According to 447498 D04 Interim General RF Exposure Guidance v01

$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^{\times} & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$
(B.2)

where

$$x = -\log_{10}\left(\frac{\epsilon o}{\epsilon R \rho_{\rm be cm} \sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\text{th}} (mW) = ERP_{20 \text{ cm}} (mW) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

Table B.2—Example P-ower Thresholds (mW)

Table B.2—Example Power Thresholds (mw)											
	Distance (mm)										
		5	10	15	20	25	30	3.5	40	45	50
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217
	450	22	44	67	89	112	1.35	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
	1900	3	1.2	26	44	66	92	122	157	195	236
	2450	3	10	22	38	59	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	2.5	40	58	80	106	13-6	169

eirp = pt x gt = $(EXd)^2/30$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- $10^{((dBuV/m)/20)}/10^6$

d = measurement distance in meters (m) ---3m

Sopt = $(EXd)^2/30 \times gt$

Ant gain = 0 dBi so Ant numeric gain= 1

Field strength = $57.64dB\mu V/m$ @3m @27.145MHz

So Pt={ $[10^{(57.64/20)}/10^6 \times 3]^2/30$ } $\times 1000 \text{ mW} = 0.0005 \text{mW}$

< 39 mW

Then SAR evaluation is not required