999	08/30/2000	1992
EMCO 3115	9006-3414	02/24/1999	02/24/2000	327
EMCO 3301B	9101-3083	06/30/1999	06/30/2000	0
HP 84125-80008	961178-006	01/13/1999	01/13/2000	0
Cable 125 ft.	n/a	02/04/1999	02/04/2000	2086
Cable 10 ft.	n/a	02/05/1999	02/05/2000	1016
Fischer LISN	none	01/13/1999	01/13/2000	14

Test Data Sheets:

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:44:09
Equipment: Video Audio Transmitter Sequence#: 21

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P+

S/N: none

Fischer LISN	none	01/13/1999	01/13/2000	13	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	none

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply (12 VCD, 4	00 mA) RF Link Technology	,	LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Report No: FC99-032 Page 65 of 101

Measur	ement Data:	Re	eading listed by r	Test Lead: White						
.,		D 1	L373w	cb0c		Б.		a		D 1
#	Freq MHz	Rdng dBµV	dB dB	dB	dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar
1	28.492M	34.2	+1.0		ub	+0.0	35.5	48.0	-12.5	Ant White
1	20.192111	31.2	11.0	10.5		10.0	22.2	10.0	12.0	· · · · · · · · · · · · · · · · · · ·
2	28.758M	33.6	+1.0	+0.3		+0.0	34.9	48.0	-13.1	White
								10.0		
3	26.452M	33.6	+0.9	+0.4		+0.0	34.9	48.0	-13.1	White
4	21.351M	33.8	+0.8	+0.3		+0.0	34.9	48.0	-13.1	White
	21.33111	33.0	10.0	10.5		10.0	54.7	40.0	13.1	vv inte
5	14.832M	34.0	+0.5	+0.3		+0.0	34.8	48.0	-13.2	White
6	21.751M	33.6	+0.8	+0.3		+0.0	34.7	48.0	-13.3	White
7	27.605M	33.2	+1.0	+0.3		+0.0	34.5	48.0	-13.5	White
/	27.003WI	33.2	+1.0	+0.3		+0.0	34.3	40.0	-13.3	vv iiite
8	7.281M	33.9	+0.3	+0.2		+0.0	34.4	48.0	-13.6	White
9	24.766M	33.1	+0.9	+0.3		+0.0	34.3	48.0	-13.7	White
10	15.630M	33.6	+0.5	+0.2		+0.0	34.3	48.0	-13.7	White
10	13.030101	33.0	+0.3	+0.2		+0.0	34.3	46.0	-13.7	willte
11	5.671M	34.0	+0.2	+0.1		+0.0	34.3	48.0	-13.7	White
12	26.807M	32.9	+0.9	+0.4		+0.0	34.2	48.0	-13.8	White
10	25 47() (22.0	. 0.0	. 0. 4		. 0. 0	24.2	40.0	12.0	XX71 '.
13	25.476M	32.9	+0.9	+0.4		+0.0	34.2	48.0	-13.8	White
14	17.759M	33.3	+0.6	+0.3		+0.0	34.2	48.0	-13.8	White
1 '	17.757111	33.3	10.0	10.5		10.0	31.2	10.0	15.0	· · · · · · · · · · · · · · · · · · ·
15	1.082M	34.1	+0.1	+0.0		+0.0	34.2	48.0	-13.8	White
16	29.778M	32.8	+1.0	+0.3		+0.0	34.1	48.0	-13.9	White
17	29.290M	32.8	+1.0	+0.3		+0.0	34.1	48.0	-13.9	White
17	27.270IVI	32.0	11.0	10.5		10.0	37.1	70.0	-13.7	vv inte
18	27.960M	32.8	+1.0	+0.3		+0.0	34.1	48.0	-13.9	White
19	26.008M	32.8	+0.9	+0.4		+0.0	34.1	48.0	-13.9	White
20	22 692M	33.0	10.8	+0.3		+0.0	2/1	49 N	-13.9	White
20	22.682M	33.0	+0.8	+0.3		+0.0	34.1	48.0	-13.9	White
21	13.146M	33.3	+0.5	+0.3		+0.0	34.1	48.0	-13.9	White
<u> </u>										
22	6.092M	33.8	+0.2	+0.1		+0.0	34.1	48.0	-13.9	White
	1.00.01	22.0		0.1		2.6	211	40.0	12.0	****
23	1.206M	33.9	+0.1	+0.1		+0.0	34.1	48.0	-13.9	White
24	1.168M	33.9	+0.1	+0.1		+0.0	34.1	48.0	-13.9	White
	1.100111	53.7	10.1	10.1		10.0	J7.1	+0.0	13.7	,, 11110
								Done	ort No: I	C00 02

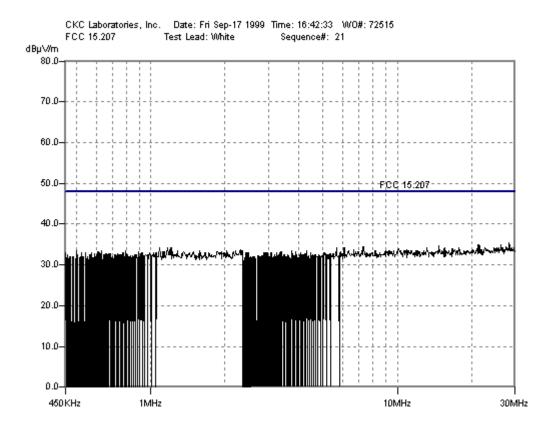
Report No: FC99-032 Page 66 of 101

25	25.654M	32.6	+0.9	+0.4	+0.0	33.9	48.0	-14.1	White
26	25.299M	32.6	+0.9	+0.4	+0.0	33.9	48.0	-14.1	White
27	21.085M	32.9	+0.7	+0.3	+0.0	33.9	48.0	-14.1	White
28	16.739M	33.1	+0.6	+0.2	+0.0	33.9	48.0	-14.1	White
29	15.453M	33.2	+0.5	+0.2	+0.0	33.9	48.0	-14.1	White
30	10.154M	33.3	+0.4	+0.2	+0.0	33.9	48.0	-14.1	White
31	23.259M	32.7	+0.8	+0.3	+0.0	33.8	48.0	-14.2	White
32	20.243M	32.7	+0.7	+0.4	+0.0	33.8	48.0	-14.2	White
33	17.182M	32.9	+0.6	+0.3	+0.0	33.8	48.0	-14.2	White
34	10.922M	33.2	+0.4	+0.2	+0.0	33.8	48.0	-14.2	White
35	6.662M	33.4	+0.2	+0.2	+0.0	33.8	48.0	-14.2	White
36	2.314M	33.7	+0.1	+0.0	+0.0	33.8	48.0	-14.2	White
37	27.161M	32.5	+0.9	+0.3	+0.0	33.7	48.0	-14.3	White
38	22.105M	32.6	+0.8	+0.3	+0.0	33.7	48.0	-14.3	White
39	1.187M	33.5	+0.1	+0.1	+0.0	33.7	48.0	-14.3	White
40	15.275M	32.9	+0.5	+0.2	+0.0	33.6	48.0	-14.4	White
41	14.920M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	White
42	14.566M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	White
43	11.913M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	White
44	11.392M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	White
45	10.699M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	White
46	8.123M	33.2	+0.3	+0.1	+0.0	33.6	48.0	-14.4	White
47	6.340M	33.3	+0.2	+0.1	+0.0	33.6	48.0	-14.4	White
48	3.739M	33.3	+0.1	+0.2	+0.0	33.6	48.0	-14.4	White
49	497.545k	33.6	+0.0	+0.0	+0.0	33.6	48.0	-14.4	White
50	23.791M	32.3	+0.9	+0.3	+0.0	33.5	48.0	-14.5	White
51	20.065M	32.4	+0.7	+0.4	+0.0	33.5	48.0	-14.5	White

Report No: FC99-032

52	19.400M	32.4	+0.7	+0.4	+0.0	33.5	48.0	-14.5	White
53	19.178M	32.4	+0.7	+0.4	+0.0	33.5	48.0	-14.5	White
54	18.690M	32.5	+0.7	+0.3	+0.0	33.5	48.0	-14.5	White
55	17.537M	32.6	+0.6	+0.3	+0.0	33.5	48.0	-14.5	White
56	12.111M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	White
57	11.095M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	White
58	9.386M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	White
59	9.213M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	White
60	2.024M	33.4	+0.1	+0.0	+0.0	33.5	48.0	-14.5	White
61	630.672k	33.4	+0.1	+0.0	+0.0	33.5	48.0	-14.5	White
62	16.207M	32.6	+0.6	+0.2	+0.0	33.4	48.0	-14.6	White
63	12.792M	32.7	+0.5	+0.2	+0.0	33.4	48.0	-14.6	White
64	10.377M	32.8	+0.4	+0.2	+0.0	33.4	48.0	-14.6	White
65	9.634M	32.8	+0.4	+0.2	+0.0	33.4	48.0	-14.6	White
66	9.039M	32.8	+0.4	+0.2	+0.0	33.4	48.0	-14.6	White
67	7.157M	32.9	+0.3	+0.2	+0.0	33.4	48.0	-14.6	White
68	4.284M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	White
69	2.347M	33.3	+0.1	+0.0	+0.0	33.4	48.0	-14.6	White
70	2.219M	33.2	+0.1	+0.1	+0.0	33.4	48.0	-14.6	White
71	1.572M	33.3	+0.1	+0.0	+0.0	33.4	48.0	-14.6	White
72	1.282M	33.2	+0.1	+0.1	+0.0	33.4	48.0	-14.6	White
73	792.325k	33.3	+0.1	+0.0	+0.0	33.4	48.0	-14.6	White
74	18.912M	32.3	+0.7	+0.3	+0.0	33.3	48.0	-14.7	White
75	15.940M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	White
76	13.767M	32.5	+0.5	+0.3	+0.0	33.3	48.0	-14.7	White
77	12.392M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	White
78	12.259M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	White
							- Ken	A** NA	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Report No: FC99-032


