

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-0209/15-01-09

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

BREITLING SA

Schlachthausstr. 2

2540 Grenchen / SWITZERLAND Phone: +41 32 654 54 54 Fax: +41 32 654 54 08 Contact: Enzo Fullin

e-mail: <u>enzo.fullin@breitling.com</u> Phone: +41 32 654 54 54

Manufacturer

BREITLING SA

Schlachthausstr. 2

2540 Grenchen / SWITZERLAND

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Professionell Smart watch

Model name: Exospace B55
FCC ID: OPFXB55
IC: 11807A-XB55

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth® LE

Antenna: Integrated antenna

Power supply: 3.7 V DC by battery

Temperature range: 0°C to +50°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
p.o.			
Andreas Luckenbill	Mihail Dorongovskij		
Lab Manager	Testing Manager		
Radio Communications & EMC	Radio Communications & EMC		

Table of contents

1	Table of contents2						
2	Genera	al information	3				
	2.1	Notes and disclaimer					
		Application details					
3	Test st	andard/s	3				
	3.1	Measurement guidance					
4		nvironment					
5		em					
อ							
		General descriptionAdditional information					
6		boratories sub-contracted					
7		ption of the test setup					
		Shielded semi anechoic chamber					
		Shielded fully anechoic chamber					
	7.3	Radiated measurements > 12.75 GHz	8				
	7.4	Conducted measurements BT system	9				
8	Measu	rement uncertainty	10				
9	Seque	nce of testing	1				
	9.1	Sequence of testing 9 kHz to 30 MHz	11				
		Sequence of testing 30 MHz to 1 GHz					
		Sequence of testing 1 GHz to 12.75 GHz					
		Sequence of testing above 12.75 GHz					
10	Sum	mary of measurement results	1				
11	Add	tional comments	16				
12	Mea	surement results	17				
	12.1	System gain					
	12.2	Power spectral density					
	12.3	DTS bandwidth – 6 dB bandwidth					
	12.4 12.5	Occupied bandwidth – 99% emission bandwidth					
	12.5 12.6	Detailed spurious emissions @ the band edge - conducted					
	12.7	Band edge compliance radiated					
	12.7	TX spurious emissions conducted					
	12.9	Spurious emissions radiated below 30 MHz					
	12.10	Spurious emissions radiated 30 MHz to 1 GHz					
	12.11	Spurious emissions radiated above 1 GHz					
13	Obs	· ervations	5				
Anr	ex A	Document history	5				
Anr	ex B	Further information	56				
Anr	ex C	Accreditation Certificate	57				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2015-08-03
Date of receipt of test item: 2015-09-28
Start of test: 2015-09-28
End of test: 2015-10-02

Person(s) present during the test: Baptiste Solioz, Enzo Fullin

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

3.1 Measurement guidance

Guidance	Version	Description
DTS: KDB 558074 D01	v03r03	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No test under extreme conditions required. No test under extreme conditions required.
Relative humidity content	:	- 111111	55 %
		not relevant for this kind of testing	
V _{nom} 3.7 V DC by battery		3.7 V DC by battery	
Power supply		V_{max}	No test under extreme conditions required.
		V_{min}	No test under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Professionell Smart watch		
Type identification :	Exospace B55		
PMN :	Exospace B55		
HVIN :	Exospace B55		
FVIN :	-/-		
HMN :	-/-		
S/N serial number :	Rad. 202-SMD042 Cond. Not available		
HW hardware status :	3		
SW software status :	15		
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)		
Type of radio transmission: Use of frequency spectrum:	DSSS		
Type of modulation :	GFSK		
Number of channels :	40		
Antenna :	Integrated antenna		
Power supply :	3.7 V DC by battery		
Temperature range :	0°C to +50°C		

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

B55 external photos (provided by customer) B55 internal photos (provided by customer) 1-0209/15-01-01_AnnexD

