



## **ADDENDUM TO FC01-045**

**FOR THE**

**2.4 GHZ VIDEO/AUDIO TRANSMITTER, 2300TX750**

**FCC PART 90 SUBPART I  
FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B**

**COMPLIANCE**

**DATE OF ISSUE: AUGUST 30, 2001**

**PREPARED FOR:**

Advanced Electronics Group, Inc.  
10524 South La Cienega Blvd.  
Inglewood, CA 90304

W.O. No.: 76731

**PREPARED BY:**

Joyce Walker  
CKC Laboratories, Inc.  
5473A Clouds Rest  
Mariposa, CA 95338

Date of test: May 2- June 8, 2001

**Report No.: FC01-045A**

This report contains a total of 42 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

## TABLE OF CONTENTS

|                                                                                      |    |
|--------------------------------------------------------------------------------------|----|
| Administrative Information .....                                                     | 3  |
| Summary of Results.....                                                              | 4  |
| Modifications Required for Compliance .....                                          | 4  |
| Approvals.....                                                                       | 4  |
| Equipment Under Test (EUT) Description.....                                          | 5  |
| Equipment Under Test.....                                                            | 5  |
| Peripheral Devices.....                                                              | 5  |
| Temperature and Humidity During Testing .....                                        | 5  |
| 2.1033(c)(3) User's Manual .....                                                     | 6  |
| 2.1033(c)(4) Type of Emissions .....                                                 | 6  |
| 2.1033(c)(5) Frequency Range .....                                                   | 6  |
| 2.1033(c)(6) Operating Power.....                                                    | 6  |
| 2.1033(c)(7) Maximum Power Rating.....                                               | 6  |
| 2.1033(c)(8) DC Voltages .....                                                       | 6  |
| 2.1033(c)(9) Tune-Up Procedure .....                                                 | 6  |
| 2.1033(c)(10) Schematics and Circuitry Description .....                             | 6  |
| 2.1033(c)(11) Label and Placement.....                                               | 7  |
| 2.1033(c)(12) Submittal Photos.....                                                  | 7  |
| 2.1033(c)(13) Modulation Information .....                                           | 7  |
| 2.1033(c)(14)/2.1046/90.205(l) RF Power Output.....                                  | 8  |
| 2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Audio Frequency Response..... | 11 |
| 2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Modulation Limiting Response  | 11 |
| 2.1033(c)(14)/2.1049(i)/90.210- Occupied Bandwidth.....                              | 12 |
| 2.1033(c)(14)/2.1051/90.210 - Spurious Emissions at Antenna Terminal.....            | 16 |
| 2.1033(c)(14)/2.1053/90.210 - Field Strength of Spurious Radiation.....              | 19 |
| 2.1033(c)(14)/2.1055/90.213 - Frequency Stability .....                              | 24 |
| 15.107 – AC Conducted Emissions.....                                                 | 26 |
| 15.109 – Radiated Emissions .....                                                    | 35 |

**CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:**  
A2LA (USA); DA Tech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

**CKC Laboratories, Inc. has received test site Registration Acceptance from the following agencies:**  
FCC (USA); VCCI (Japan); and Industry Canada.

**CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:**  
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Teletyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

## ADMINISTRATIVE INFORMATION

**DATE OF TEST:** May 2- June 8, 2001

**DATE OF RECEIPT:** May 2, 2001

**PURPOSE OF TEST:** To demonstrate the compliance of the 2.4 GHz Video/Audio Transmitter, 2300TX750 with the requirements for FCC Part 90 Subpart I and FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B devices. This addendum is to add additional frequency stability and bandedge data, include the calculations for the emissions mask and provide corrected ERP calculations.

**TEST METHOD:** ANSI C63.4 (1992)

**MANUFACTURER:** Advanced Electronics Group, Inc.  
10524 South La Cienega Blvd.  
Inglewood, CA 90304

**REPRESENTATIVE:** Richard Hirsch

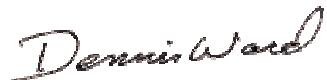
**TEST LOCATION:** CKC Laboratories, Inc.  
5473A Clouds Rest  
Mariposa, CA 95338

## SUMMARY OF RESULTS

As received, the Advanced Electronics Group, Inc. 2.4 GHz Video/Audio Transmitter, 2300TX750 was found to be fully compliant with the following standards and specifications:

### **United States**

- FCC Part 15 Subpart B Section 15.107 and 15.109 Class B
- FCC Part 90 Subpart I
- ANSI C63.4 (1992) method


The results in this report apply only to the items tested, as identified herein.

## MODIFICATIONS REQUIRED FOR COMPLIANCE

No modifications to the EUT were required to comply.

## APPROVALS

### QUALITY ASSURANCE:



---

Dennis Ward, Quality Manager



---

Chuck Kendall, EMC/Lab Manager

### TEST PERSONNEL:



---

Randy Clark, EMC Engineer



---

Dustin Oaks, EMC Engineer/  
Evaluation Engineer



---

Conan T. Boyle, EMC Engineer

## EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT is a single channel (2.473 GHz) Video/Audio Transmitter. The EUT tested by CKC Laboratories was a production unit.

## EQUIPMENT UNDER TEST

### **2.4 GHz Video/Audio Transmitter**

Manuf: Advanced Electronics Group, Inc.  
Model: 2300TX750  
Serial: 001  
FCC ID: ORG2300TX750 (Pending)

## PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

### **Camera**

Manuf: Advanced Electronics Group, Inc.  
Model: WDSR-2005SC  
Serial: N/A  
FCC ID: DoC

### **Power Supply**

Manuf: Advanced Electronics Group, Inc.  
Model: 112104  
Serial: 0049  
FCC ID: DoC

## TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within +15°C and + 35°C.  
The relative humidity was between 20% and 75%.

## **2.1033(c)(3) USER'S MANUAL**

The necessary information is contained in a separate document.

## **2.1033(c)(4) TYPE OF EMISSIONS**

The emission designator is 65MO F8W.

## **2.1033(c)(5) FREQUENCY RANGE**

The device operates at 2473 MHz  $\pm$  10 MHz.

## **2.1033(c)(6) OPERATING POWER**

The EUT operates at a fixed power of 1.0 watts.

## **2.1033(c)(7) MAXIMUM POWER RATING AS DEFINED PER FCC PART 90.205(l)**

Actual power rating as defined per FCC Part 90.205(l) is 5.0 watts.

## **2.1033(c)(8) DC VOLTAGES**

The transmitter accepts 12 VDC input.

## **2.1033(c)(9) TUNE-UP PROCEDURE**

This device does not have any tune up procedure, as it is configured at the factory to operate within the stated frequency and power limits.

## **2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION**

The necessary information is contained in a separate document.



### **2.1033(c)(11) LABEL AND PLACEMENT**

The necessary information is contained in a separate document.

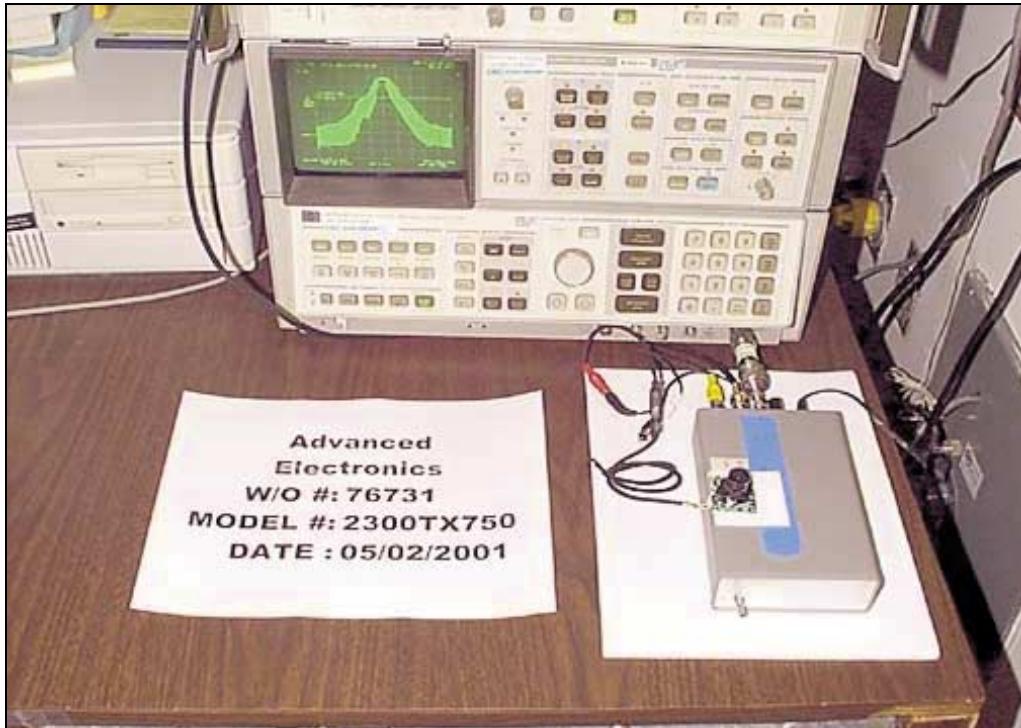
### **2.1033(c)(12) SUBMITTAL PHOTOS**

The necessary information is contained in a separate document.

### **2.1033(c)(13) MODULATION INFORMATION**

The necessary information is contained in a separate document.

### 2.1033(c)(14)/2.1046/90.205(l) - RF POWER OUTPUT


#### **Test Conditions:**

The HP-8566B Spectrum Analyzer was connected directly to the transmitter antenna terminal with an Andrews semi-rigid coaxial cable. Resolution bandwidth and video bandwidth were set to 3 MHz and the trace was set to max hold.