Page 68 of 101

79	9.436M	32.7	+0.4	+0.2	+0.0	33.3	48.0	-14.7	White
80	8.891M	32.8	+0.3	+0.2	+0.0	33.3	48.0	-14.7	White
81	6.909M	32.9	+0.2	+0.2	+0.0	33.3	48.0	-14.7	White
82	6.785M	32.9	+0.2	+0.2	+0.0	33.3	48.0	-14.7	White
83	5.869M	33.0	+0.2	+0.1	+0.0	33.3	48.0	-14.7	White
84	2.166M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	White
85	1.933M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	White
86	1.853M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	White
87	1.120M	33.2	+0.1	+0.0	+0.0	33.3	48.0	-14.7	White
88	611.653k	33.2	+0.1	+0.0	+0.0	33.3	48.0	-14.7	White
89	606.899k	33.2	+0.1	+0.0	+0.0	33.3	48.0	-14.7	White
90	6.959M	32.8	+0.2	+0.2	+0.0	33.2	48.0	-14.8	White
91	3.887M	32.9	+0.1	+0.2	+0.0	33.2	48.0	-14.8	White
92	3.392M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	White
93	3.367M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	White
94	1.491M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
95	1.358M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
96	1.230M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	White
1									

Report No: FC99-032 Page 69 of 101

97	1.144M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
98	887.415k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
99	768.552k	33.0	+0.1	+0.0	+0.0	33.1	48.0	-14.9	White
100	573.617k	33.0	+0.1	+0.0	+0.0	33.1	48.0	-14.9	White

Report No: FC99-032 Page 70 of 101

Report No: FC99-032 Page 71 of 101

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:41:45
Equipment: Video Audio Transmitter Sequence#: 20

Advanced Electronics Group, Inc.

Model: TX888MOD-P+

S/N: none

Manufacturer:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P+	none

Tested By: Adam Ross

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply (12 VCD, 40	0 mA) RF Link Technology		LPS-1240	none

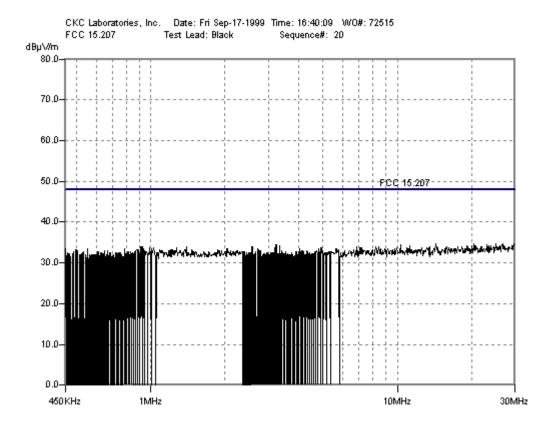
Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measur	ement Data:	Reading listed by margin.				Test Lead: Black					
			L373b		cb0c						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	29.778M	33.4	+1.1		+0.3		+0.0	34.8	48.0	-13.2	Black
2	26.807M	33.4	+0.9		+0.4		+0.0	34.7	48.0	-13.3	Black
3	25.299M	33.5	+0.7		+0.4		+0.0	34.6	48.0	-13.4	Black
4	20.597M	33.7	+0.5		+0.4		+0.0	34.6	48.0	-13.4	Black
5	14.344M	33.8	+0.5		+0.3		+0.0	34.6	48.0	-13.4	Black
6	10.327M	34.1	+0.2		+0.2		+0.0	34.5	48.0	-13.5	Black
7	3.243M	34.3	+0.1		+0.1		+0.0	34.5	48.0	-13.5	Black
8	3.219M	34.3	+0.1		+0.1		+0.0	34.5	48.0	-13.5	Black
9	23.259M	33.5	+0.6		+0.3		+0.0	34.4	48.0	-13.6	Black
10	29.423M	32.9	+1.1		+0.3		+0.0	34.3	48.0	-13.7	Black
11	27.161M	33.1	+0.9		+0.3		+0.0	34.3	48.0	-13.7	Black
12	24.057M	33.2	+0.7		+0.3		+0.0	34.2	48.0	-13.8	Black
13	26.274M	32.9	+0.8		+0.4		+0.0	34.1	48.0	-13.9	Black

Report No: FC99-032

14	23.525M	33.2	+0.6	+0.3	+0.0	34.1	48.0	-13.9	Black
15	20.730M	33.2	+0.5	+0.4	+0.0	34.1	48.0	-13.9	Black
16	20.154M	33.2	+0.5	+0.4	+0.0	34.1	48.0	-13.9	Black
17	19.178M	33.2	+0.5	+0.4	+0.0	34.1	48.0	-13.9	Black
18	11.219M	33.6	+0.3	+0.2	+0.0	34.1	48.0	-13.9	Black
19	3.343M	33.9	+0.1	+0.1	+0.0	34.1	48.0	-13.9	Black
20	28.492M	32.7	+1.0	+0.3	+0.0	34.0	48.0	-14.0	Black
21	22.194M	33.1	+0.6	+0.3	+0.0	34.0	48.0	-14.0	Black
22	19.356M	33.1	+0.5	+0.4	+0.0	34.0	48.0	-14.0	Black
23	14.477M	33.2	+0.5	+0.3	+0.0	34.0	48.0	-14.0	Black
24	2.599M	33.8	+0.1	+0.1	+0.0	34.0	48.0	-14.0	Black
25	2.575M	33.8	+0.1	+0.1	+0.0	34.0	48.0	-14.0	Black
26	1.391M	34.0	+0.0	+0.0	+0.0	34.0	48.0	-14.0	Black
27	925.451k	33.9	+0.1	+0.0	+0.0	34.0	48.0	-14.0	Black
28	911.188k	33.9	+0.1	+0.0	+0.0	34.0	48.0	-14.0	Black
29	27.516M	32.7	+0.9	+0.3	+0.0	33.9	48.0	-14.1	Black
30	24.678M	32.9	+0.7	+0.3	+0.0	33.9	48.0	-14.1	Black
31	21.928M	33.0	+0.6	+0.3	+0.0	33.9	48.0	-14.1	Black
32	18.380M	33.1	+0.5	+0.3	+0.0	33.9	48.0	-14.1	Black
33	17.670M	33.1	+0.5	+0.3	+0.0	33.9	48.0	-14.1	Black
34	15.896M	33.2	+0.5	+0.2	+0.0	33.9	48.0	-14.1	Black
35	13.590M	33.2	+0.4	+0.3	+0.0	33.9	48.0	-14.1	Black
36	8.420M	33.6	+0.2	+0.1	+0.0	33.9	48.0	-14.1	Black
37	8.172M	33.6	+0.2	+0.1	+0.0	33.9	48.0	-14.1	Black
38	6.860M	33.6	+0.1	+0.2	+0.0	33.9	48.0	-14.1	Black
39	16.207M	33.1	+0.5	+0.2	+0.0	33.8	48.0	-14.2	Black
40	13.412M	33.1	+0.4	+0.3	+0.0	33.8	48.0	-14.2	Black


Page 73 of 101

41	13.191M	33.1	+0.4	+0.3	+0.0	33.8	48.0	-14.2	Black
42	7.083M	33.4	+0.2	+0.2	+0.0	33.8	48.0	-14.2	Black
43	1.268M	33.7	+0.0	+0.1	+0.0	33.8	48.0	-14.2	Black
44	28.226M	32.4	+1.0	+0.3	+0.0	33.7	48.0	-14.3	Black
45	24.855M	32.7	+0.7	+0.3	+0.0	33.7	48.0	-14.3	Black
46	21.085M	32.9	+0.5	+0.3	+0.0	33.7	48.0	-14.3	Black
47	12.570M	33.1	+0.4	+0.2	+0.0	33.7	48.0	-14.3	Black
48	10.971M	33.2	+0.3	+0.2	+0.0	33.7	48.0	-14.3	Black
49	9.956M	33.3	+0.2	+0.2	+0.0	33.7	48.0	-14.3	Black
50	7.206M	33.3	+0.2	+0.2	+0.0	33.7	48.0	-14.3	Black
51	4.903M	33.4	+0.1	+0.2	+0.0	33.7	48.0	-14.3	Black
52	1.025M	33.7	+0.0	+0.0	+0.0	33.7	48.0	-14.3	Black
53	992.015k	33.7	+0.0	+0.0	+0.0	33.7	48.0	-14.3	Black
54	22.460M	32.7	+0.6	+0.3	+0.0	33.6	48.0	-14.4	Black
55	19.666M	32.7	+0.5	+0.4	+0.0	33.6	48.0	-14.4	Black
56	17.404M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	Black
57	17.182M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	Black
58	17.049M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	Black
59	16.517M	32.9	+0.5	+0.2	+0.0	33.6	48.0	-14.4	Black
60	11.021M	33.1	+0.3	+0.2	+0.0	33.6	48.0	-14.4	Black
61	4.011M	33.3	+0.1	+0.2	+0.0	33.6	48.0	-14.4	Black
62	2.038M	33.6	+0.0	+0.0	+0.0	33.6	48.0	-14.4	Black
63	22.859M	32.6	+0.6	+0.3	+0.0	33.5	48.0	-14.5	Black
64	21.751M	32.6	+0.6	+0.3	+0.0	33.5	48.0	-14.5	Black
65	18.912M	32.7	+0.5	+0.3	+0.0	33.5	48.0	-14.5	Black
66	16.694M	32.8	+0.5	+0.2	+0.0	33.5	48.0	-14.5	Black
67	5.646M	33.3	+0.1	+0.1	+0.0	33.5	48.0	-14.5	Black
							Penc	rt No. I	7C99-03