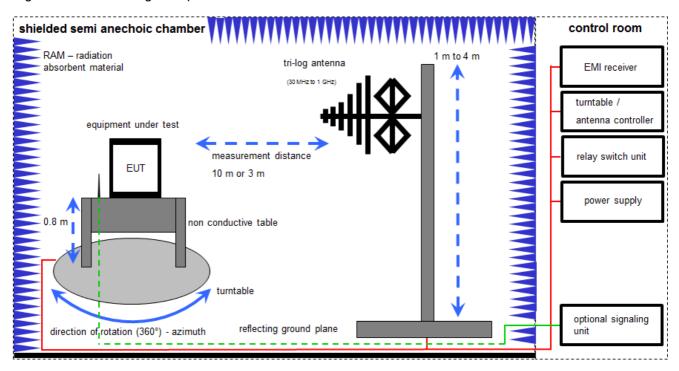
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

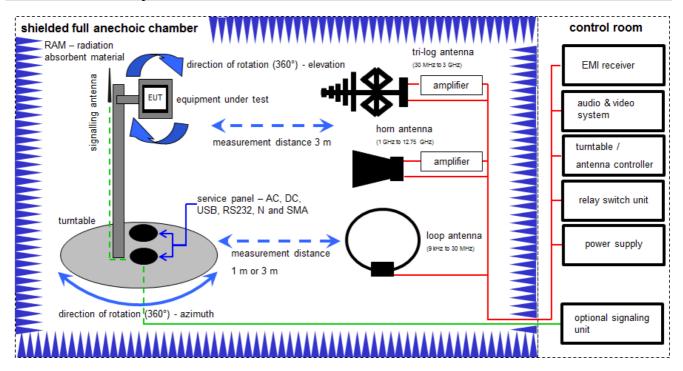
k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

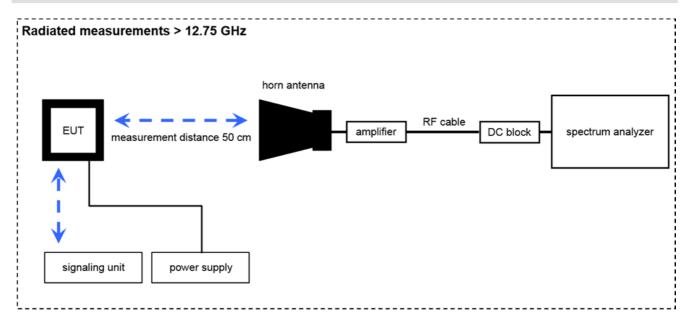
FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

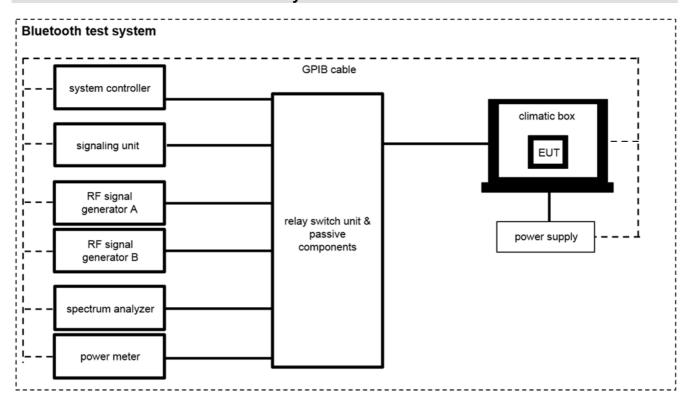
 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	Α	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A, B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vlKl!	29.10.2014	29.10.2017
8	A, B, C	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-

7.3 Radiated measurements > 12.75 GHz

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \mu\text{V/m})$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	k	22.05.2015	22.05.2018
2	А	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
3	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	24.08.2015	24.08.2016

7.4 Conducted measurements BT system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP		300001691	ne		
2	Α	Power Supply DC	NGPE 40/40	R&S	388	400000078	vlKI!	22.01.2015	22.01.2017
3	Α	Signal Analyzer 20Hz-26,5GHz-150 to + 30 DBM	FSIQ26	R&S	835540/018	300002681	k	30.01.2014	30.01.2016
4	А	Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681	Ve	29.01.2015	29.01.2017
5	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
6	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
7	Α	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
8	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
9	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axis (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

•

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

_

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarization and turntable position of the premeasurement the
 software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is
 repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both
 antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.4 Sequence of testing above 12.75 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 0.5 meter
- The EUT was set into operation.

Premeasurement

The antenna is moved spherical over the EUT in different polarizations of the antenna.