#### **Test Equipment Used:**

| Web# | Lab  | Equipment         | Manufacturer | Model #   | Serial #   | Asset # | Cal Date | Cal Due |
|------|------|-------------------|--------------|-----------|------------|---------|----------|---------|
| 439  | Barn | QP Adapter        | HP           | 85650A    | 2811A01267 | 00478   | 11/03/00 | 11/3/01 |
| 472  | Barn | S/A Display       | HP           | 8566B     | 2403A08241 | 00489   | 11/3/00  | 11/3/01 |
| 502  | Barn | Spectrum Analyzer | HP           | 8566B     | 2209A01404 | 00490   | 11/3/00  | 11/3/01 |
| 1105 | Barn | Analyzer/Audio    | HP           | 8903B     | 3011A09432 | 02338   | 10/09/00 | 10/9/01 |
| 1334 | Barn | Attenuator        | Pasternack   | PE7014-40 |            |         | 03/29/01 | 3/29/02 |

**SET-UP PHOTO**



Direct Connect

**Test Data:**

WO 76731  
 Customer Advanced Electronics Group  
 Model 2300TX750

**FCC Part 2.1046 / 90.205**

RF Power Output  
 Transmitter Operating on 2473MHz  
 Transmitter Operating Unmodulated  
 Measured from Antenna Terminal

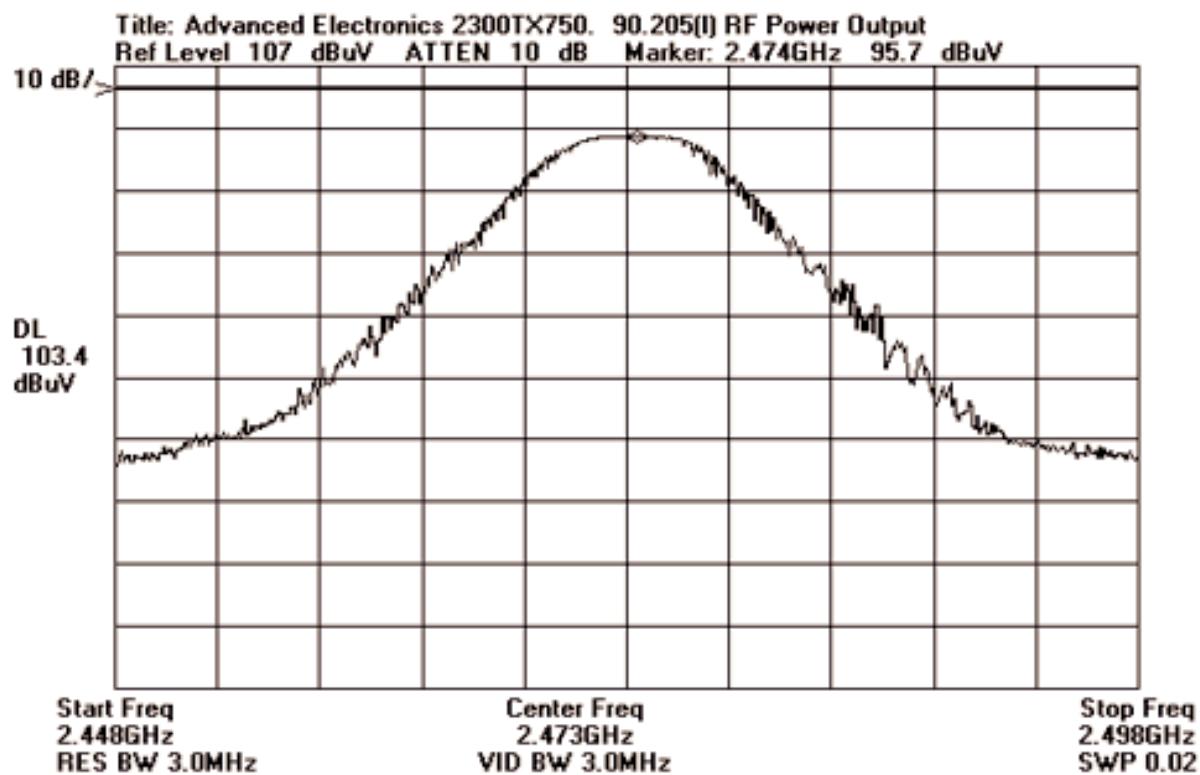
| Corrected Reading<br>(dB $\mu$ V) | Amplitude in dBm | Amplitude in Watts | Spec Limit (Watts) | PASS or FAIL |
|-----------------------------------|------------------|--------------------|--------------------|--------------|
| 135.8                             | 28.8             | 0.76               | 5.0                | PASS         |

**Calculations**

Power Output Calculations:

$$\text{dBm} = \text{dB}\mu\text{V} - 107$$

$$\text{Watts} = 10^{(\text{dBm}/10)}/1000$$


**90.205(l) Power output Calculations:**

Peak Modulated power output is 136.1dB<sub>u</sub>V

$$136.1\text{dB}_{\text{u}}\text{V} - 107 = 29.1\text{dBm}$$

$$10^{(29.1/10)}/1000 = 0.812 \text{ Watts} @ 2473.5 \text{ MHz}$$

Peak unmodulated power output is 135.8dB<sub>u</sub>V



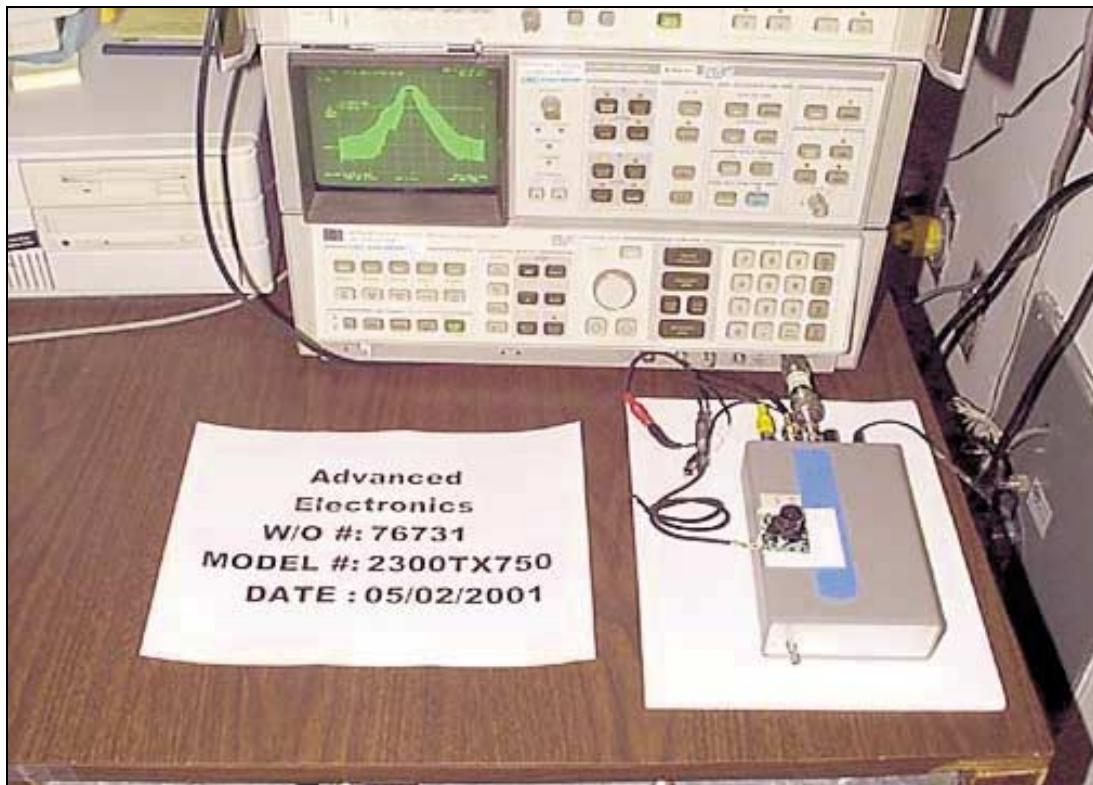
**2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE**