68	2.699M	33.3	+0.1	+0.1	+0.0	33.5	48.0	-14.5	Black
69	782.816k	33.3	+0.2	+0.0	+0.0	33.5	48.0	-14.5	Black
70	450.000k	33.4	+0.1	+0.0	+0.0	33.5	48.0	-14.5	Black
71	15.630M	32.7	+0.5	+0.2	+0.0	33.4	48.0	-14.6	Black
72	14.166M	32.6	+0.5	+0.3	+0.0	33.4	48.0	-14.6	Black
73	9.832M	33.0	+0.2	+0.2	+0.0	33.4	48.0	-14.6	Black
74	9.188M	33.0	+0.2	+0.2	+0.0	33.4	48.0	-14.6	Black
75	8.916M	33.0	+0.2	+0.2	+0.0	33.4	48.0	-14.6	Black
76	8.594M	33.0	+0.2	+0.2	+0.0	33.4	48.0	-14.6	Black
77	4.829M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	Black
78	1.006M	33.4	+0.0	+0.0	+0.0	33.4	48.0	-14.6	Black
79	554.599k	33.4	+0.0	+0.0	+0.0	33.4	48.0	-14.6	Black
80	15.320M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	Black
81	15.187M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	Black
82	12.185M	32.8	+0.3	+0.2	+0.0	33.3	48.0	-14.7	Black
83	11.913M	32.8	+0.3	+0.2	+0.0	33.3	48.0	-14.7	Black
84	6.711M	33.0	+0.1	+0.2	+0.0	33.3	48.0	-14.7	Black
85	5.795M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	Black
86	2.748M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	Black
87	2.723M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	Black
88	1.082M	33.3	+0.0	+0.0	+0.0	33.3	48.0	-14.7	Black
89	11.392M	32.7	+0.3	+0.2	+0.0	33.2	48.0	-14.8	Black
90	9.584M	32.8	+0.2	+0.2	+0.0	33.2	48.0	-14.8	Black
91	7.999M	32.9	+0.2	+0.1	+0.0	33.2	48.0	-14.8	Black
92	1.857M	33.1	+0.0	+0.1	+0.0	33.2	48.0	-14.8	Black
93	1.467M	33.2	+0.0	+0.0	+0.0	33.2	48.0	-14.8	Black
94	1.368M	33.2	+0.0	+0.0	+0.0	33.2	48.0	-14.8	Black
							Reno	wt No. I	7C99_03

95	1.215M	33.1	+0.0	+0.1	+0.0	33.2	48.0	-14.8	Black
96	1.201M	33.1	+0.0	+0.1	+0.0	33.2	48.0	-14.8	Black
97	887.415k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	Black
98	873.152k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	Black
99	497.545k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	Black
100	492.791k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	Black

Report No: FC99-032 Page 76 of 101

Report No: FC99-032 Page 77 of 101 Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:53:10 Equipment: Video Audio Transmitter Sequence#: 24

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: none

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	none

Support Devices:

Function	Manufacturer	Model #	S/I	N
Power Supply (12 VCD,	400 mA) RF Link T	echnology	LPS-1240	none

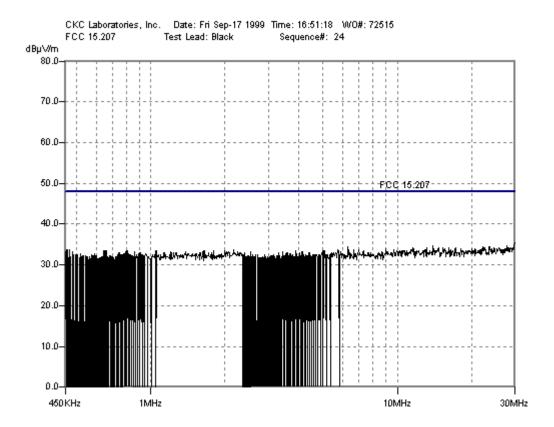
Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

ement Data:	R	eading lis	ted by n	v						
		L373b		cb0c						
Freq	Rdng						Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
30.000M	34.3	+1.1		+0.3		+0.0	35.7	48.0	-12.3	Black
14.033M	34.0	+0.5		+0.3		+0.0	34.8	48.0	-13.2	Black
27.871M	33.4	+0.9		+0.3		+0.0	34.6	48.0	-13.4	Black
6.315M	34.3	+0.1		+0.1		+0.0	34.5	48.0	-13.5	Black
23.658M	33.4	+0.7		+0.3		+0.0	34.4	48.0	-13.6	Black
22.283M	33.5	+0.6		+0.3		+0.0	34.4	48.0	-13.6	Black
25.742M	33.1	+0.8		+0.4		+0.0	34.3	48.0	-13.7	Black
24.766M	33.3	+0.7		+0.3		+0.0	34.3	48.0	-13.7	Black
17.404M	33.5	+0.5		+0.3		+0.0	34.3	48.0	-13.7	Black
29.556M	32.8	+1.1		+0.3		+0.0	34.2	48.0	-13.8	Black
29.024M	32.9	+1.0		+0.3		+0.0	34.2	48.0	-13.8	Black
28.093M	32.9	+1.0		+0.3		+0.0	34.2	48.0	-13.8	Black
22.593M	33.3	+0.6		+0.3		+0.0	34.2	48.0	-13.8	Black
16.251M	33.5	+0.5		+0.2		+0.0	34.2	48.0	-13.8	Black
	Freq MHz 30.000M 14.033M 27.871M 6.315M 23.658M 22.283M 25.742M 24.766M 17.404M 29.556M 29.024M 28.093M 22.593M	Freq MHz Rdng dBμV 30.000M 34.3 14.033M 34.0 27.871M 33.4 6.315M 34.3 23.658M 33.4 22.283M 33.5 25.742M 33.1 24.766M 33.3 17.404M 33.5 29.556M 32.8 29.024M 32.9 28.093M 32.9 22.593M 33.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L373b Freq MHz Rdng dBμV dB dB 30.000M 34.3 +1.1 14.033M 34.0 +0.5 27.871M 33.4 +0.9 6.315M 34.3 +0.1 23.658M 33.4 +0.7 22.283M 33.5 +0.6 25.742M 33.1 +0.8 24.766M 33.3 +0.7 17.404M 33.5 +0.5 29.556M 32.8 +1.1 29.024M 32.9 +1.0 28.093M 32.9 +1.0 22.593M 33.3 +0.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng MHz L373b cb0c Dist Table 30.000M 34.3 +1.1 +0.3 +0.0 14.033M 34.0 +0.5 +0.3 +0.0 27.871M 33.4 +0.9 +0.3 +0.0 6.315M 34.3 +0.1 +0.1 +0.0 23.658M 33.4 +0.7 +0.3 +0.0 25.742M 33.1 +0.8 +0.4 +0.0 24.766M 33.3 +0.7 +0.3 +0.0 17.404M 33.5 +0.5 +0.3 +0.0 29.556M 32.8 +1.1 +0.3 +0.0 29.024M 32.9 +1.0 +0.3 +0.0 28.093M 32.9 +1.0 +0.3 +0.0 22.593M 33.3 +0.6 +0.3 +0.0	Freq MHz Rdng MHz dB dB dB dB dB dB dB $\frac{1}{1}$ Corr Table Corr dBμV/m 30.000M 34.3 +1.1 +0.3 +0.0 35.7 14.033M 34.0 +0.5 +0.3 +0.0 34.8 27.871M 33.4 +0.9 +0.3 +0.0 34.6 6.315M 34.3 +0.1 +0.1 +0.0 34.5 23.658M 33.4 +0.7 +0.3 +0.0 34.4 22.283M 33.5 +0.6 +0.3 +0.0 34.3 25.742M 33.1 +0.8 +0.4 +0.0 34.3 24.766M 33.3 +0.7 +0.3 +0.0 34.3 17.404M 33.5 +0.5 +0.3 +0.0 34.2 29.024M 32.9 +1.0 +0.3 +0.0 34.2 28.093M 32.9 +1.0 +0.3 +0.0 34.2 22.593M 33.3 +0.	Freq MHz Rdng MHz dB dB dB dB dB dB dB Dist Table dBμV/m Corr dBμV/m Spec dBμV/m 30.000M 34.3 +1.1 +0.3 +0.0 35.7 48.0 14.033M 34.0 +0.5 +0.3 +0.0 34.8 48.0 27.871M 33.4 +0.9 +0.3 +0.0 34.6 48.0 6.315M 34.3 +0.1 +0.1 +0.0 34.4 48.0 23.658M 33.4 +0.7 +0.3 +0.0 34.4 48.0 25.742M 33.1 +0.6 +0.3 +0.0 34.3 48.0 24.766M 33.3 +0.7 +0.3 +0.0 34.3 48.0 29.556M 32.8 +1.1 +0.3 +0.0 34.2 48.0 29.024M 32.9 +1.0 +0.3 +0.0 34.2 48.0 28.093M 32.9 +1.0 +0.3 +0.0 34.2	Freq MHz Rdng MHz dB dB dB dB dB Table dBμV/m dBμ dB 14.033M 34.3 +1.1 +0.3 +0.0 35.7 48.0 -12.3 14.033M 34.0 +0.5 +0.3 +0.0 34.8 48.0 -13.2 27.871M 33.4 +0.9 +0.3 +0.0 34.6 48.0 -13.4 6.315M 34.3 +0.1 +0.1 +0.0 34.5 48.0 -13.5 23.658M 33.4 +0.7 +0.3 +0.0 34.4 48.0 -13.6 25.742M 33.1 +0.8 +0.4 +0.0 34.3 48.0 -13.7 24.766M 33.3 +0.7 +0.3 +0.0 34.3 48.0 -13.7 29.556M 32.8 +1.1 +0.3 +0.0 34.2 48.0 -13.8 29.024M 32.9 +1.0 +0.3 +0.0