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2015-11-02	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(e) RSS - 247 / 5.2 (2)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK	\boxtimes				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	GFSK					-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	GFSK			\boxtimes		Only battery powered

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 Additional comments

The Bluetooth $^{\circ}$ word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	static RX/St	sts: were performed with LE packets (37 byte payload) and PRBS pattern. tandby tests: BT enabled, TX Idle d channels: lowest: 2402 MHz (Ch 0)
Test mode:		Bluetooth LE Test mode enabled (EUT is controlled over CBT)
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

12 Measurement results

12.1 System gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth® devices, the GFSK modulation is used.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted)		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Antenna gain			
6 dBi			

Results:

T _{nom}	V _{nom}	2402 MHz	2440 MHz	2480 MHz
Conducted power [dBm] Measured with GFSK modulation		-0.3	0.4	0.6
Radiated power [dBm] Measured with GFSK modulation		-12.6	-16.3	-15.6
	Gain [dBi] Calculated		-15.9	-16.2

12.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 kHz		
Video bandwidth	10 kHz		
Span	≥ EBW		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

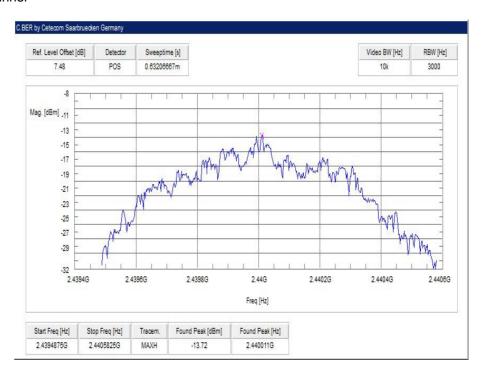
Limits:

FCC	IC	
Power spectral density		

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

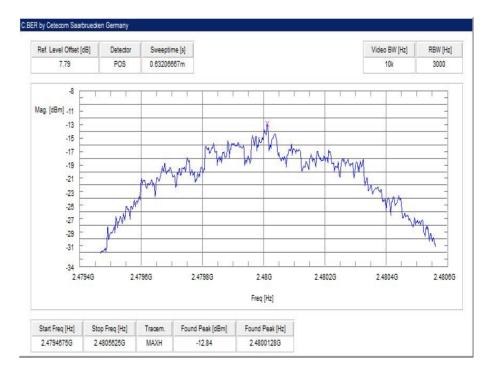
Results:

	Frequency		
	2402 MHz	2440 MHz	2480 MHz
Power spectral density [dBm / 3kHz]	-14.1	-13.7	-12.8



Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

12.3 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement parameters			
According to DTS clause: 8.1			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	5 MHz		
Measurement procedure	Using 3 marker (max + 2x-6dB)		
Trace mode	Max hold (allow trace to stabilize)		
Test setup	See sub clause 7.4 A		
Measurement uncertainty See sub clause 8			

Limits:

FCC	IC			
DTS bandwidth -	DTS bandwidth – 6 dB bandwidth			
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.				

Results:

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
6 dB bandwidth [kHz]	730	730	730

Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

12.4 Occupied bandwidth - 99% emission bandwidth

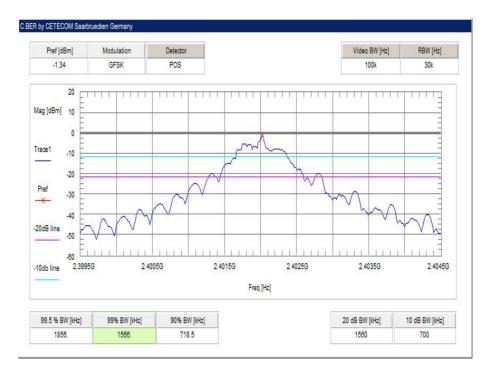
Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	10 MHz	
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer	
Trace mode	Max hold (allow trace to stabilize)	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Usage:

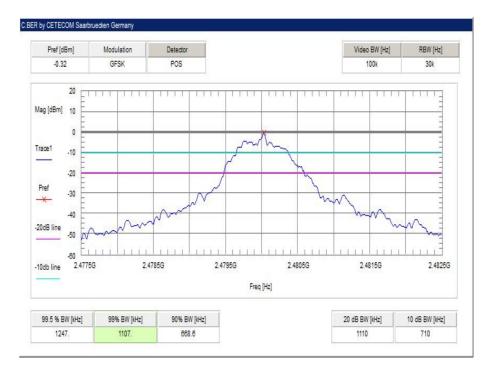
-/-	IC
Occupied bandwidth – 9	99% emission bandwidth
OBW is necessary for emission designator	