**Not applicable to this unit.**

**2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS – Modulation Limiting Response**

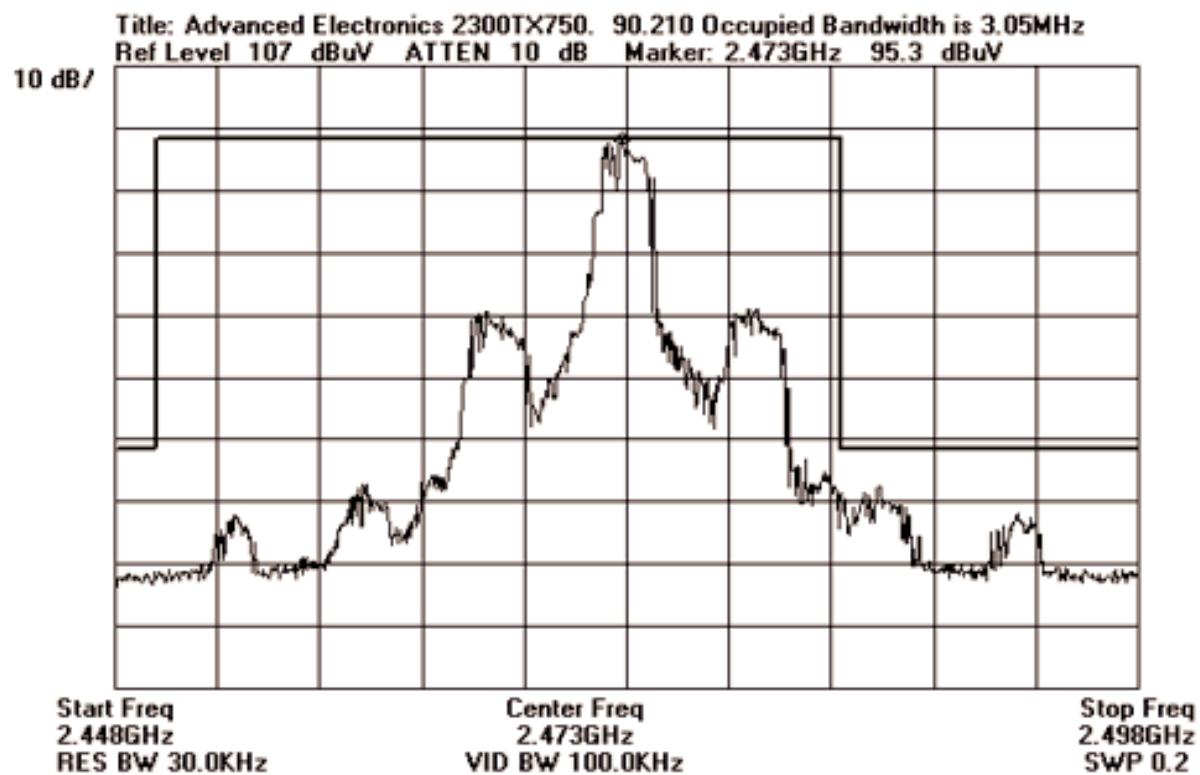
**Not applicable to this unit.**

### 2.1033(c)(14)/2.1049(i)/90.210 - OCCUPIED BANDWIDTH

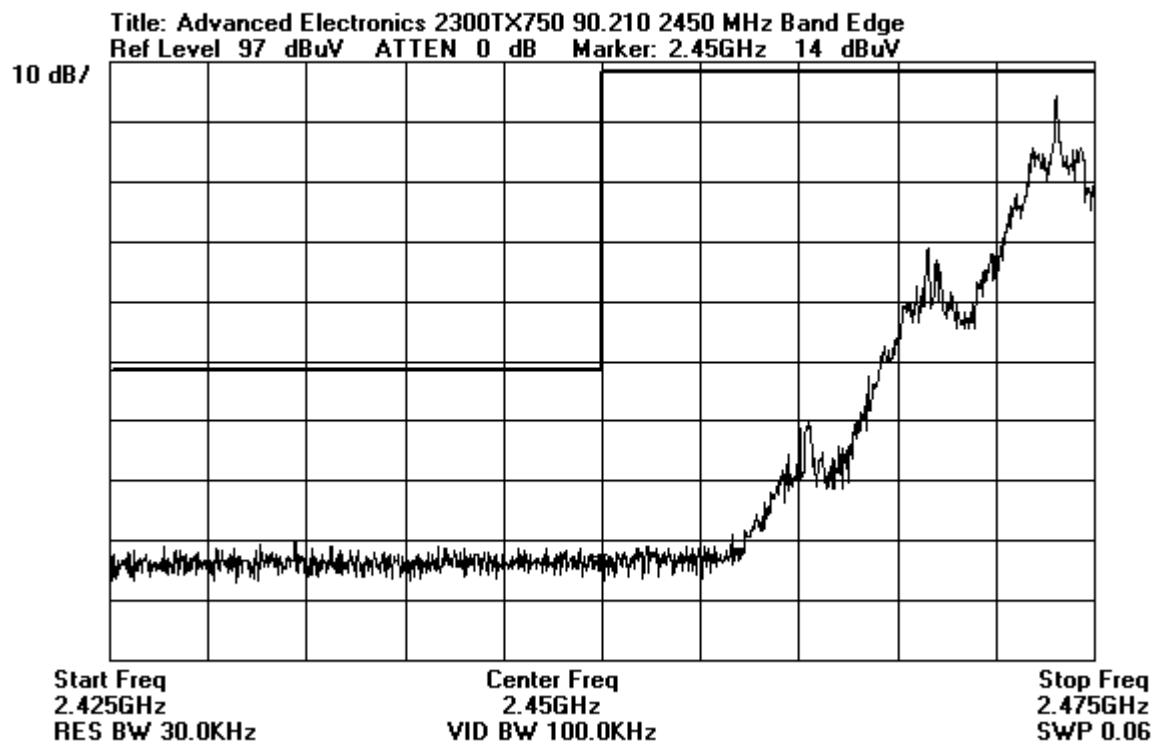

#### **Test Conditions:**

The HP-8566B Spectrum Analyzer was connected directly to the transmitter antenna terminal with an Andrews semi-rigid coaxial cable. Resolution bandwidth was set to 30 kHz, video bandwidth was set to 100 kHz and the trace was set to max hold.

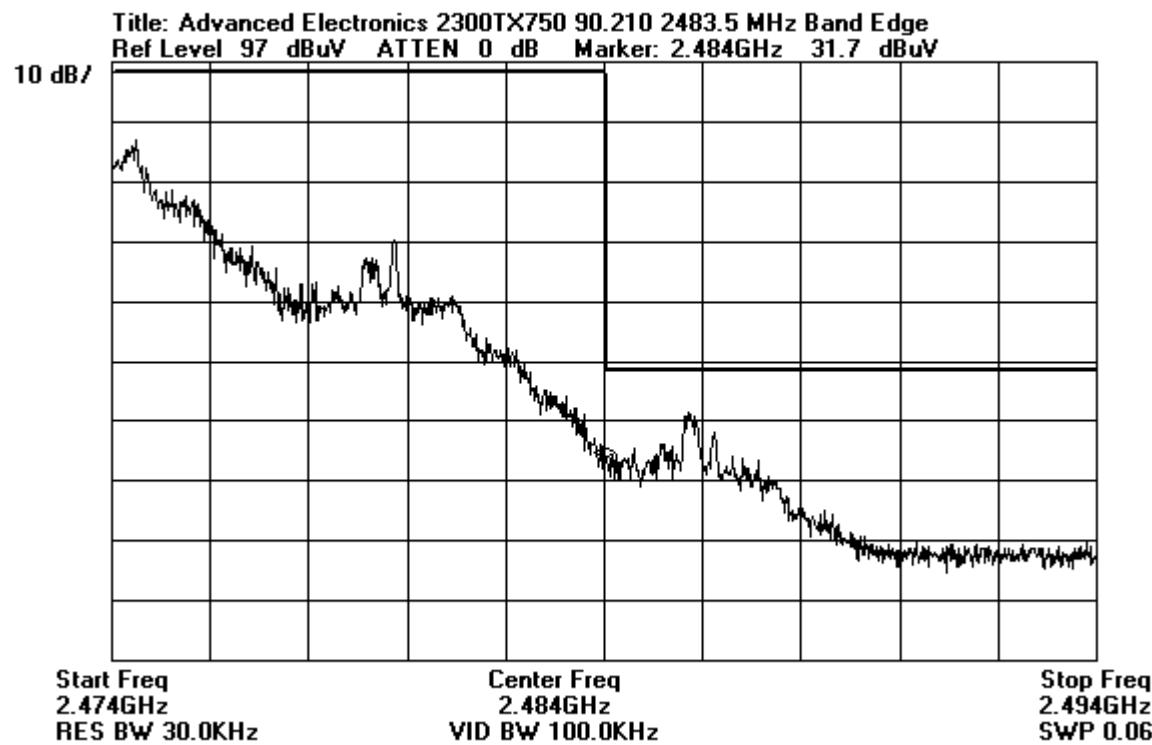
#### **Test Equipment Used:**


| <b>Web#</b> | <b>Lab</b> | <b>Equipment</b>  | <b>Manufacturer</b> | <b>Model #</b> | <b>Serial #</b> | <b>Asset #</b> | <b>Cal Date</b> | <b>Cal Due</b> |
|-------------|------------|-------------------|---------------------|----------------|-----------------|----------------|-----------------|----------------|
| 439         | Barn       | QP Adapter        | HP                  | 85650A         | 2811A01267      | 00478          | 11/03/00        | 11/3/01        |
| 472         | Barn       | S/A Display       | HP                  | 8566B          | 2403A08241      | 00489          | 11/3/00         | 11/3/01        |
| 502         | Barn       | Spectrum Analyzer | HP                  | 8566B          | 2209A01404      | 00490          | 11/3/00         | 11/3/01        |
| 1105        | Barn       | Analyzer/Audio    | HP                  | 8903B          | 3011A09432      | 02338          | 10/09/00        | 10/9/01        |
| 1334        | Barn       | Attenuator        | Pasternack          | PE7014-40      |                 |                | 03/29/01        | 3/29/02        |

#### **SET-UP PHOTO**




Direct Connect


## Occupied Bandwidth Plot

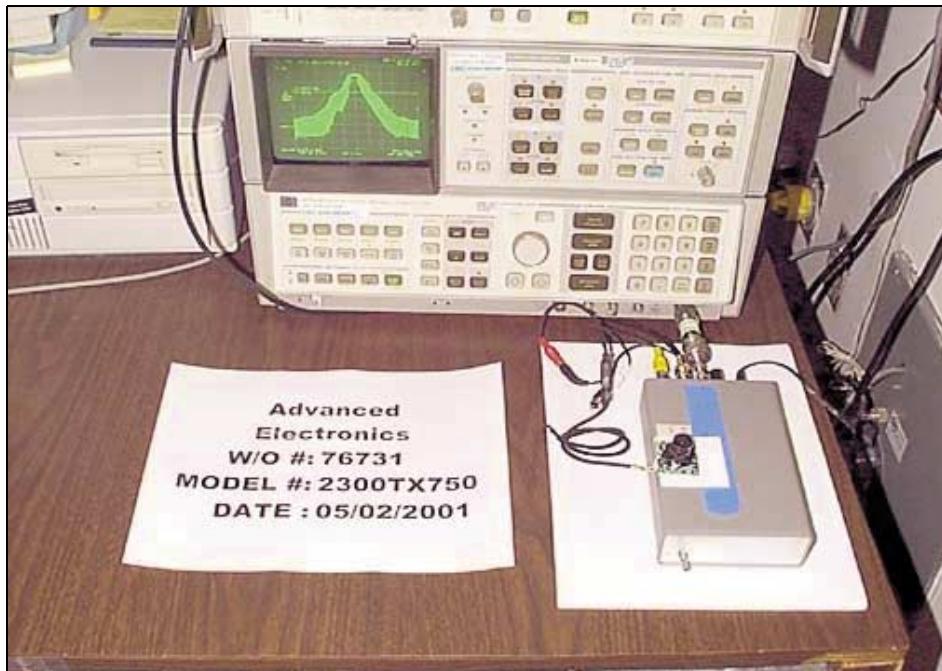


**Band Edge Plot – Left Side of Mask**



### Band Edge Plot – Right Side of Mask




Notes: All readings over or near the limit line were averaged to ensure compliance. See Spurious Emissions data sheets in section 2.1033(c)(14)/2.1051/90.210.