15	15.364M	33.5	+0.5	+0.2	+0.0	34.2	48.0	-13.8	Black
16	13.146M	33.5	+0.4	+0.3	+0.0	34.2	48.0	-13.8	Black
17	28.581M	32.8	+1.0	+0.3	+0.0	34.1	48.0	-13.9	Black
18	14.832M	33.3	+0.5	+0.3	+0.0	34.1	48.0	-13.9	Black
19	11.615M	33.6	+0.3	+0.2	+0.0	34.1	48.0	-13.9	Black
20	27.516M	32.8	+0.9	+0.3	+0.0	34.0	48.0	-14.0	Black
21	25.476M	32.9	+0.7	+0.4	+0.0	34.0	48.0	-14.0	Black
22	24.323M	33.0	+0.7	+0.3	+0.0	34.0	48.0	-14.0	Black
23	20.154M	33.1	+0.5	+0.4	+0.0	34.0	48.0	-14.0	Black
24	17.138M	33.2	+0.5	+0.3	+0.0	34.0	48.0	-14.0	Black
25	15.630M	33.3	+0.5	+0.2	+0.0	34.0	48.0	-14.0	Black
26	14.566M	33.2	+0.5	+0.3	+0.0	34.0	48.0	-14.0	Black
27	9.039M	33.6	+0.2	+0.2	+0.0	34.0	48.0	-14.0	Black
28	20.686M	33.0	+0.5	+0.4	+0.0	33.9	48.0	-14.1	Black
29	18.202M	33.1	+0.5	+0.3	+0.0	33.9	48.0	-14.1	Black
30	21.662M	32.9	+0.6	+0.3	+0.0	33.8	48.0	-14.2	Black
31	12.969M	33.1	+0.4	+0.3	+0.0	33.8	48.0	-14.2	Black
32	11.442M	33.3	+0.3	+0.2	+0.0	33.8	48.0	-14.2	Black
33	6.711M	33.5	+0.1	+0.2	+0.0	33.8	48.0	-14.2	Black
34	469.018k	33.7	+0.1	+0.0	+0.0	33.8	48.0	-14.2	Black
35	459.509k	33.7	+0.1	+0.0	+0.0	33.8	48.0	-14.2	Black
36	454.755k	33.7	+0.1	+0.0	+0.0	33.8	48.0	-14.2	Black
37	26.895M	32.4	+0.9	+0.4	+0.0	33.7	48.0	-14.3	Black
38	26.496M	32.5	+0.8	+0.4	+0.0	33.7	48.0	-14.3	Black
39	21.839M	32.8	+0.6	+0.3	+0.0	33.7	48.0	-14.3	Black
40	20.775M	32.8	+0.5	+0.4	+0.0	33.7	48.0	-14.3	Black
41	16.473M	33.0	+0.5	+0.2	+0.0	33.7	48.0	-14.3	Black
1							Dane	at No. T	2000.02

+0.2 +0.0 33.7 48.0 -14.3 Black +0.2 +0.0 33.7 48.0 -14.3 Black +0.1 +0.0 33.7 48.0 -14.3 Black +0.1 +0.0 33.7 48.0 -14.3 Black +0.1 +0.0 33.7 48.0 -14.3 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.3 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.6 48.0 -14.5 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	42 43 44 45 46 47	9.659M 6.959M 5.770M 2.171M 19.666M	33.3 33.4 33.5 33.6	+0.2 +0.1 +0.1	+0.2	+0.0				
+0.1 +0.0 33.7 48.0 -14.3 Black +0.1 +0.0 33.7 48.0 -14.3 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.3 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	44 45 46	5.770M 2.171M	33.5	+0.1			33.7	48.0	-14.3	Black
+0.1 +0.0 33.7 48.0 -14.3 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.3 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	45 46	2.171M			+0.1					
+0.4 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.6 48.0 -14.4 Black +0.3 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.6 48.0 -14.5 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	46		33.6			+0.0	33.7	48.0	-14.3	Black
+0.4 +0.0 33.6 48.0 -14.4 Black +0.3 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.6 48.0 -14.4 Black +0.0 +0.0 33.6 48.0 -14.4 Black +0.0 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black		19.666M		+0.0	+0.1	+0.0	33.7	48.0	-14.3	Black
+0.3	47		32.7	+0.5	+0.4	+0.0	33.6	48.0	-14.4	Black
+0.2		19.089M	32.7	+0.5	+0.4	+0.0	33.6	48.0	-14.4	Black
+0.2	48	18.469M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	Black
+0.2 +0.0 33.6 48.0 -14.4 Black +0.2 +0.0 33.6 48.0 -14.4 Black +0.0 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	49	12.703M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	Black
+0.2 +0.0 33.6 48.0 -14.4 Black +0.0 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	50	10.600M	33.2	+0.2	+0.2	+0.0	33.6	48.0	-14.4	Black
+0.0 +0.0 33.6 48.0 -14.4 Black +0.4 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	51	10.426M	33.2	+0.2	+0.2	+0.0	33.6	48.0	-14.4	Black
+0.4 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	52	3.887M	33.3	+0.1	+0.2	+0.0	33.6	48.0	-14.4	Black
+0.2 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	53	644.935k	33.6	+0.0	+0.0	+0.0	33.6	48.0	-14.4	Black
+0.3 +0.0 33.5 48.0 -14.5 Black +0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	54	19.267M	32.6	+0.5	+0.4	+0.0	33.5	48.0	-14.5	Black
+0.3 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	55	16.828M	32.8	+0.5	+0.2	+0.0	33.5	48.0	-14.5	Black
+0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	56	14.255M	32.7	+0.5	+0.3	+0.0	33.5	48.0	-14.5	Black
+0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	57	13.590M	32.8	+0.4	+0.3	+0.0	33.5	48.0	-14.5	Black
+0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	58	12.061M	33.0	+0.3	+0.2	+0.0	33.5	48.0	-14.5	Black
+0.2 +0.0 33.5 48.0 -14.5 Black +0.2 +0.0 33.5 48.0 -14.5 Black	59	10.253M	33.1	+0.2	+0.2	+0.0	33.5	48.0	-14.5	Black
+0.2 +0.0 33.5 48.0 -14.5 Black	60	7.306M	33.1	+0.2	+0.2	+0.0	33.5	48.0	-14.5	Black
	61	5.027M	33.2	+0.1	+0.2	+0.0	33.5	48.0	-14.5	Black
+0.0 +0.0 33.5 48.0 -14.5 Black	62	5.002M	33.2	+0.1	+0.2	+0.0	33.5	48.0	-14.5	Black
	63	2.000M	33.5	+0.0						
+0.0 +0.0 33.5 48.0 -14.5 Black	64	1.810M	33.5	+0.0						
+0.0 +0.0 33.5 48.0 -14.5 Black	65	1.643M	33.5	+0.0						
+0.0 +0.0 33.5 48.0 -14.5 Black	66	1.049M	33.5	+0.0						
+0.0 +0.0 33.5 48.0 -14.5 Black	67	1.044M	33.5	+0.0						
10.0 35.5 10.0 11.5 Black	68	10.922M	32.9	+0.3						
+0.2 +0.0 33.4 48.0 -14.6 Black	00	10.722111	32.7	10.5	10.2	10.0	55. F			C99-03