Results:

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
99% bandwidth [kHz]	1566	1497	1107

Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

12.5 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

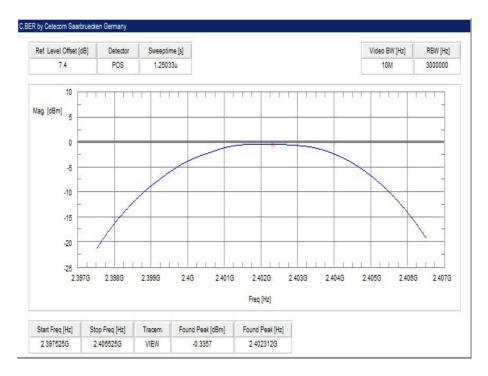
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	10 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

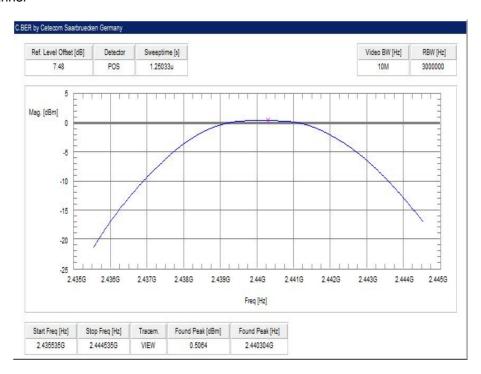
FCC	IC
Maximum o	output power
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi

Results:

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm]	-0.3	0.5	0.6

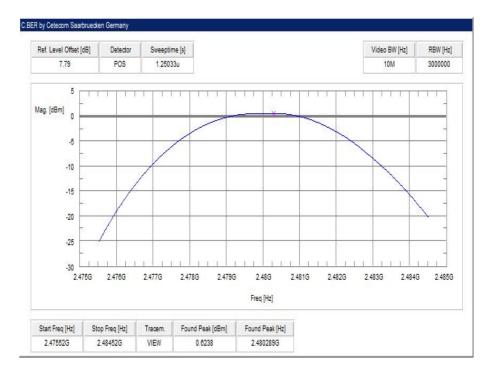

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
Maximum output power radiated - EIRP [dBm]	-12.6	-15.4	-15.6

^{*) -} Values calculated with antenna gain



Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

12.6 Detailed spurious emissions @ the band edge - conducted

Description:

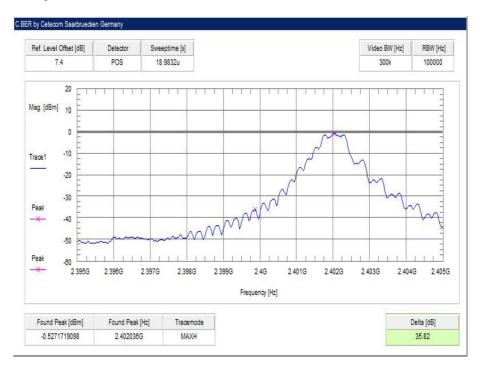
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 2395 – 2405 MHz higher Band Edge: 2478 – 2489 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

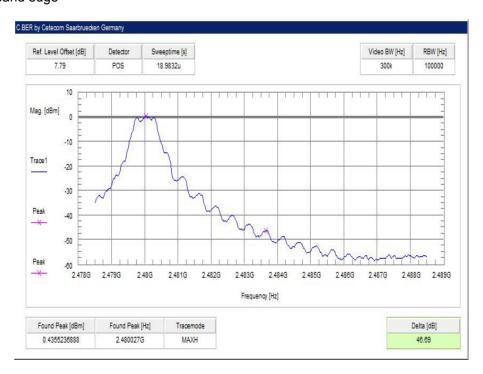
Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Result:

Scenario	Spurious band edge conducted [dB]
Modulation	GFSK
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB



Plots:

Plot 1: Lower band edge

Plot 2: Upper band edge

12.7 Band edge compliance radiated

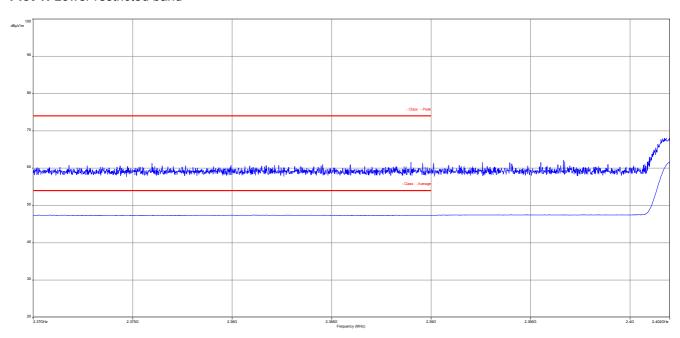
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 39 for the upper restricted band. Measurement distance is 3m.

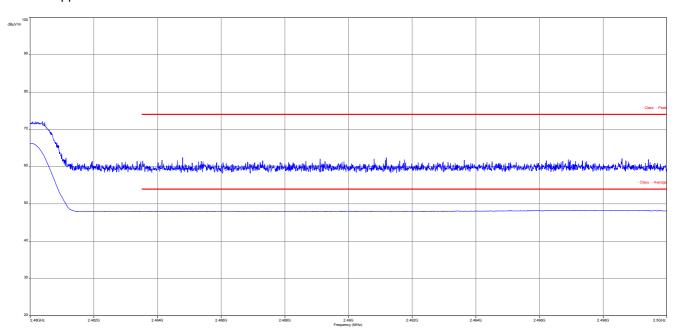
Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 B	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC				
Band edge compliance radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).					
54 dBμV/m AVG 74 dBμV/m Peak					


Result:

Scenario	Band edge compliance radiated [dBμV/m]		
Modulation	GFSK		
Lower restricted band	< 54 AVG / < 74 PP		
Upper restricted band	< 54 AVG / < 74 PP		



Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

12.8 TX spurious emissions conducted

Description:

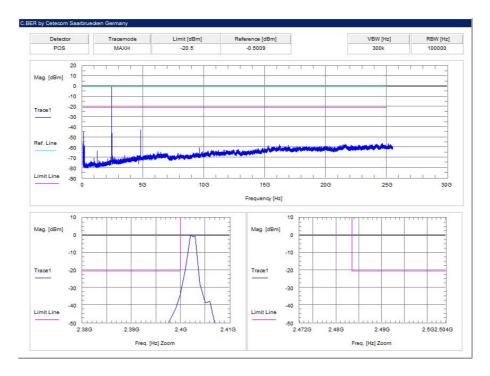
Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz or 500 kHz			
Span	9 kHz to 25 GHz			
Trace mode	Max hold			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 8			

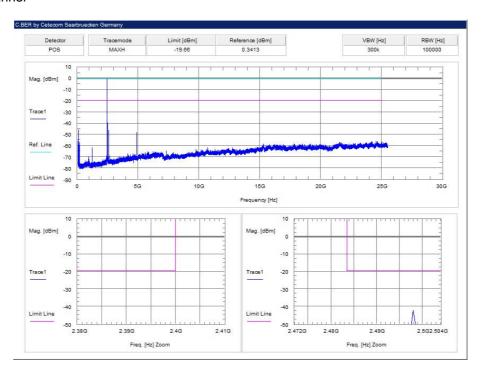
Limits:

FCC	IC			
TX spurious emissions conducted				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

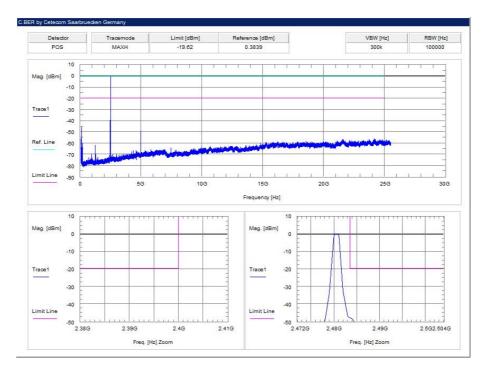

Results:

TX spurious emissions conducted						
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2402		-0.5	30 dBm		Operating frequency	
All detected emissions are more than 6 dB below the limit!		-20 dBc		compliant		
2440		0.3	30 dBm		Operating frequency	
All detected emissions are more than 6 dB below the limit!		-20 dBc		compliant		
			-20 UBC			
2480		0.4	30 dBm		Operating frequency	
All detected emissions are more than 6 dB below the limit!		-20 dBc		compliant		