**2.1033(c)(14)/2.1051/90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL**
**Test Equipment Used:**

| Web# | Lab  | Equipment               | Manufacturer        | Model #               | Serial #   | Asset # | Cal Date | Cal Due |
|------|------|-------------------------|---------------------|-----------------------|------------|---------|----------|---------|
| 439  | Barn | QP Adapter              | HP                  | 85650A                | 2811A01267 | 00478   | 11/03/00 | 11/3/01 |
| 472  | Barn | S/A Display             | HP                  | 8566B                 | 2403A08241 | 00489   | 11/3/00  | 11/3/01 |
| 502  | Barn | Spectrum Analyzer       | HP                  | 8566B                 | 2209A01404 | 00490   | 11/3/00  | 11/3/01 |
| 1105 | Barn | Analyzer/Audio          | HP                  | 8903B                 | 3011A09432 | 02338   | 10/09/00 | 10/9/01 |
| 854  | HF   | 2.4GHz Low Pass Filter  | K&L Microwave, INC. | 10L121-2200/T2400-0/0 | 1          | 01439   | 10/03/00 | 10/3/01 |
| 855  | HF   | 2.4GHz High Pass Filter | K&L Microwave, INC  | 91H31-3000            | 00001      | 01440   | 10/03/00 | 10/3/01 |
| 1334 | Barn | Attenuator              | Pasternack          | PE7014-40             |            |         | 03/29/01 | 3/29/02 |

**ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE**

| TEST               | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|--------------------|---------------------|------------------|-------------------|
| RADIATED EMISSIONS | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS | 1 GHz               | 26 GHz           | 1 MHz             |

**SET-UP PHOTO**

**Direct Connect**

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: **Advanced Electronics**  
 Specification: **90.210**  
 Work Order #: **76731**  
 Test Type: **Maximized Emissions**  
 Equipment: **Transmitter**  
 Manufacturer: Advanced Electronics  
 Model: 2300TX750  
 S/N: 001

Date: 06/04/2001  
 Time: 09:28:33  
 Sequence#: 4  
 Tested By: Randal Clark

***Equipment Under Test (\* = EUT):***

| Function     | Manufacturer         | Model #   | S/N |
|--------------|----------------------|-----------|-----|
| Transmitter* | Advanced Electronics | 2300TX750 | 001 |

***Support Devices:***

| Function     | Manufacturer         | Model #     | S/N  |
|--------------|----------------------|-------------|------|
| Camera       | Advanced Electronics | WDSR-2005SC | N/A  |
| Power Supply | Advanced Electronics | 112104      | 0049 |

***Test Conditions / Notes:***

EUT is a transmitter operating on 2473 MHz. Transmitter is being modulated on the video signal by a camera adjacent to the transmitter and on the audio by a 1kHz tone. EUT is directly connected to spectrum analyzer. Frequency Range Tested 9kHz - 24 GHz.

**Emissions Mask C**

**F<sub>d</sub> is the frequency deviation in kHz from center of authorized band.**

- 1) 5-10kHz removed: 83LOG(F<sub>d</sub>/5)
- 2) 10kHz to 24kHz removed: 29LOG(F<sub>d</sub><sup>2</sup>/11) or 50dBc whichever is the lesser attenuation. 24kHz point calculated from the lesser attenuation stipulation:

$$50\text{dB}=29\text{LOG}(F_d^2/11); F_d=24\text{kHz}$$

- 3) 24kHz to 250% removed from center of band: 50dBc

- 4) >250% removed: 43+10\*LOG(P) where P is unmodulated power in Watts of the carrier.

Peak unmodulated power output is 135.8dB<sub>u</sub>V

$$P (\text{mW}) = 10^{((135.8-107)/10)} = 758.5$$

Therefore spurs must be attenuated below fundamental by;

$$43+10\text{LOG}(0.758) = 42\text{dBc}$$

***Measurement Data:*** Reading listed by margin. **Test Distance: None**

| # | Freq<br>MHz      | Rdng<br>dB <sub>u</sub> V | Pad   |       |       | Dist<br>Table | Corr<br>dB <sub>u</sub> V | Spec<br>dB <sub>u</sub> V | Margin<br>dB | Polar<br>Ant |
|---|------------------|---------------------------|-------|-------|-------|---------------|---------------------------|---------------------------|--------------|--------------|
|   |                  |                           | Pad   | Filte | Filte |               |                           |                           |              |              |
| 1 | 12366.200M       | 86.4                      | +0.0  | +1.9  | +0.0  | +0.0          | 88.3                      | 93.8                      | -5.5         | None         |
| 2 | 2485.600M<br>Ave | 36.3                      | +40.4 | +0.0  | +0.0  | +0.0          | 76.7                      | 85.8                      | -9.2         | None         |
| ^ | 2485.600M        | 47.8                      | +40.4 | +0.0  | +0.0  | +0.0          | 88.2                      | 85.8                      | +2.4         | None         |
| 4 | 2484.160M<br>Ave | 30.7                      | +40.4 | +0.0  | +0.0  | +0.0          | 71.1                      | 85.8                      | -14.7        | None         |
| ^ | 2484.160M        | 50.7                      | +40.4 | +0.0  | +0.0  | +0.0          | 91.1                      | 85.8                      | +5.3         | None         |
| 6 | 17308.900M       | 60.4                      | +0.0  | +17.8 | +0.0  | +0.0          | 78.2                      | 93.8                      | -15.6        | None         |

|    |                  |      |       |      |      |      |      |      |       |      |
|----|------------------|------|-------|------|------|------|------|------|-------|------|
| 7  | 2487.280M<br>Ave | 23.8 | +40.4 | +0.0 | +0.0 | +0.0 | 64.2 | 85.8 | -21.6 | None |
| ^  | 2487.280M        | 43.8 | +40.4 | +0.0 | +0.0 | +0.0 | 84.2 | 85.8 | -1.6  | None |
| 9  | 14835.600M       | 52.6 | +0.0  | +5.7 | +0.0 | +0.0 | 58.3 | 93.8 | -35.5 | None |
| 10 | 7419.340M        | 49.1 | +0.0  | +4.8 | +0.0 | +0.0 | 53.9 | 93.8 | -39.9 | None |
| 11 | 9891.529M        | 46.6 | +0.0  | +3.5 | +0.0 | +0.0 | 50.1 | 93.8 | -43.7 | None |
| 12 | 4945.270M        | 44.0 | +0.0  | +0.8 | +0.0 | +0.0 | 44.8 | 93.8 | -49.0 | None |

**2.1033(c)(14)/2.1053/90.210 - FIELD STRENGTH OF SPURIOUS RADIATION**
**Test Equipment Used:**

| Web# | Lab  | Equipment               | Manufacturer       | Model #     | Serial #   | Asset # | Cal Date  | Cal Due  |
|------|------|-------------------------|--------------------|-------------|------------|---------|-----------|----------|
| 92   | Barn | Bicon Antenna           | A&H                | SAS-200/542 | 156        | 00225   | 12/8/00   | 12/8/01  |
| 341  | Barn | Log Antenna             | A&H                | SAS-200/510 | 154        | 01330   | 05/07/01  | 5/7/02   |
| 354  | Barn | Magnetic Loop           | EMCO               | 6502        | 1074       | 00226   | 5/31/2001 | 5/31/02  |
| 401  | Barn | Preamp                  | HP                 | 8447D       | 1937A02604 | 00099   | 03/29/01  | 3/29/02  |
| 439  | Barn | QP Adapter              | HP                 | 85650A      | 2811A01267 | 00478   | 11/03/00  | 11/3/01  |
| 472  | Barn | S/A Display             | HP                 | 8566B       | 2403A08241 | 00489   | 11/3/00   | 11/3/01  |
| 502  | Barn | Spectrum Analyzer       | HP                 | 8566B       | 2209A01404 | 00490   | 11/3/00   | 11/3/01  |
| 765  | Barn | Preamp                  | HP                 | 8449B       | 3008A00301 | 02010   | 10/13/00  | 10/13/01 |
| 1105 | Barn | Analyzer/Audio          | HP                 | 8903B       | 3011A09432 | 02338   | 10/09/00  | 10/9/01  |
| 690  | HF   | Cable #4 (50')          | Andrew             | FSJ1-50A    | N/A        | N/A     | 4/16/01   | 4/16/02  |
| 855  | HF   | 2.4GHz High Pass Filter | K&L Microwave, INC | 91H31-3000  | 00001      | 01440   | 10/03/00  | 10/3/01  |
| 1107 | HF   | Cable #7 (25')          | Andrew             | FSJ1-50A    | N/A        | N/A     | 4/16/01   | 4/16/02  |
| 737  | HF   | 1-18GHz Horn Antenna    | EMCO               | 3115        | 9307-4085  | 00656   | 2/28/01   | 2/28/02  |
| 691  | HF   | Cable #2 (2')           | Andrew             | FSJ1-50A    | N/A        | N/A     | 4/16/01   | 4/16/02  |

**ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE**

| TEST               | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|--------------------|---------------------|------------------|-------------------|
| RADIATED EMISSIONS | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS | 1 GHz               | 26 GHz           | 1 MHz             |

## SET-UP PHOTOS



Radiated Emissions - Front View – Whip Antenna



Radiated Emissions - Back View - Whip Antenna

## SET-UP PHOTOS



Radiated Emissions - Front View – Paddle Antenna



Radiated Emissions - Back View – Paddle Antenna

WO 76731  
 Customer Advanced Electronics Group  
 Model 2300TX750  
 Antenna Whip Antenna

**FCC Part 2.1053 / 90.210**

Field strength of spurious radiation

Transmitter Operating on 2473MHz

These data represent the six highest readings.

Data represents field strength readings measured from a horn antenna referenced to a dipole

| Polarity | Frequency (MHz) | Sig Gen Corrected Reading (dB $\mu$ V/m) | Test Distance (meters) | Horn Antenna Gain (Numerical) | ERP (Watts) | Spec Limit (Watts) | PASS or FAIL |
|----------|-----------------|------------------------------------------|------------------------|-------------------------------|-------------|--------------------|--------------|
| V        | 7417.0          | 71.4                                     | 3.0                    | 9.3                           | 0.00000045  | 0.000048           | PASS         |
| V        | 4943.1          | 70.6                                     | 3.0                    | 8.9                           | 0.00000039  | 0.000048           | PASS         |
| VA       | 2484.1          | 59.9                                     | 3.0                    | 6.7                           | 0.00000004  | 0.000008           | PASS         |
| H        | 4944.9          | 64.7                                     | 3.0                    | 7.9                           | 0.00000011  | 0.000048           | PASS         |
| H        | 7415.6          | 66.0                                     | 3.0                    | 9.3                           | 0.00000013  | 0.000048           | PASS         |
| H        | 9888.4          | 64.3                                     | 3.0                    | 9.4                           | 0.00000009  | 0.000048           | PASS         |

**Calculations**

The data taken is relative to the radiated power of each spurious emission with reference to the peak power output of the transmitter.

Spurious Emissions within 250% removed from the authorized band must be attenuated by the lesser of  
 $29 \cdot \log(f_d^2/11)$  or 50dB (in this case, 50dB)

Spurs Limit in Watts:

$$10^{((135.8-107-50)/10)} = 0.007588 \text{ mW} = 7.6 \mu\text{W}$$

Spurious Emissions greater than 250% removed from the authorized band must be attenuated below the fundamental by

$43 + 10 \cdot \log(P)$  where P is unmodulated power in Watts of the carrier.

Peak unmodulated power output is 135.8dB $\mu$ V

$$P (\text{W}) = 10^{((135.8-107)/10)/1000} = 0.7586 \text{ Watts}$$

$$43 + 10 \cdot \log(0.758) = 42 \text{ dBc}$$

Spurs Limit in Watts:

$$10^{((135.8-107-35)/10)} = 0.048 \text{ mW} = 48 \mu\text{W}$$

**ERP Calculations**

$$EPR = (Ed)^2/30G$$

$$E = V/m$$

d = Test Distance in meters

G = Gain of Antenna (numerical gain of a half wave dipole antenna 1.64 per 2.1053(a))

WO 76731  
 Customer Advanced Electronics Group  
 Model 2300TX750  
 Antenna Paddle Antenna

**FCC Part 2.1053 / 90.210**

Field strength of spurious radiation

Transmitter Operating on 2473MHz

These data represent the six highest readings.