Page 80 of 101

lack	i	-14.6	48.0	33.4	+0.0	+0.2	+0.2	33.0	9.956M	69
lack	,	-14.6	48.0	33.4	+0.0	+0.0	+0.2	33.2	801.834k	70
lack)	-14.6	48.0	33.4	+0.0	+0.0	+0.2	33.2	797.079k	71
lack)	-14.6	48.0	33.4	+0.0	+0.0	+0.0	33.4	659.199k	72
lack)	-14.6	48.0	33.4	+0.0	+0.0	+0.0	33.4	654.444k	73
lack	i	-14.7	48.0	33.3	+0.0	+0.4	+0.5	32.4	20.509M	74
lack	,	-14.7	48.0	33.3	+0.0	+0.2	+0.5	32.6	16.074M	75
lack	,	-14.7	48.0	33.3	+0.0	+0.3	+0.4	32.6	13.767M	76
lack	,	-14.7	48.0	33.3	+0.0	+0.2	+0.2	32.9	9.114M	77
lack	,	-14.7	48.0	33.3	+0.0	+0.1	+0.1	33.1	2.550M	78
lack	,	-14.7	48.0	33.3	+0.0	+0.0	+0.0	33.3	2.076M	79
lack	,	-14.7	48.0	33.3	+0.0	+0.0	+0.0	33.3	1.629M	80
lack	,	-14.7	48.0	33.3	+0.0	+0.0	+0.0	33.3	1.382M	81
lack	,	-14.7	48.0	33.3	+0.0	+0.1	+0.0	33.2	1.201M	82
lack	,	-14.7	48.0	33.3	+0.0	+0.0	+0.1	33.2	478.527k	83
lack	;	-14.8	48.0	33.2	+0.0	+0.2	+0.3	32.7	11.913M	84
lack)	-14.8	48.0	33.2	+0.0	+0.2	+0.3	32.7	11.813M	85
lack		-14.8	48.0	33.2	+0.0	+0.2	+0.2	32.8	8.693M	86
lack		-14.8	48.0	33.2	+0.0	+0.2	+0.2	32.8	7.256M	87
lack		-14.8	48.0	33.2	+0.0	+0.1	+0.1	33.0	5.869M	88
lack		-14.8	48.0	33.2	+0.0	+0.2	+0.1	32.9	4.110M	89
lack		-14.8	48.0	33.2	+0.0	+0.1	+0.1	33.0	3.417M	90
lack		-14.8	48.0	33.2	+0.0	+0.0	+0.1	33.1	2.257M	91
lack		-14.8	48.0	33.2	+0.0	+0.0	+0.0	33.2	2.024M	92
lack	;	-14.8	48.0	33.2	+0.0	+0.0	+0.1	33.1	858.888k	93
lack		-14.8	48.0	33.2	+0.0	+0.0	+0.1	33.1	450.000k	94
lack	,	-14.9	48.0	33.1	+0.0	+0.0	+0.0	33.1	1.596M	95

Page 81 of 101

96	1.582M	33.1	+0.0	+0.0	+0.0	33.1	48.0	-14.9	Black
97	1.277M	33.0	+0.0	+0.1	+0.0	33.1	48.0	-14.9	Black
98	1.130M	33.1	+0.0	+0.0	+0.0	33.1	48.0	-14.9	Black
76	1.150101	33.1	+0.0	+0.0	+0.0	33.1	40.0	-14.9	Diack
99	744.780k	33.0	+0.1	+0.0	+0.0	33.1	48.0	-14.9	Black
100	740.025k	33.0	+0.1	+0.0	+0.0	33.1	48.0	-14.9	Black

Report No: FC99-032 Page 82 of 101

Report No: FC99-032 Page 83 of 101 Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:55:19
Equipment: Video Audio Transmitter Sequence#: 25

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-O

S/N: none

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-O	none

Support Devices:

Function	Manufacturer	Model #	S/I	N	
Power Supply (12 VCD)	, 400 mA) RF Link Tec	chnology	LPS-1240	none	

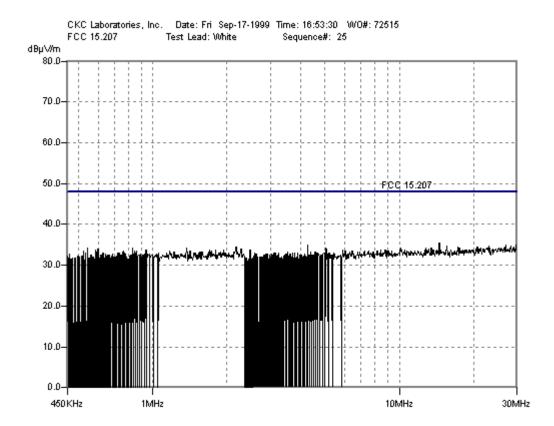
Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measur	ement Data:	Re	eading l	listed by m	argin.	Test Lead: White					
				L373w	cb0c						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBμV/m	dB	Ant
1	14.521M	34.6		+0.5	+0.3		+0.0	35.4	48.0	-12.6	White
2	29.911M	33.7		+1.0	+0.3		+0.0	35.0	48.0	-13.0	White
3	27.028M	33.7		+0.9	+0.3		+0.0	34.9	48.0	-13.1	White
4	4.234M	34.6		+0.1	+0.2		+0.0	34.9	48.0	-13.1	White
5	15.586M	34.1		+0.5	+0.2		+0.0	34.8	48.0	-13.2	White
6	28.403M	33.4		+1.0	+0.3		+0.0	34.7	48.0	-13.3	White
7	23.259M	33.5		+0.8	+0.3		+0.0	34.6	48.0	-13.4	White
8	29.157M	33.2		+1.0	+0.3		+0.0	34.5	48.0	-13.5	White
9	17.404M	33.6		+0.6	+0.3		+0.0	34.5	48.0	-13.5	White
10	20.730M	33.3		+0.7	+0.4		+0.0	34.4	48.0	-13.6	White
11	2.176M	34.2		+0.1	+0.1		+0.0	34.4	48.0	-13.6	White
12	26.629M	33.0		+0.9	+0.4		+0.0	34.3	48.0	-13.7	White
13	25.920M	33.0		+0.9	+0.4		+0.0	34.3	48.0	-13.7	White

14	17.582M	33.4	+0.6	+0.3	+0.0	34.3	48.0	-13.7	White
15	12.836M	33.6	+0.5	+0.2	+0.0	34.3	48.0	-13.7	White
16	830.361k	34.2	+0.1	+0.0	+0.0	34.3	48.0	-13.7	White
17	22.948M	33.1	+0.8	+0.3	+0.0	34.2	48.0	-13.8	White
18	21.573M	33.1	+0.8	+0.3	+0.0	34.2	48.0	-13.8	White
19	5.027M	33.9	+0.1	+0.2	+0.0	34.2	48.0	-13.8	White
20	28.226M	32.8	+1.0	+0.3	+0.0	34.1	48.0	-13.9	White
21	25.387M	32.8	+0.9	+0.4	+0.0	34.1	48.0	-13.9	White
22	13.501M	33.3	+0.5	+0.3	+0.0	34.1	48.0	-13.9	White
23	10.154M	33.5	+0.4	+0.2	+0.0	34.1	48.0	-13.9	White
24	1.368M	34.0	+0.1	+0.0	+0.0	34.1	48.0	-13.9	White
25	545.090k	34.1	+0.0	+0.0	+0.0	34.1	48.0	-13.9	White
26	29.556M	32.7	+1.0	+0.3	+0.0	34.0	48.0	-14.0	White
27	24.678M	32.8	+0.9	+0.3	+0.0	34.0	48.0	-14.0	White
28	24.057M	32.8	+0.9	+0.3	+0.0	34.0	48.0	-14.0	White
29	21.174M	32.9	+0.8	+0.3	+0.0	34.0	48.0	-14.0	White
30	602.144k	33.9	+0.1	+0.0	+0.0	34.0	48.0	-14.0	White
31	597.390k	33.9	+0.1	+0.0	+0.0	34.0	48.0	-14.0	White
32	27.694M	32.6	+1.0	+0.3	+0.0	33.9	48.0	-14.1	White
33	22.105M	32.8	+0.8	+0.3	+0.0	33.9	48.0	-14.1	White
34	21.928M	32.8	+0.8	+0.3	+0.0	33.9	48.0	-14.1	White
35	20.597M	32.8	+0.7	+0.4	+0.0	33.9	48.0	-14.1	White
36	13.191M	33.1	+0.5	+0.3	+0.0	33.9	48.0	-14.1	White
37	2.280M	33.8	+0.1	+0.0	+0.0	33.9	48.0	-14.1	White
38	19.356M	32.7	+0.7	+0.4	+0.0	33.8	48.0	-14.2	White
39	18.114M	32.9	+0.6	+0.3	+0.0	33.8	48.0	-14.2	White
40	16.207M	33.0	+0.6	+0.2	+0.0	33.8	48.0	-14.2	White
							- Ren	art Na	FC99-03