Plots:

Plot 1: lowest channel



Plot 2: mid channel

Plot 3: highest channel

12.9 Spurious emissions radiated below 30 MHz

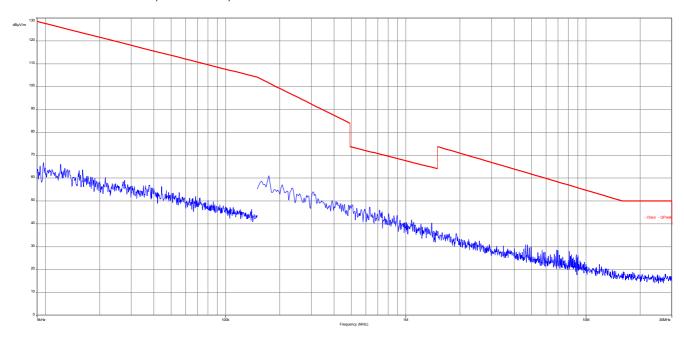
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 19. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 39 will be measured too. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

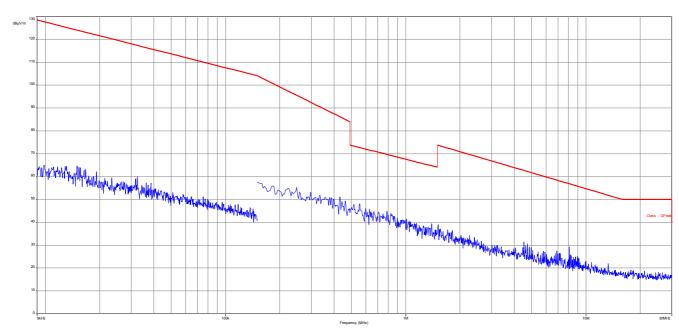
Measurement parameters								
Detector	Peak / Quasi peak							
Sweep time	Auto							
Resolution bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Video bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Span	9 kHz to 30 MHz							
Trace mode	Max hold							
Test setup	See sub clause 7.2 C							
Measurement uncertainty	See sub clause 8							

Limits:

FCC			IC				
TX spurious emissions radiated below 30 MHz							
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance				
0.009 – 0.490	2400/F	(kHz)	300				
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30		
1.705 – 30.0	3	0	30				

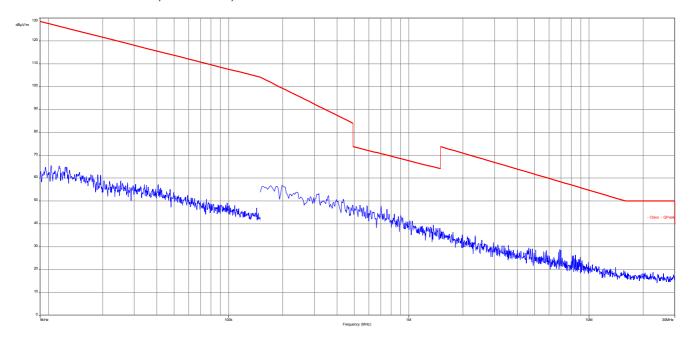

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBμV/m]								
All detect	ed emissions are more than 20 dB below	the limit.						



Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode



Plot 2: 9 kHz to 30 MHz, channel 19, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 39, transmit mode

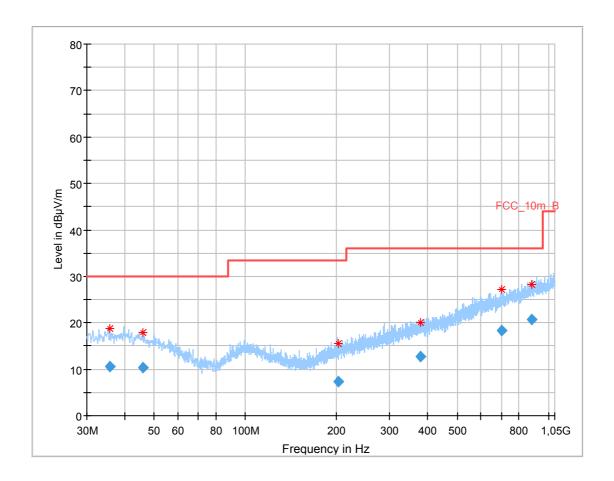
12.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	3 x VBW					
Video bandwidth	120 kHz					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 7.1 A					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.