Data represents field strength readings measured from a horn antenna referenced to a dipole

| Polarity | Frequency<br>(MHz) | Sig Gen<br>Corrected<br>Reading<br>(dBuV/m) | Test<br>Distance<br>(meters) | Horn<br>Antenna<br>Gain<br>(Numerical) | ERP (Watts) | Spec Limit<br>(Watts) | PASS<br>or<br>FAIL |
|----------|--------------------|---------------------------------------------|------------------------------|----------------------------------------|-------------|-----------------------|--------------------|
| VA       | 2486.1             | 67.4                                        | 3.0                          | 4.85                                   | 0.00000034  | 0.000008              | PASS               |
| V        | 7416.4             | 74.5                                        | 3.0                          | 8.43                                   | 0.00000101  | 0.000048              | PASS               |
| V        | 4945.1             | 71.5                                        | 3.0                          | 6.11                                   | 0.00000070  | 0.000048              | PASS               |
| VA       | 2487.3             | 60.7                                        | 3.0                          | 4.85                                   | 0.00000007  | 0.000008              | PASS               |
| H        | 7417.7             | 69.6                                        | 3.0                          | 8.43                                   | 0.00000033  | 0.000048              | PASS               |
| H        | 4945.6             | 67.4                                        | 3.0                          | 6.11                                   | 0.00000027  | 0.000048              | PASS               |

**Calculations**

The data taken is relative to the radiated power of each spurious emission with reference to the peak power output of the transmitter.

Spurious Emissions within 250% removed from the authorized band must be attenuated by the lesser of

$29 \times \log(fd^2/11)$  or 50dB (in this case, 50dB)

Spurs Limit in Watts:

$$10^{((135.8-107-50)/10)} = 0.007588 \text{ mW} = 7.6 \mu\text{W}$$

Spurious Emissions greater than 250% removed from the authorized band must be attenuated below the fundamental by

$43 + 10 \times \log(P)$  where P is unmodulated power in Watts of the carrier.

Peak unmodulated power output is 135.8dB $\mu$ V

$$P(W) = 10^{((135.8-107)/10)/1000} = 0.7586 \text{ Watts}$$

$$43 + 10 \times \log(0.758) = 42 \text{ dBc}$$

Spurs Limit in Watts:

$$10^{((135.8-107-35)/10)} = 0.048 \text{ mW} = 48 \mu\text{W}$$

**ERP Calculations**

$$EPR = (Ed)^2/30G$$

$$E = V/m$$

d = Test Distance in meters

G = Gain of Antenna (numerical gain of a half wave dipole antenna 1.64 per 2.1053(a))

### 2.1033(c)(14)/2.1055/90.213 - FREQUENCY STABILITY

#### **Test Conditions:**

EUT was placed inside a temperature chamber and the SA was connected directly to the antenna terminal.

#### **Test Equipment Used:**

| Web# | Lab  | Equipment         | Manufacturer | Model #       | Serial #   | Asset # | Cal Date  | Cal Due |
|------|------|-------------------|--------------|---------------|------------|---------|-----------|---------|
| 472  | Barn | S/A Display       | HP           | 8566B         | 2403A08241 | 00489   | 11/3/00   | 11/3/01 |
| 502  | Barn | Spectrum Analyzer | HP           | 8566B         | 2209A01404 | 00490   | 11/3/00   | 11/3/01 |
| 858  | Barn | Temp Chamber      | Thermotron   | S-1.2 MiniMax | 11899      | 01879   | 3/29/2001 | 3/29/02 |

#### **SET-UP PHOTO**



**Test Data:**
**Ambient Frequency** 2.472650 **GHz**

| <b>Temp<br/>C°</b> | <b>Voltage</b>       | <b>750<br/>Freq (GHz)</b> | <b>Deviation</b> | <b>% Error</b> |
|--------------------|----------------------|---------------------------|------------------|----------------|
| <b>-30</b>         | <b>120 AC</b>        | 2.472730                  | 0.000130         | 0.005258       |
| <b>-20</b>         | <b>120 AC</b>        | 2.472700                  | 0.000100         | 0.004044       |
| <b>-10</b>         | <b>120 AC</b>        | 2.472670                  | 0.000070         | 0.002831       |
| <b>0</b>           | <b>120 AC</b>        | 2.472690                  | 0.000090         | 0.003640       |
| <b>10</b>          | <b>120 AC</b>        | 2.472700                  | 0.000100         | 0.004044       |
| <b>20</b>          | <b>102 AC (-15%)</b> | 2.472660                  | 0.000060         | 0.002427       |
| <b>20</b>          | <b>120 AC</b>        | 2.472660                  | 0.000060         | 0.002427       |
| <b>20</b>          | <b>138 AC (+15%)</b> | 2.472660                  | 0.000060         | 0.002427       |
| <b>30</b>          | <b>120 AC</b>        | 2.472665                  | 0.000065         | 0.002629       |
| <b>40</b>          | <b>120 AC</b>        | 2.472615                  | 0.000015         | 0.000607       |
| <b>50</b>          | <b>120 AC</b>        | 2.472610                  | 0.000010         | 0.000404       |


**15.107 – AC CONDUCTED EMISSIONS**
**Test Equipment Used:**

| <i>Web#</i> | <i>Lab</i> | <i>Equipment</i>  | <i>Manufacturer</i> | <i>Model #</i>    | <i>Serial #</i> | <i>Asset #</i> | <i>Cal Date</i> | <i>Cal Due</i> |
|-------------|------------|-------------------|---------------------|-------------------|-----------------|----------------|-----------------|----------------|
| 327         | Barn       | LISN's set        | Solar               | 8028-50-TS-24-BNC | 814493, 474     | 02056          | 5/22/01         | 5/22/02        |
| 439         | Barn       | QP Adapter        | HP                  | 85650A            | 2811A01267      | 00478          | 11/03/00        | 11/3/01        |
| 472         | Barn       | S/A Display       | HP                  | 8566B             | 2403A08241      | 00489          | 11/3/00         | 11/3/01        |
| 502         | Barn       | Spectrum Analyzer | HP                  | 8566B             | 2209A01404      | 00490          | 11/3/00         | 11/3/01        |
| 1105        | Barn       | Analyzer/Audio    | HP                  | 8903B             | 3011A09432      | 02338          | 10/09/00        | 10/9/01        |

**ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE**

| TEST               | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|--------------------|---------------------|------------------|-------------------|
| RADIATED EMISSIONS | 450 kHz             | 30 MHz           | 9 kHz             |

**SET-UP PHOTO**



Mains Conducted – Front View



Mains Conducted – Side View

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: **Advanced Electronics**  
 Specification: **FCC 15.107 Class B**  
 Work Order #: **76731** Date: 05/03/2001  
 Test Type: **Conducted Emissions** Time: 12:09:24  
 Equipment: **Transmitter** Sequence#: 6  
 Manufacturer: Advanced Electronics  
 Model: 2300TX750  
 S/N: 001  
 Tested By: Randal Clark

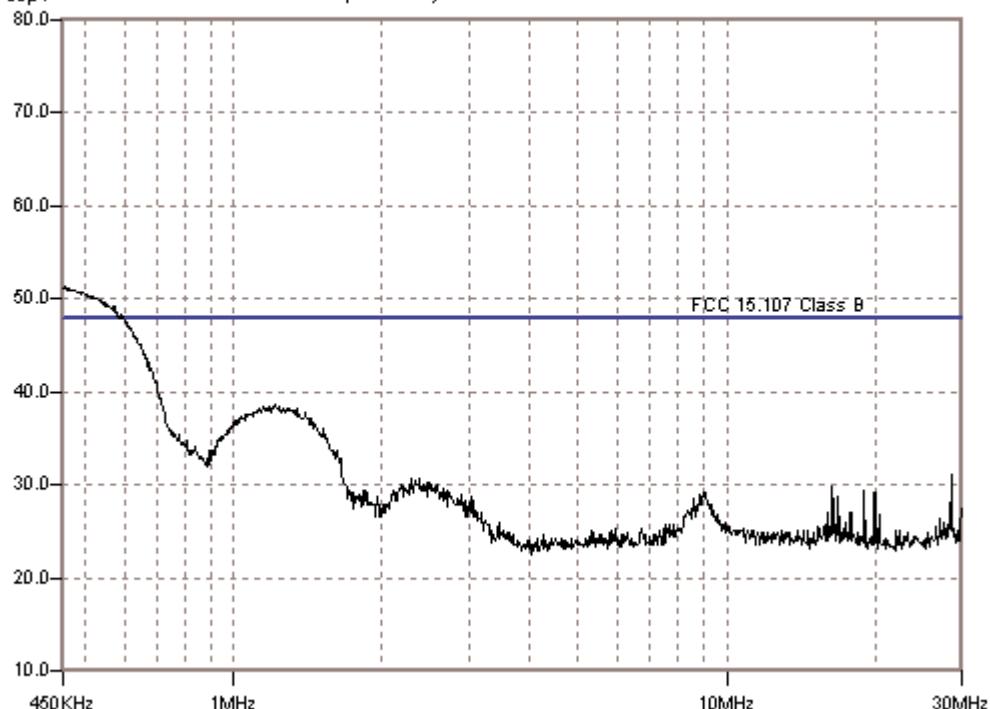
***Equipment Under Test (\* = EUT):***

| Function     | Manufacturer         | Model #   | S/N |
|--------------|----------------------|-----------|-----|
| Transmitter* | Advanced Electronics | 2300TX750 | 001 |

***Support Devices:***

| Function     | Manufacturer         | Model #     | S/N  |
|--------------|----------------------|-------------|------|
| Camera       | Advanced Electronics | WDSR-2005SC | N/A  |
| Power Supply | Advanced Electronics | 112104      | 0049 |

***Test Conditions / Notes:***


EUT is a transmitter operating on 2473 MHz. Transmitter is being modulated on the video signal by a camera adjacent to the transmitter and on the audio by a 1kHz tone. EUT is transmitting into a 50 Ohm Load.