Report No: FC99-03² Page 85 of 101


41	14.832M	33.0	+0.5	+0.3	+0.0	33.8	48.0	-14.2	White
42	10.501M	33.2	+0.4	+0.2	+0.0	33.8	48.0	-14.2	White
43	583.126k	33.7	+0.1	+0.0	+0.0	33.8	48.0	-14.2	White
44	19.799M	32.6	+0.7	+0.4	+0.0	33.7	48.0	-14.3	White
45	18.779M	32.7	+0.7	+0.3	+0.0	33.7	48.0	-14.3	White
46	18.469M	32.8	+0.6	+0.3	+0.0	33.7	48.0	-14.3	White
47	14.211M	32.9	+0.5	+0.3	+0.0	33.7	48.0	-14.3	White
48	13.723M	32.9	+0.5	+0.3	+0.0	33.7	48.0	-14.3	White
49	13.412M	32.9	+0.5	+0.3	+0.0	33.7	48.0	-14.3	White
50	12.703M	33.0	+0.5	+0.2	+0.0	33.7	48.0	-14.3	White
51	10.080M	33.1	+0.4	+0.2	+0.0	33.7	48.0	-14.3	White
52	8.767M	33.2	+0.3	+0.2	+0.0	33.7	48.0	-14.3	White
53	8.445M	33.3	+0.3	+0.1	+0.0	33.7	48.0	-14.3	White
54	5.894M	33.4	+0.2	+0.1	+0.0	33.7	48.0	-14.3	White
55	2.500M	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
56	2.476M	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
57	1.933M	33.5	+0.1	+0.1	+0.0	33.7	48.0	-14.3	White
58	1.800M	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
59	1.696M	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
60	944.469k	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
61	939.715k	33.6	+0.1	+0.0	+0.0	33.7	48.0	-14.3	White
62	18.291M	32.7	+0.6	+0.3	+0.0	33.6	48.0	-14.4	White
63	14.344M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	White
64	11.169M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	White
65	9.386M	33.0	+0.4	+0.2	+0.0	33.6	48.0	-14.4	White
66	8.123M	33.2	+0.3	+0.1	+0.0	33.6	48.0	-14.4	White
67	7.231M	33.1	+0.3	+0.2	+0.0	33.6	48.0	-14.4	White
							Dom	ant NIa. I	CCOO O2

White	-14.4	48.0	33.6	+0.0	+0.1	+0.2	33.3	6.042M	68
White	-14.4	48.0	33.6	+0.0	+0.1	+0.1	33.4	1.168M	69
White	-14.4	48.0	33.6	+0.0	+0.0	+0.0	33.6	526.072k	70
White	-14.4	48.0	33.6	+0.0	+0.0	+0.0	33.6	521.318k	71
White	-14.5	48.0	33.5	+0.0	+0.3	+0.6	32.6	17.759M	72
White	-14.5	48.0	33.5	+0.0	+0.2	+0.4	32.9	11.962M	73
White	-14.5	48.0	33.5	+0.0	+0.2	+0.4	32.9	11.615M	74
White	-14.5	48.0	33.5	+0.0	+0.2	+0.4	32.9	8.940M	75
White	-14.5	48.0	33.5	+0.0	+0.1	+0.3	33.1	7.553M	76
White	-14.5	48.0	33.5	+0.0	+0.2	+0.2	33.1	6.488M	77
White	-14.5	48.0	33.5	+0.0	+0.1	+0.2	33.2	6.389M	78
White	-14.5	48.0	33.5	+0.0	+0.0	+0.1	33.4	1.415M	79
White	-14.5	48.0	33.5	+0.0	+0.0	+0.1	33.4	858.888k	80
White	-14.5	48.0	33.5	+0.0	+0.0	+0.1	33.4	839.870k	81
White	-14.6	48.0	33.4	+0.0	+0.2	+0.6	32.6	16.872M	82
White	-14.6	48.0	33.4	+0.0	+0.2	+0.4	32.8	10.773M	83
White	-14.6	48.0	33.4	+0.0	+0.2	+0.4	32.8	9.089M	84
White	-14.6	48.0	33.4	+0.0	+0.0	+0.1	33.3	1.734M	85
White	-14.6	48.0	33.4	+0.0	+0.0	+0.1	33.3	763.798k	86
White	-14.7	48.0	33.3	+0.0	+0.3	+0.5	32.5	14.965M	87
White	-14.7	48.0	33.3	+0.0	+0.2	+0.4	32.7	11.863M	88
White	-14.7	48.0	33.3	+0.0	+0.2	+0.2	32.9	6.909M	89
White	-14.7	48.0	33.3	+0.0	+0.1	+0.2	33.0	6.290M	90
White	-14.7	48.0	33.3	+0.0	+0.0	+0.1	33.2	2.138M	91
White	-14.7	48.0	33.3	+0.0	+0.1	+0.1	33.1	1.895M	92
White	-14.7	48.0	33.3	+0.0	+0.1	+0.1	33.1	1.215M	93
	-14.8	48.0	33.2	+0.0	+0.2	+0.1	32.9	4.556M	94

Page 87 of 101

95	4.383M	32.9	+0.1	+0.2	+0.0	33.2	48.0	-14.8	White
0.6	2.516)/	22.0	.0.1	.0.2	.00	22.0	40.0	140	XX/1. '.
96	3.516M	32.9	+0.1	+0.2	+0.0	33.2	48.0	-14.8	White
97	2.219M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	White
98	1.586M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
99	1.553M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
77	1.333141	33.1	+0.1	+0.0	+0.0	33.2	40.0	-14.0	Willie
100	754.289k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White

Report No: FC99-032 Page 88 of 101

Report No: FC99-032 Page 89 of 101 Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:48:23
Equipment: Video Audio Transmitter Sequence#: 22

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P

S/N: none

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P	none

Support Devices:

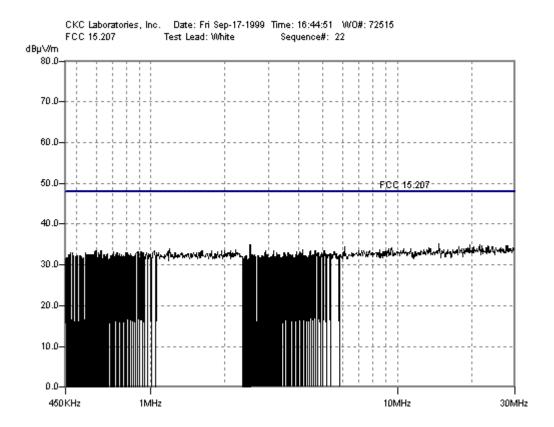
Function	Manufacturer	Model #	S/.	N
Power Supply (12 VCD,	400 mA) RF Link 7	Гесhnology	LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measur	ement Data:	Re	eading 1	isted by m	argin.	Test Lead: White					
				L373w	cb0c						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	14.832M	34.3		+0.5	+0.3		+0.0	35.1	48.0	-12.9	White
2	2.550M	34.8		+0.1	+0.1		+0.0	35.0	48.0	-13.0	White
3	21.662M	33.8		+0.8	+0.3		+0.0	34.9	48.0	-13.1	White
4	19.710M	33.8		+0.7	+0.4		+0.0	34.9	48.0	-13.1	White
5	2.525M	34.8		+0.1	+0.0		+0.0	34.9	48.0	-13.1	White
6	28.137M	33.3		+1.0	+0.3		+0.0	34.6	48.0	-13.4	White
7	27.738M	33.3		+1.0	+0.3		+0.0	34.6	48.0	-13.4	White
8	23.436M	33.5		+0.8	+0.3		+0.0	34.6	48.0	-13.4	White
9	22.194M	33.5		+0.8	+0.3		+0.0	34.6	48.0	-13.4	White
10	24.367M	33.3		+0.9	+0.3		+0.0	34.5	48.0	-13.5	White
11	23.613M	33.4		+0.8	+0.3		+0.0	34.5	48.0	-13.5	White
12	20.509M	33.4		+0.7	+0.4		+0.0	34.5	48.0	-13.5	White
13	17.759M	33.6		+0.6	+0.3		+0.0	34.5	48.0	-13.5	White

14	6.117M	34.2	+0.2	+0.1	+0.0	34.5	48.0	-13.5	White
15	25.299M	33.0	+0.9	+0.4	+0.0	34.3	48.0	-13.7	White
16	19.400M	33.2	+0.7	+0.4	+0.0	34.3	48.0	-13.7	White
17	29.645M	32.9	+1.0	+0.3	+0.0	34.2	48.0	-13.8	White
18	26.452M	32.9	+0.9	+0.4	+0.0	34.2	48.0	-13.8	White
19	20.243M	33.1	+0.7	+0.4	+0.0	34.2	48.0	-13.8	White
20	23.037M	33.0	+0.8	+0.3	+0.0	34.1	48.0	-13.9	White
21	13.412M	33.3	+0.5	+0.3	+0.0	34.1	48.0	-13.9	White
22	9.510M	33.5	+0.4	+0.2	+0.0	34.1	48.0	-13.9	White
23	28.936M	32.7	+1.0	+0.3	+0.0	34.0	48.0	-14.0	White
24	28.403M	32.7	+1.0	+0.3	+0.0	34.0	48.0	-14.0	White
25	26.895M	32.7	+0.9	+0.4	+0.0	34.0	48.0	-14.0	White
26	26.186M	32.7	+0.9	+0.4	+0.0	34.0	48.0	-14.0	White
27	19.178M	32.9	+0.7	+0.4	+0.0	34.0	48.0	-14.0	White
28	13.634M	33.2	+0.5	+0.3	+0.0	34.0	48.0	-14.0	White
29	11.343M	33.4	+0.4	+0.2	+0.0	34.0	48.0	-14.0	White
30	1.187M	33.8	+0.1	+0.1	+0.0	34.0	48.0	-14.0	White
31	22.371M	32.8	+0.8	+0.3	+0.0	33.9	48.0	-14.1	White
32	21.085M	32.9	+0.7	+0.3	+0.0	33.9	48.0	-14.1	White
33	19.001M	32.8	+0.7	+0.4	+0.0	33.9	48.0	-14.1	White
34	18.646M	32.9	+0.7	+0.3	+0.0	33.9	48.0	-14.1	White
35	18.380M	33.0	+0.6	+0.3	+0.0	33.9	48.0	-14.1	White
36	10.625M	33.3	+0.4	+0.2	+0.0	33.9	48.0	-14.1	White
37	9.262M	33.3	+0.4	+0.2	+0.0	33.9	48.0	-14.1	White
38	26.008M	32.5	+0.9	+0.4	+0.0	33.8	48.0	-14.2	White
39	17.493M	32.9	+0.6	+0.3	+0.0	33.8	48.0	-14.2	White
40	16.783M	33.0	+0.6	+0.2	+0.0	33.8	48.0	-14.2	White
							D _{en}	ort No. I	100_02