***Measurement Data:*** Reading listed by margin. Test Lead: Black

| #  | Freq<br>MHz | Rdng<br>dB $\mu$ V | Cable |      |    | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|----|-------------|--------------------|-------|------|----|---------------|--------------------|--------------------|--------------|--------------|
|    |             |                    | dB    | dB   | dB |               |                    |                    |              |              |
| 1  | 1.214M      | 38.1               | +0.1  | +0.4 |    | +0.0          | 38.6               | 48.0               | -9.4         | Black        |
| 2  | 1.179M      | 37.9               | +0.1  | +0.4 |    | +0.0          | 38.4               | 48.0               | -9.6         | Black        |
| 3  | 1.150M      | 37.9               | +0.1  | +0.4 |    | +0.0          | 38.4               | 48.0               | -9.6         | Black        |
| 4  | 1.343M      | 37.8               | +0.1  | +0.4 |    | +0.0          | 38.3               | 48.0               | -9.7         | Black        |
| 5  | 1.125M      | 37.7               | +0.1  | +0.4 |    | +0.0          | 38.2               | 48.0               | -9.8         | Black        |
| 6  | 1.092M      | 37.4               | +0.1  | +0.4 |    | +0.0          | 37.9               | 48.0               | -10.1        | Black        |
| 7  | 1.401M      | 37.3               | +0.1  | +0.4 |    | +0.0          | 37.8               | 48.0               | -10.2        | Black        |
| 8  | 1.353M      | 37.2               | +0.1  | +0.4 |    | +0.0          | 37.7               | 48.0               | -10.3        | Black        |
| 9  | 1.434M      | 36.8               | +0.1  | +0.3 |    | +0.0          | 37.2               | 48.0               | -10.8        | Black        |
| 10 | 1.017M      | 36.5               | +0.1  | +0.4 |    | +0.0          | 37.0               | 48.0               | -11.0        | Black        |
| 11 | 1.003M      | 36.4               | +0.1  | +0.4 |    | +0.0          | 36.9               | 48.0               | -11.1        | Black        |
| 12 | 1.458M      | 36.2               | +0.1  | +0.3 |    | +0.0          | 36.6               | 48.0               | -11.4        | Black        |
| 13 | 1.525M      | 35.7               | +0.1  | +0.3 |    | +0.0          | 36.1               | 48.0               | -11.9        | Black        |

|    |                 |      |      |      |      |      |      |       |       |
|----|-----------------|------|------|------|------|------|------|-------|-------|
| 14 | 1.515M          | 35.3 | +0.1 | +0.3 | +0.0 | 35.7 | 48.0 | -12.3 | Black |
| 15 | 774.290k        | 34.9 | +0.1 | +0.4 | +0.0 | 35.4 | 48.0 | -12.6 | Black |
| 16 | 948.137k        | 34.8 | +0.1 | +0.4 | +0.0 | 35.3 | 48.0 | -12.7 | Black |
| 17 | 804.379k        | 34.3 | +0.1 | +0.4 | +0.0 | 34.8 | 48.0 | -13.2 | Black |
| 18 | 835.304k        | 33.7 | +0.1 | +0.4 | +0.0 | 34.2 | 48.0 | -13.8 | Black |
| 19 | 453.343k<br>Ave | 13.1 | +0.1 | +0.5 | +0.0 | 13.7 | 48.0 | -34.3 | Black |
| ^  | 453.343k        | 50.7 | +0.1 | +0.5 | +0.0 | 51.3 | 48.0 | +3.3  | Black |
| 21 | 550.296k<br>Ave | 12.4 | +0.1 | +0.4 | +0.0 | 12.9 | 48.0 | -35.1 | Black |
| ^  | 550.296k        | 49.2 | +0.1 | +0.4 | +0.0 | 49.7 | 48.0 | +1.7  | Black |

CKC Laboratories, Inc. Date: 05/03/2001 Time: 12:03:43 PM WO#: 76731  
FCC 15.107 Class B Test Lead: Black Sequence#: 6  
dB $\mu$ V Advanced Electronics 2300TX750 powered by 120VAC60Hz.



Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: **Advanced Electronics**  
 Specification: **FCC 15.107 Class B**  
 Work Order #: **76731** Date: 06/29/2001  
 Test Type: **Conducted Emissions** Time: 9:20:13 AM  
 Equipment: **Transmitter** Sequence#: 7  
 Manufacturer: Advanced Electronics  
 Model: 2300TX750  
 S/N: 001  
 Tested By: Randal Clark

***Equipment Under Test (\* = EUT):***

| Function     | Manufacturer         | Model #   | S/N |
|--------------|----------------------|-----------|-----|
| Transmitter* | Advanced Electronics | 2300TX750 | 001 |

***Support Devices:***

| Function     | Manufacturer         | Model #     | S/N  |
|--------------|----------------------|-------------|------|
| Camera       | Advanced Electronics | WDSR-2005SC | N/A  |
| Power Supply | Advanced Electronics | 112104      | 0049 |

***Test Conditions / Notes:***

EUT is a transmitter operating on 2473 MHz. Transmitter is being modulated on the video signal by a camera adjacent to the transmitter and on the audio by a 1kHz tone. EUT is transmitting into a 50 Ohm Load.

***Measurement Data:*** Reading listed by margin. Test Lead: White

| #  | Freq<br>MHz | Rdng<br>dB $\mu$ V | Cable<br>dB | LISN<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|----|-------------|--------------------|-------------|------------|---------------|--------------------|--------------------|--------------|--------------|
| 1  | 6.854M      | 33.4               | +0.2        | +3.1       | +0.0          | 36.7               | 48.0               | -11.3        | White        |
| 2  | 577.042k    | 31.3               | +0.1        | +0.6       | +0.0          | 32.0               | 48.0               | -16.0        | White        |
| 3  | 598.772k    | 30.7               | +0.1        | +0.6       | +0.0          | 31.4               | 48.0               | -16.6        | White        |
| 4  | 864.557k    | 30.3               | +0.1        | +0.6       | +0.0          | 31.0               | 48.0               | -17.0        | White        |
| 5  | 550.296k    | 30.3               | +0.1        | +0.6       | +0.0          | 31.0               | 48.0               | -17.0        | White        |
| 6  | 618.832k    | 29.8               | +0.1        | +0.6       | +0.0          | 30.5               | 48.0               | -17.5        | White        |
| 7  | 821.931k    | 29.5               | +0.1        | +0.6       | +0.0          | 30.2               | 48.0               | -17.8        | White        |
| 8  | 856.199k    | 28.7               | +0.1        | +0.6       | +0.0          | 29.4               | 48.0               | -18.6        | White        |
| 9  | 7.345M      | 24.6               | +0.2        | +3.0       | +0.0          | 27.8               | 48.0               | -20.2        | White        |
| 10 | 7.072M      | 24.0               | +0.2        | +3.3       | +0.0          | 27.5               | 48.0               | -20.5        | White        |
| 11 | 530.237k    | 26.7               | +0.1        | +0.6       | +0.0          | 27.4               | 48.0               | -20.6        | White        |
| 12 | 6.936M      | 23.5               | +0.2        | +3.3       | +0.0          | 27.0               | 48.0               | -21.0        | White        |
| 13 | 7.768M      | 24.1               | +0.2        | +2.6       | +0.0          | 26.9               | 48.0               | -21.1        | White        |

|    |          |      |      |      |      |      |      |       |       |
|----|----------|------|------|------|------|------|------|-------|-------|
| 14 | 638.891k | 26.2 | +0.1 | +0.6 | +0.0 | 26.9 | 48.0 | -21.1 | White |
| 15 | 7.864M   | 24.1 | +0.2 | +2.5 | +0.0 | 26.8 | 48.0 | -21.2 | White |
| 16 | 7.263M   | 23.5 | +0.2 | +3.1 | +0.0 | 26.8 | 48.0 | -21.2 | White |
| 17 | 6.745M   | 23.5 | +0.2 | +2.8 | +0.0 | 26.5 | 48.0 | -21.5 | White |
| 18 | 6.690M   | 23.6 | +0.2 | +2.7 | +0.0 | 26.5 | 48.0 | -21.5 | White |
| 19 | 6.608M   | 23.8 | +0.2 | +2.5 | +0.0 | 26.5 | 48.0 | -21.5 | White |
| 20 | 6.329M   | 24.5 | +0.2 | +1.8 | +0.0 | 26.5 | 48.0 | -21.5 | White |
| 21 | 662.293k | 25.8 | +0.1 | +0.6 | +0.0 | 26.5 | 48.0 | -21.5 | White |
| 22 | 8.219M   | 24.1 | +0.2 | +2.1 | +0.0 | 26.4 | 48.0 | -21.6 | White |
| 23 | 794.350k | 25.7 | +0.1 | +0.6 | +0.0 | 26.4 | 48.0 | -21.6 | White |
| 24 | 7.673M   | 23.4 | +0.2 | +2.7 | +0.0 | 26.3 | 48.0 | -21.7 | White |
| 25 | 4.930M   | 24.0 | +0.2 | +2.0 | +0.0 | 26.2 | 48.0 | -21.8 | White |
| 26 | 5.346M   | 24.2 | +0.2 | +1.7 | +0.0 | 26.1 | 48.0 | -21.9 | White |
| 27 | 1.225M   | 25.5 | +0.1 | +0.5 | +0.0 | 26.1 | 48.0 | -21.9 | White |
| 28 | 8.792M   | 24.6 | +0.2 | +1.2 | +0.0 | 26.0 | 48.0 | -22.0 | White |
| 29 | 6.158M   | 24.5 | +0.2 | +1.3 | +0.0 | 26.0 | 48.0 | -22.0 | White |
| 30 | 750.888k | 25.2 | +0.1 | +0.6 | +0.0 | 25.9 | 48.0 | -22.1 | White |
| 31 | 8.041M   | 23.3 | +0.2 | +2.3 | +0.0 | 25.8 | 48.0 | -22.2 | White |
| 32 | 7.973M   | 23.2 | +0.2 | +2.4 | +0.0 | 25.8 | 48.0 | -22.2 | White |
| 33 | 5.121M   | 23.7 | +0.2 | +1.9 | +0.0 | 25.8 | 48.0 | -22.2 | White |
| 34 | 5.278M   | 23.8 | +0.2 | +1.7 | +0.0 | 25.7 | 48.0 | -22.3 | White |
| 35 | 4.875M   | 23.7 | +0.1 | +1.9 | +0.0 | 25.7 | 48.0 | -22.3 | White |
| 36 | 11.680M  | 24.9 | +0.2 | +0.5 | +0.0 | 25.6 | 48.0 | -22.4 | White |
| 37 | 6.417M   | 23.4 | +0.2 | +2.0 | +0.0 | 25.6 | 48.0 | -22.4 | White |
| 38 | 1.102M   | 24.9 | +0.1 | +0.6 | +0.0 | 25.6 | 48.0 | -22.4 | White |
| 39 | 8.396M   | 23.5 | +0.2 | +1.8 | +0.0 | 25.5 | 48.0 | -22.5 | White |

|    |          |      |      |      |      |      |      |       |       |
|----|----------|------|------|------|------|------|------|-------|-------|
| 40 | 3.602M   | 24.9 | +0.1 | +0.5 | +0.0 | 25.5 | 48.0 | -22.5 | White |
| 41 | 1.269M   | 24.9 | +0.1 | +0.5 | +0.0 | 25.5 | 48.0 | -22.5 | White |
| 42 | 725.814k | 24.8 | +0.1 | +0.6 | +0.0 | 25.5 | 48.0 | -22.5 | White |
| 43 | 6.103M   | 24.0 | +0.2 | +1.2 | +0.0 | 25.4 | 48.0 | -22.6 | White |
| 44 | 5.551M   | 23.8 | +0.2 | +1.4 | +0.0 | 25.4 | 48.0 | -22.6 | White |
| 45 | 8.464M   | 23.4 | +0.2 | +1.7 | +0.0 | 25.3 | 48.0 | -22.7 | White |
| 46 | 1.315M   | 24.7 | +0.1 | +0.5 | +0.0 | 25.3 | 48.0 | -22.7 | White |
| 47 | 774.290k | 24.6 | +0.1 | +0.6 | +0.0 | 25.3 | 48.0 | -22.7 | White |
| 48 | 908.018k | 24.5 | +0.1 | +0.6 | +0.0 | 25.2 | 48.0 | -22.8 | White |
| 49 | 834.468k | 24.5 | +0.1 | +0.6 | +0.0 | 25.2 | 48.0 | -22.8 | White |
| 50 | 739.187k | 24.5 | +0.1 | +0.6 | +0.0 | 25.2 | 48.0 | -22.8 | White |

CKC Laboratories, Inc. Date: 06/29/2001 Time: 9:20:13 AM WO#: 76731  
FCC 15.107 Class B Test Lead: White Sequence#: 7  
dB $\mu$ V Advanced Electronics 2300TX750 powered by 120VAC60Hz.



## 15.109 – RADIATED EMISSIONS

### Test Equipment Used:

| Web# | Lab  | Equipment              | Manufacturer        | Model #               | Serial #   | Asset # | Cal Date | Cal Due |
|------|------|------------------------|---------------------|-----------------------|------------|---------|----------|---------|
| 92   | Barn | Bicon Antenna          | A&H                 | SAS-200/542           | 156        | 00225   | 12/8/00  | 12/8/01 |
| 341  | Barn | Log Antenna            | A&H                 | SAS-200/510           | 154        | 01330   | 05/07/01 | 5/7/02  |
| 401  | Barn | Preamp                 | HP                  | 8447D                 | 1937A02604 | 00099   | 03/29/01 | 3/29/02 |
| 439  | Barn | QP Adapter             | HP                  | 85650A                | 2811A01267 | 00478   | 11/03/00 | 11/3/01 |
| 472  | Barn | S/A Display            | HP                  | 8566B                 | 2403A08241 | 00489   | 11/3/00  | 11/3/01 |
| 502  | Barn | Spectrum Analyzer      | HP                  | 8566B                 | 2209A01404 | 00490   | 11/3/00  | 11/3/01 |
| 1105 | Barn | Analyzer/Audio         | HP                  | 8903B                 | 3011A09432 | 02338   | 10/09/00 | 10/9/01 |
| 854  | HF   | 2.4GHz Low Pass Filter | K&L Microwave, INC. | 10L121-2200/T2400-0/0 | 1          | 01439   | 10/03/00 | 10/3/01 |

### ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE

| TEST               | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
|--------------------|---------------------|------------------|-------------------|
| RADIATED EMISSIONS | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS | 1 GHz               | 26 GHz           | 1 MHz             |

**SET-UP PHOTO**



Radiated Emissions - Front View – Whip Antenna



Radiated Emissions - Back View – Whip Antenna

## SET-UP PHOTOS



Radiated Emissions - Front View – Paddle Antenna



Radiated Emissions - Back View – Paddle Antenna

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: **Advanced Electronics**  
 Specification: **15.109 CLASS B**  
 Work Order #: **76731** Date: 06/07/2001  
 Test Type: **Maximized Emissions** Time: 14:03:02  
 Equipment: **Transmitter** Sequence#: 5  
 Manufacturer: Advanced Electronics  
 Model: 2300TX750  
 S/N: 001  
 Tested By: Dustin Oaks

***Equipment Under Test (\* = EUT):***

| Function     | Manufacturer         | Model #   | S/N |
|--------------|----------------------|-----------|-----|
| Transmitter* | Advanced Electronics | 2300TX750 | 001 |

***Support Devices:***

| Function     | Manufacturer         | Model #     | S/N  |
|--------------|----------------------|-------------|------|
| Camera       | Advanced Electronics | WDSR-2005SC | N/A  |
| Power Supply | Advanced Electronics | 112104      | 0049 |

***Test Conditions / Notes:***

EUT is a transmitter operating on 2473 MHz with the whip antenna. Transmitter is being modulated on the video signal by a camera adjacent to the transmitter and on the audio by a 1kHz tone. Frequency Range Tested: 9kHz – 26GHz.

***Measurement Data:*** Reading listed by margin. Test Distance: 3 Meters

| #  | Freq MHz    | Rdng dB $\mu$ V | Amp dB | Bicon dB | Log 1 dB | Cable dB | Dist Table | Corr dB $\mu$ V/m | Spec dB $\mu$ V/m | Margin dB | Polar |
|----|-------------|-----------------|--------|----------|----------|----------|------------|-------------------|-------------------|-----------|-------|
| 1  | 228.935M QP | 47.2            | -26.5  | +16.6    | +0.0     | +3.0     | +0.0       | 40.3              | 46.0              | -5.7      | Horiz |
| ^  | 228.925M    | 48.0            | -26.5  | +16.6    | +0.0     | +3.0     | +0.0       | 41.1              | 46.0              | -4.9      | Horiz |
| 3  | 114.517M    | 45.7            | -27.0  | +13.7    | +0.0     | +2.1     | +0.0       | 34.5              | 43.5              | -9.0      | Horiz |
| 4  | 267.081M    | 42.4            | -26.5  | +17.9    | +0.0     | +3.2     | +0.0       | 37.0              | 46.0              | -9.0      | Horiz |
| 5  | 114.475M    | 45.7            | -27.0  | +13.7    | +0.0     | +2.1     | +0.0       | 34.5              | 43.5              | -9.0      | Vert  |
| 6  | 247.971M    | 43.9            | -26.6  | +15.8    | +0.0     | +3.1     | +0.0       | 36.2              | 46.0              | -9.8      | Horiz |
| 7  | 238.466M    | 43.4            | -26.6  | +16.2    | +0.0     | +3.1     | +0.0       | 36.1              | 46.0              | -9.9      | Horiz |
| 8  | 257.498M    | 38.7            | -26.5  | +16.7    | +0.0     | +3.2     | +0.0       | 32.1              | 46.0              | -13.9     | Horiz |
| 9  | 267.073M    | 37.5            | -26.5  | +17.9    | +0.0     | +3.2     | +0.0       | 32.1              | 46.0              | -13.9     | Vert  |
| 10 | 124.011M    | 39.7            | -27.0  | +14.4    | +0.0     | +2.3     | +0.0       | 29.4              | 43.5              | -14.1     | Vert  |
| 11 | 228.921M    | 38.8            | -26.5  | +16.6    | +0.0     | +3.0     | +0.0       | 31.9              | 46.0              | -14.1     | Vert  |
| 12 | 200.320M    | 34.9            | -26.7  | +17.9    | +0.0     | +2.9     | +0.0       | 29.0              | 43.5              | -14.5     | Horiz |

|    |          |      |       |       |       |      |      |      |      |       |       |
|----|----------|------|-------|-------|-------|------|------|------|------|-------|-------|
| 13 | 457.789M | 37.3 | -27.5 | +0.0  | +17.0 | +4.6 | +0.0 | 31.4 | 46.0 | -14.6 | Horiz |
| 14 | 333.808M | 34.8 | -26.6 | +0.0  | +19.2 | +3.8 | +0.0 | 31.2 | 46.0 | -14.8 | Horiz |
| 15 | 133.580M | 39.2 | -26.9 | +13.7 | +0.0  | +2.3 | +0.0 | 28.3 | 43.5 | -15.2 | Horiz |
| 16 | 219.373M | 37.1 | -26.5 | +17.0 | +0.0  | +3.0 | +0.0 | 30.6 | 46.0 | -15.4 | Horiz |
| 17 | 247.995M | 38.3 | -26.6 | +15.8 | +0.0  | +3.1 | +0.0 | 30.6 | 46.0 | -15.4 | Vert  |
| 18 | 324.278M | 33.3 | -26.6 | +0.0  | +19.8 | +3.8 | +0.0 | 30.3 | 46.0 | -15.7 | Horiz |
| 19 | 305.217M | 32.0 | -26.5 | +0.0  | +21.0 | +3.7 | +0.0 | 30.2 | 46.0 | -15.8 | Horiz |
| 20 | 314.747M | 32.5 | -26.6 | +0.0  | +20.4 | +3.8 | +0.0 | 30.1 | 46.0 | -15.9 | Horiz |
| 21 | 343.338M | 34.2 | -26.7 | +0.0  | +18.7 | +3.9 | +0.0 | 30.1 | 46.0 | -15.9 | Horiz |
| 22 | 333.792M | 33.5 | -26.6 | +0.0  | +19.2 | +3.8 | +0.0 | 29.9 | 46.0 | -16.1 | Vert  |
| 23 | 66.842M  | 40.6 | -27.1 | +8.6  | +0.0  | +1.6 | +0.0 | 23.7 | 40.0 | -16.3 | Vert  |
| 24 | 343.328M | 33.6 | -26.7 | +0.0  | +18.7 | +3.9 | +0.0 | 29.5 | 46.0 | -16.5 | Vert  |
| 25 | 238.460M | 36.7 | -26.6 | +16.2 | +0.0  | +3.1 | +0.0 | 29.4 | 46.0 | -16.6 | Vert  |
| 26 | 591.322M | 32.8 | -27.9 | +0.0  | +19.2 | +5.2 | +0.0 | 29.3 | 46.0 | -16.7 | Horiz |
| 27 | 276.617M | 33.4 | -26.4 | +19.0 | +0.0  | +3.3 | +0.0 | 29.3 | 46.0 | -16.7 | Horiz |
| 28 | 133.569M | 37.6 | -26.9 | +13.7 | +0.0  | +2.3 | +0.0 | 26.7 | 43.5 | -16.8 | Vert  |
| 29 | 505.433M | 34.3 | -27.8 | +0.0  | +17.9 | +4.7 | +0.0 | 29.1 | 46.0 | -16.9 | Horiz |
| 30 | 467.295M | 34.9 | -27.6 | +0.0  | +17.2 | +4.6 | +0.0 | 29.1 | 46.0 | -16.9 | Horiz |
| 31 | 619.852M | 31.8 | -27.9 | +0.0  | +19.7 | +5.4 | +0.0 | 29.0 | 46.0 | -17.0 | Vert  |
| 32 | 324.259M | 31.7 | -26.6 | +0.0  | +19.8 | +3.8 | +0.0 | 28.7 | 46.0 | -17.3 | Vert  |
| 33 | 381.485M | 34.9 | -27.0 | +0.0  | +16.6 | +4.0 | +0.0 | 28.5 | 46.0 | -17.5 | Horiz |
| 34 | 124.036M | 36.0 | -27.0 | +14.4 | +0.0  | +2.3 | +0.0 | 25.7 | 43.5 | -17.8 | Horiz |
| 35 | 352.885M | 32.7 | -26.7 | +0.0  | +18.1 | +3.9 | +0.0 | 28.0 | 46.0 | -18.0 | Horiz |
| 36 | 257.544M | 34.5 | -26.5 | +16.7 | +0.0  | +3.2 | +0.0 | 27.9 | 46.0 | -18.1 | Vert  |
| 37 | 286.147M | 30.4 | -26.4 | +20.1 | +0.0  | +3.5 | +0.0 | 27.6 | 46.0 | -18.4 | Vert  |
| 38 | 66.843M  | 38.4 | -27.1 | +8.6  | +0.0  | +1.6 | +0.0 | 21.5 | 40.0 | -18.5 | Horiz |