41	15.541M	33.1	+0.5	+0.2	+0.0	33.8	48.0	-14.2	White
42	13.191M	33.0	+0.5	+0.3	+0.0	33.8	48.0	-14.2	White
43	12.880M	33.1	+0.5	+0.2	+0.0	33.8	48.0	-14.2	White
44	20.686M	32.6	+0.7	+0.4	+0.0	33.7	48.0	-14.3	White
45	16.074M	33.0	+0.5	+0.2	+0.0	33.7	48.0	-14.3	White
46	8.494M	33.2	+0.3	+0.2	+0.0	33.7	48.0	-14.3	White
47	4.135M	33.4	+0.1	+0.2	+0.0	33.7	48.0	-14.3	White
48	2.209M	33.5	+0.1	+0.1	+0.0	33.7	48.0	-14.3	White
49	23.791M	32.4	+0.9	+0.3	+0.0	33.6	48.0	-14.4	White
50	18.823M	32.6	+0.7	+0.3	+0.0	33.6	48.0	-14.4	White
51	17.315M	32.7	+0.6	+0.3	+0.0	33.6	48.0	-14.4	White
52	15.098M	32.9	+0.5	+0.2	+0.0	33.6	48.0	-14.4	White
53	12.525M	32.9	+0.5	+0.2	+0.0	33.6	48.0	-14.4	White
54	7.330M	33.1	+0.3	+0.2	+0.0	33.6	48.0	-14.4	White
55	2.946M	33.4	+0.1	+0.1	+0.0	33.6	48.0	-14.4	White
56	2.105M	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
57	1.952M	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
58	1.762M	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
59	1.035M	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
60	602.144k	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
61	597.390k	33.5	+0.1	+0.0	+0.0	33.6	48.0	-14.4	White
62	14.477M	32.7	+0.5	+0.3	+0.0	33.5	48.0	-14.5	White
63	8.990M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	White
64	7.206M	33.0	+0.3	+0.2	+0.0	33.5	48.0	-14.5	White
65	6.984M	33.1	+0.2	+0.2	+0.0	33.5	48.0	-14.5	White
66	4.457M	33.2	+0.1	+0.2	+0.0	33.5	48.0	-14.5	White
67	2.000M	33.4	+0.1	+0.0	+0.0	33.5	48.0	-14.5	White
1							Dan	ant Max I	2000.02

68	625.917k	33.4	+0.1	+0.0	+0.0	33.5	48.0	-14.5	White
69	10.377M	32.8	+0.4	+0.2	+0.0	33.4	48.0	-14.6	White
70	9.188M	32.8	+0.4	+0.2	+0.0	33.4	48.0	-14.6	White
71	7.727M	33.0	+0.3	+0.1	+0.0	33.4	48.0	-14.6	White
72	5.052M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	White
73	4.680M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	White
74	4.655M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	White
75	3.144M	33.2	+0.1	+0.1	+0.0	33.4	48.0	-14.6	White
76	1.615M	33.3	+0.1	+0.0	+0.0	33.4	48.0	-14.6	White
77	14.388M	32.5	+0.5	+0.3	+0.0	33.3	48.0	-14.7	White
78	10.823M	32.7	+0.4	+0.2	+0.0	33.3	48.0	-14.7	White
79	10.129M	32.7	+0.4	+0.2	+0.0	33.3	48.0	-14.7	White
80	9.931M	32.7	+0.4	+0.2	+0.0	33.3	48.0	-14.7	White
81	8.742M	32.8	+0.3	+0.2	+0.0	33.3	48.0	-14.7	White
82	7.652M	32.9	+0.3	+0.1	+0.0	33.3	48.0	-14.7	White
83	7.553M	32.9	+0.3	+0.1	+0.0	33.3	48.0	-14.7	White
84	5.547M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	White
85	3.912M	33.0	+0.1	+0.2	+0.0	33.3	48.0	-14.7	White
86	1.168M	33.1	+0.1	+0.1	+0.0	33.3	48.0	-14.7	White
87	16.473M	32.4	+0.6	+0.2	+0.0	33.2	48.0	-14.8	White
88	16.340M	32.4	+0.6	+0.2	+0.0	33.2	48.0	-14.8	White
89	11.863M	32.6	+0.4	+0.2	+0.0	33.2	48.0	-14.8	White
90	11.764M	32.6	+0.4	+0.2	+0.0	33.2	48.0	-14.8	White
91	8.841M	32.7	+0.3	+0.2	+0.0	33.2	48.0	-14.8	White
92	4.036M	32.9	+0.1	+0.2	+0.0	33.2	48.0	-14.8	White
93	1.862M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	White
94	1.591M	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
							Pen-	art No. I	100_02

Report No: FC99-03² Page 93 of 101

95	911.188k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
96	887.415k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
97	882.661k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
98	706.744k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	White
99	4.928M	32.8	+0.1	+0.2	+0.0	33.1	48.0	-14.9	White
100	4.061M	32.8	+0.1	+0.2	+0.0	33.1	48.0	-14.9	White

Report No: FC99-032 Page 94 of 101

Report No: FC99-032 Page 95 of 101 Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Advanced Electronics Group, Inc.

Specification: FCC 15.207

Work Order #: 72515 Date: Sat Sep-18-1999

Test Type: Conducted Emissions Time: 16:50:45
Equipment: Video Audio Transmitter Sequence#: 23

Manufacturer: Advanced Electronics Group, Inc. Tested By: Adam Ross

Model: TX888MOD-P

S/N: none

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Video Audio Transmitter*	Advanced Electronics Group, Inc.	TX888MOD-P	none

Support Devices:

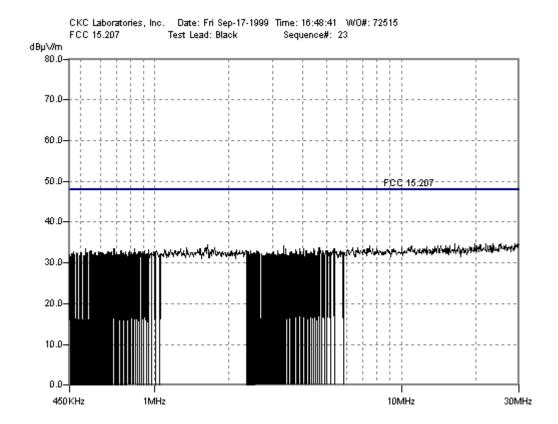
Function	Manufacturer	Model #	S/N	
Power Supply (12 VCD, 40	0 mA) RF Link Technology		LPS-1240	none

Test Conditions / Notes:

The EUT is placed on the test table with the antenna-port connected to the spectrum analyzer and the camera adjacent to the transmitter. The camera is providing modulation of the video carrier. A 2.5 kHz tone from the function generator is modulating the audio carrier. The transmitter is continuously transmitting. The frequency range of investigation is 9 kHz to 26 GHz. The temperature is 70°F. The humidity is 40%.

Measur	ement Data:	Reading listed by margin.					Test Lead: Black				
			L373b		cb0c						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	22.105M	33.9	+0.6		+0.3		+0.0	34.8	48.0	-13.2	Black
2	30.000M	33.3	+1.1		+0.3		+0.0	34.7	48.0	-13.3	Black
3	29.024M	33.4	+1.0		+0.3		+0.0	34.7	48.0	-13.3	Black
4	16.517M	34.0	+0.5		+0.2		+0.0	34.7	48.0	-13.3	Black
5	29.734M	33.2	+1.1		+0.3		+0.0	34.6	48.0	-13.4	Black
6	25.387M	33.5	+0.7		+0.4		+0.0	34.6	48.0	-13.4	Black
7	23.525M	33.7	+0.6		+0.3		+0.0	34.6	48.0	-13.4	Black
8	19.888M	33.7	+0.5		+0.4		+0.0	34.6	48.0	-13.4	Black
9	29.468M	33.1	+1.1		+0.3		+0.0	34.5	48.0	-13.5	Black
10	20.908M	33.6	+0.5		+0.4		+0.0	34.5	48.0	-13.5	Black
11	26.718M	33.2	+0.8		+0.4		+0.0	34.4	48.0	-13.6	Black
12	1.634M	34.4	+0.0		+0.0		+0.0	34.4	48.0	-13.6	Black
13	28.049M	33.0	+1.0		+0.3		+0.0	34.3	48.0	-13.7	Black
1									D	MANIA T	2/300 00