|    |          |      |       |       |       |      |      |      |      |       |       |
|----|----------|------|-------|-------|-------|------|------|------|------|-------|-------|
| 39 | 57.264M  | 36.5 | -27.1 | +10.3 | +0.0  | +1.5 | +0.0 | 21.2 | 40.0 | -18.8 | Vert  |
| 40 | 352.881M | 31.8 | -26.7 | +0.0  | +18.1 | +3.9 | +0.0 | 27.1 | 46.0 | -18.9 | Vert  |
| 41 | 276.603M | 30.8 | -26.4 | +19.0 | +0.0  | +3.3 | +0.0 | 26.7 | 46.0 | -19.3 | Vert  |
| 42 | 429.160M | 32.9 | -27.3 | +0.0  | +16.4 | +4.4 | +0.0 | 26.4 | 46.0 | -19.6 | Horiz |
| 43 | 85.919M  | 37.1 | -27.1 | +8.3  | +0.0  | +1.8 | +0.0 | 20.1 | 40.0 | -19.9 | Horiz |
| 44 | 171.711M | 32.3 | -26.8 | +15.5 | +0.0  | +2.6 | +0.0 | 23.6 | 43.5 | -19.9 | Horiz |
| 45 | 57.301M  | 35.2 | -27.1 | +10.3 | +0.0  | +1.5 | +0.0 | 19.9 | 40.0 | -20.1 | Horiz |
| 46 | 143.114M | 35.0 | -26.9 | +13.0 | +0.0  | +2.3 | +0.0 | 23.4 | 43.5 | -20.1 | Vert  |
| 47 | 371.973M | 31.5 | -26.9 | +0.0  | +17.1 | +4.0 | +0.0 | 25.7 | 46.0 | -20.3 | Vert  |
| 48 | 486.365M | 31.1 | -27.7 | +0.0  | +17.5 | +4.7 | +0.0 | 25.6 | 46.0 | -20.4 | Horiz |
| 49 | 476.830M | 31.2 | -27.7 | +0.0  | +17.4 | +4.7 | +0.0 | 25.6 | 46.0 | -20.4 | Horiz |
| 50 | 391.014M | 32.3 | -27.0 | +0.0  | +16.1 | +4.1 | +0.0 | 25.5 | 46.0 | -20.5 | Horiz |
| 51 | 400.552M | 32.4 | -27.1 | +0.0  | +15.7 | +4.1 | +0.0 | 25.1 | 46.0 | -20.9 | Horiz |
| 52 | 362.420M | 30.1 | -26.8 | +0.0  | +17.6 | +4.0 | +0.0 | 24.9 | 46.0 | -21.1 | Horiz |
| 53 | 162.181M | 33.1 | -26.8 | +13.6 | +0.0  | +2.5 | +0.0 | 22.4 | 43.5 | -21.1 | Horiz |
| 54 | 219.391M | 31.3 | -26.5 | +17.0 | +0.0  | +3.0 | +0.0 | 24.8 | 46.0 | -21.2 | Vert  |
| 55 | 419.660M | 31.3 | -27.3 | +0.0  | +16.2 | +4.3 | +0.0 | 24.5 | 46.0 | -21.5 | Vert  |
| 56 | 410.086M | 31.6 | -27.2 | +0.0  | +15.9 | +4.2 | +0.0 | 24.5 | 46.0 | -21.5 | Vert  |
| 57 | 381.485M | 30.8 | -27.0 | +0.0  | +16.6 | +4.0 | +0.0 | 24.4 | 46.0 | -21.6 | Vert  |
| 58 | 362.411M | 29.6 | -26.8 | +0.0  | +17.6 | +4.0 | +0.0 | 24.4 | 46.0 | -21.6 | Vert  |
| 59 | 505.439M | 29.4 | -27.8 | +0.0  | +17.9 | +4.7 | +0.0 | 24.2 | 46.0 | -21.8 | Vert  |
| 60 | 429.146M | 30.3 | -27.3 | +0.0  | +16.4 | +4.4 | +0.0 | 23.8 | 46.0 | -22.2 | Vert  |

Test Location: CKC Laboratories, Inc. • 5473A Clouds Rest • Mariposa, CA 95338 • 800-500-4362

Customer: **Advanced Electronics**  
 Specification: **15.109 CLASS B**  
 Work Order #: **76731** Date: 06/07/2001  
 Test Type: **Maximized Emissions** Time: 14:42:36  
 Equipment: **Transmitter** Sequence#: 6  
 Manufacturer: Advanced Electronics  
 Model: 2300TX750  
 S/N: 001 Tested By: Dustin Oaks

***Equipment Under Test (\* = EUT):***

| Function     | Manufacturer         | Model #   | S/N |
|--------------|----------------------|-----------|-----|
| Transmitter* | Advanced Electronics | 2300TX750 | 001 |

***Support Devices:***

| Function     | Manufacturer         | Model #     | S/N  |
|--------------|----------------------|-------------|------|
| Camera       | Advanced Electronics | WDSR-2005SC | N/A  |
| Power Supply | Advanced Electronics | 112104      | 0049 |

***Test Conditions / Notes:***

EUT is a transmitter operating on 2473 MHz with the paddle antenna. Transmitter is being modulated on the video signal by a camera adjacent to the transmitter and on the audio by a 1kHz tone. Frequency Range Tested 9kHz - 26 GHz.

***Measurement Data:*** Reading listed by margin. Test Distance: 3 Meters

| #  | Freq MHz    | Rdng dB $\mu$ V | Amp dB | Bicon dB | Log 1 dB | Cable dB | Dist Table | Corr dB $\mu$ V/m | Spec dB $\mu$ V/m | Margin dB | Polar |
|----|-------------|-----------------|--------|----------|----------|----------|------------|-------------------|-------------------|-----------|-------|
| 1  | 248.011M QP | 47.4            | -26.6  | +15.8    | +0.0     | +3.1     | +0.0       | 39.7              | 46.0              | -6.3      | Horiz |
| ^  | 248.017M    | 48.7            | -26.6  | +15.8    | +0.0     | +3.1     | +0.0       | 41.0              | 46.0              | -5.0      | Horiz |
| 3  | 267.078M QP | 43.7            | -26.5  | +17.9    | +0.0     | +3.2     | +0.0       | 38.3              | 46.0              | -7.7      | Horiz |
| ^  | 267.082M    | 45.1            | -26.5  | +17.9    | +0.0     | +3.2     | +0.0       | 39.7              | 46.0              | -6.3      | Horiz |
| 5  | 257.551M    | 44.1            | -26.5  | +16.7    | +0.0     | +3.2     | +0.0       | 37.5              | 46.0              | -8.5      | Horiz |
| 6  | 114.471M    | 43.8            | -27.0  | +13.7    | +0.0     | +2.1     | +0.0       | 32.6              | 43.5              | -10.9     | Vert  |
| 7  | 267.054M    | 39.4            | -26.5  | +17.9    | +0.0     | +3.2     | +0.0       | 34.0              | 46.0              | -12.0     | Vert  |
| 8  | 238.482M    | 40.8            | -26.6  | +16.2    | +0.0     | +3.1     | +0.0       | 33.5              | 46.0              | -12.5     | Horiz |
| 9  | 457.778M    | 38.1            | -27.5  | +0.0     | +17.0    | +4.6     | +0.0       | 32.2              | 46.0              | -13.8     | Horiz |
| 10 | 114.509M    | 40.8            | -27.0  | +13.7    | +0.0     | +2.1     | +0.0       | 29.6              | 43.5              | -13.9     | Horiz |
| 11 | 228.929M    | 38.8            | -26.5  | +16.6    | +0.0     | +3.0     | +0.0       | 31.9              | 46.0              | -14.1     | Horiz |

|    |          |      |       |       |       |      |      |      |      |       |       |
|----|----------|------|-------|-------|-------|------|------|------|------|-------|-------|
| 12 | 124.011M | 39.2 | -27.0 | +14.4 | +0.0  | +2.3 | +0.0 | 28.9 | 43.5 | -14.6 | Vert  |
| 13 | 333.809M | 34.1 | -26.6 | +0.0  | +19.2 | +3.8 | +0.0 | 30.5 | 46.0 | -15.5 | Horiz |
| 14 | 324.260M | 31.9 | -26.6 | +0.0  | +19.8 | +3.8 | +0.0 | 28.9 | 46.0 | -17.1 | Horiz |
| 15 | 228.924M | 33.8 | -26.5 | +16.6 | +0.0  | +3.0 | +0.0 | 26.9 | 46.0 | -19.1 | Vert  |