14	26.274M	33.1	+0.8	+0.4	+0.0	34.3	48.0	-13.7	Black
15	23.702M	33.3	+0.7	+0.3	+0.0	34.3	48.0	-13.7	Black
16	17.094M	33.5	+0.5	+0.3	+0.0	34.3	48.0	-13.7	Black
17	15.719M	33.6	+0.5	+0.2	+0.0	34.3	48.0	-13.7	Black
18	14.078M	33.5	+0.5	+0.3	+0.0	34.3	48.0	-13.7	Black
19	23.037M	33.2	+0.6	+0.3	+0.0	34.1	48.0	-13.9	Black
20	22.549M	33.2	+0.6	+0.3	+0.0	34.1	48.0	-13.9	Black
21	20.243M	33.2	+0.5	+0.4	+0.0	34.1	48.0	-13.9	Black
22	15.187M	33.4	+0.5	+0.2	+0.0	34.1	48.0	-13.9	Black
23	14.433M	33.3	+0.5	+0.3	+0.0	34.1	48.0	-13.9	Black
24	11.046M	33.6	+0.3	+0.2	+0.0	34.1	48.0	-13.9	Black
25	7.454M	33.7	+0.2	+0.2	+0.0	34.1	48.0	-13.9	Black
26	3.318M	33.9	+0.1	+0.1	+0.0	34.1	48.0	-13.9	Black
27	28.669M	32.7	+1.0	+0.3	+0.0	34.0	48.0	-14.0	Black
28	20.686M	33.1	+0.5	+0.4	+0.0	34.0	48.0	-14.0	Black
29	13.679M	33.3	+0.4	+0.3	+0.0	34.0	48.0	-14.0	Black
30	10.971M	33.5	+0.3	+0.2	+0.0	34.0	48.0	-14.0	Black
31	27.782M	32.7	+0.9	+0.3	+0.0	33.9	48.0	-14.1	Black
32	27.383M	32.7	+0.9	+0.3	+0.0	33.9	48.0	-14.1	Black
33	19.089M	33.0	+0.5	+0.4	+0.0	33.9	48.0	-14.1	Black
34	12.703M	33.3	+0.4	+0.2	+0.0	33.9	48.0	-14.1	Black
35	27.073M	32.6	+0.9	+0.3	+0.0	33.8	48.0	-14.2	Black
36	21.662M	32.9	+0.6	+0.3	+0.0	33.8	48.0	-14.2	Black
37	19.223M	32.9	+0.5	+0.4	+0.0	33.8	48.0	-14.2	Black
38	15.453M	33.1	+0.5	+0.2	+0.0	33.8	48.0	-14.2	Black
39	6.711M	33.5	+0.1	+0.2	+0.0	33.8	48.0	-14.2	Black
40	6.340M	33.6	+0.1	+0.1	+0.0	33.8	48.0	-14.2	Black
							11000		


Report No: FC99-03² Page 97 of 101

41	1.605M	33.8	+0.0	+0.0	+0.0	33.8	48.0	-14.2	Black
42	24.234M	32.7	+0.7	+0.3	+0.0	33.7	48.0	-14.3	Black
43	17.848M	32.9	+0.5	+0.3	+0.0	33.7	48.0	-14.3	Black
44	10.773M	33.2	+0.3	+0.2	+0.0	33.7	48.0	-14.3	Black
45	10.129M	33.3	+0.2	+0.2	+0.0	33.7	48.0	-14.3	Black
46	4.680M	33.4	+0.1	+0.2	+0.0	33.7	48.0	-14.3	Black
47	4.655M	33.4	+0.1	+0.2	+0.0	33.7	48.0	-14.3	Black
48	1.748M	33.7	+0.0	+0.0	+0.0	33.7	48.0	-14.3	Black
49	1.353M	33.7	+0.0	+0.0	+0.0	33.7	48.0	-14.3	Black
50	24.589M	32.6	+0.7	+0.3	+0.0	33.6	48.0	-14.4	Black
51	18.025M	32.8	+0.5	+0.3	+0.0	33.6	48.0	-14.4	Black
52	10.674M	33.2	+0.2	+0.2	+0.0	33.6	48.0	-14.4	Black
53	7.999M	33.3	+0.2	+0.1	+0.0	33.6	48.0	-14.4	Black
54	4.036M	33.3	+0.1	+0.2	+0.0	33.6	48.0	-14.4	Black
55	830.361k	33.4	+0.2	+0.0	+0.0	33.6	48.0	-14.4	Black
56	20.065M	32.6	+0.5	+0.4	+0.0	33.5	48.0	-14.5	Black
57	18.646M	32.7	+0.5	+0.3	+0.0	33.5	48.0	-14.5	Black
58	18.291M	32.7	+0.5	+0.3	+0.0	33.5	48.0	-14.5	Black
59	13.812M	32.8	+0.4	+0.3	+0.0	33.5	48.0	-14.5	Black
60	13.412M	32.8	+0.4	+0.3	+0.0	33.5	48.0	-14.5	Black
61	12.481M	32.9	+0.4	+0.2	+0.0	33.5	48.0	-14.5	Black
62	11.863M	33.0	+0.3	+0.2	+0.0	33.5	48.0	-14.5	Black
63	7.281M	33.1	+0.2	+0.2	+0.0	33.5	48.0	-14.5	Black
64	5.374M	33.2	+0.1	+0.2	+0.0	33.5	48.0	-14.5	Black
65	5.349M	33.2	+0.1	+0.2	+0.0	33.5	48.0	-14.5	Black
66	1.529M	33.5	+0.0	+0.0	+0.0	33.5	48.0	-14.5	Black
67	687.726k	33.5	+0.0	+0.0	+0.0	33.5	48.0	-14.5	Black
							14000	40 - 13 0 4	

68	682.971k	33.5	+0.0	+0.0	+0.0	33.5	48.0	-14.5	Black
69	12.210M	32.9	+0.3	+0.2	+0.0	33.4	48.0	-14.6	Black
70	11.368M	32.9	+0.3	+0.2	+0.0	33.4	48.0	-14.6	Black
71	9.386M	33.0	+0.2	+0.2	+0.0	33.4	48.0	-14.6	Black
72	7.702M	33.1	+0.2	+0.1	+0.0	33.4	48.0	-14.6	Black
73	4.432M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	Black
74	3.887M	33.1	+0.1	+0.2	+0.0	33.4	48.0	-14.6	Black
75	3.392M	33.2	+0.1	+0.1	+0.0	33.4	48.0	-14.6	Black
76	1.277M	33.3	+0.0	+0.1	+0.0	33.4	48.0	-14.6	Black
77	526.072k	33.3	+0.1	+0.0	+0.0	33.4	48.0	-14.6	Black
78	16.340M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	Black
79	16.118M	32.6	+0.5	+0.2	+0.0	33.3	48.0	-14.7	Black
80	13.013M	32.6	+0.4	+0.3	+0.0	33.3	48.0	-14.7	Black
81	12.348M	32.7	+0.4	+0.2	+0.0	33.3	48.0	-14.7	Black
82	11.665M	32.8	+0.3	+0.2	+0.0	33.3	48.0	-14.7	Black
83	9.188M	32.9	+0.2	+0.2	+0.0	33.3	48.0	-14.7	Black
84	8.742M	32.9	+0.2	+0.2	+0.0	33.3	48.0	-14.7	Black
85	7.083M	32.9	+0.2	+0.2	+0.0	33.3	48.0	-14.7	Black
86	1.724M	33.3	+0.0	+0.0	+0.0	33.3	48.0	-14.7	Black
87	1.496M	33.3	+0.0	+0.0	+0.0	33.3	48.0	-14.7	Black
88	1.158M	33.2	+0.0	+0.1	+0.0	33.3	48.0	-14.7	Black
89	17.582M	32.4	+0.5	+0.3	+0.0	33.2	48.0	-14.8	Black
90	16.828M	32.5	+0.5	+0.2	+0.0	33.2	48.0	-14.8	Black
91	14.920M	32.4	+0.5	+0.3	+0.0	33.2	48.0	-14.8	Black
92	9.238M	32.8	+0.2	+0.2	+0.0	33.2	48.0	-14.8	Black
93	6.067M	33.0	+0.1	+0.1	+0.0	33.2	48.0	-14.8	Black
94	3.739M	32.9	+0.1	+0.2	+0.0	33.2	48.0	-14.8	Black
1							Dane	ant Nice I	a '00 021

95	2.143M	33.2	+0.0	+0.0	+0.0	33.2	48.0	-14.8	Black
))	2.17JW1	33.2	10.0	10.0	10.0	33.2	70.0	-14.0	Diack
96	1.705M	33.2	+0.0	+0.0	+0.0	33.2	48.0	-14.8	Black
97	1.092M	33.2	+0.0	+0.0	+0.0	33.2	48.0	-14.8	Black
98	944.469k	33.1	+0.1	+0.0	+0.0	33.2	48.0	-14.8	Black
99	5.671M	32.9	+0.1	+0.1	+0.0	33.1	48.0	-14.9	Black
	3.071111	32.7	10.1	10.1	10.0	33.1	10.0	11.7	Diack
100	1.206M	33.0	+0.0	+0.1	+0.0	33.1	48.0	-14.9	Black
100	1.200111	55.0	10.0	10.1	10.0	33.1	70.0	17.7	Diack

Report No: FC99-032 Page 100 of 101

Report No: FC99-032 Page 101 of 101