Limits:

FCC		IC								
TX spurious emissions radiated										
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).										
	§15.	209								
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance							
30 - 88	30	.0	10							
88 – 216	33	.5	10							
216 – 960 36.0 10										
Above 960	54	.0	3							

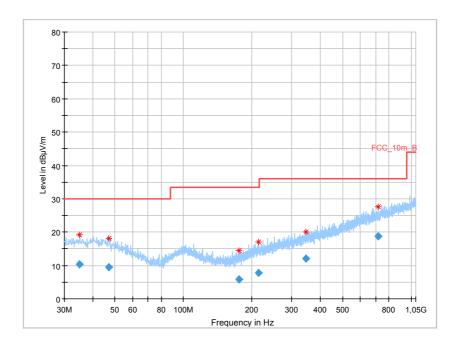
Plots: Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.868150	10.57	30.00	19.43	1000.0	120.000	101.0	Н	280	13.8
45.947850	10.35	30.00	19.65	1000.0	120.000	170.0	٧	-10	13.6
202.083150	7.24	33.50	26.26	1000.0	120.000	170.0	٧	170	11.8
378.867750	12.63	36.00	23.37	1000.0	120.000	98.0	Н	100	16.5
701.617650	18.36	36.00	17.64	1000.0	120.000	170.0	Н	10	21.6
880.227300	20.78	36.00	15.22	1000.0	120.000	101.0	٧	10	23.9

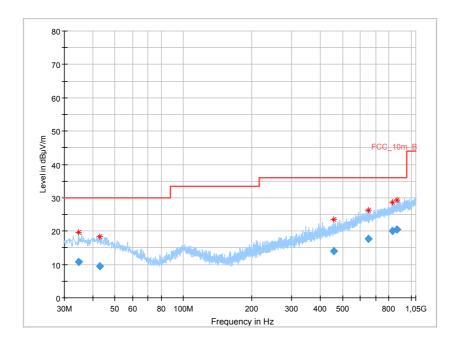
Plot 2: 30 MHz to 1 GHz, TX mode, channel 19, vertical & horizontal polarization



Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.036150	9.98	30.00	20.02	1000.0	120.000	98.0	٧	10	14.0
50.142600	9.13	30.00	20.87	1000.0	120.000	101.0	٧	100	12.6
104.242650	7.02	33.50	26.48	1000.0	120.000	170.0	Н	80	11.7
224.150100	8.14	36.00	27.86	1000.0	120.000	170.0	٧	10	12.5
433.984200	13.34	36.00	22.66	1000.0	120.000	170.0	Н	10	17.4
588.757950	17.30	36.00	18.70	1000.0	120.000	170.0	٧	190	20.4

Plot 3: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization


Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.852350	10.29	30.00	19.71	1000.0	120.000	101.0	Н	10	13.8
47.003250	9.55	30.00	20.45	1000.0	120.000	170.0	٧	10	13.4
175.476600	5.75	33.50	27.75	1000.0	120.000	170.0	Н	10	10.1
213.357900	7.74	33.50	25.76	1000.0	120.000	170.0	٧	280	12.2
346.177800	12.06	36.00	23.94	1000.0	120.000	170.0	٧	-9	15.9
717.355350	18.68	36.00	17.32	1000.0	120.000	98.0	٧	261	21.9

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.567350	10.68	30.00	19.32	1000.0	120.000	100.0	٧	190	13.8
42.920250	9.50	30.00	20.50	1000.0	120.000	101.0	٧	10	13.9
457.930650	14.04	36.00	21.96	1000.0	120.000	170.0	٧	100	17.8
651.999450	17.78	36.00	18.22	1000.0	120.000	98.0	Н	100	21.1
830.719950	19.97	36.00	16.03	1000.0	120.000	170.0	Н	190	23.2
866.774100	20.59	36.00	15.41	1000.0	120.000	170.0	٧	-10	23.7

12.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 7.2 A (1 GHz - 12.75 GHz) See sub clause 7.3 A (12.75 GHz - 26 GHz)					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

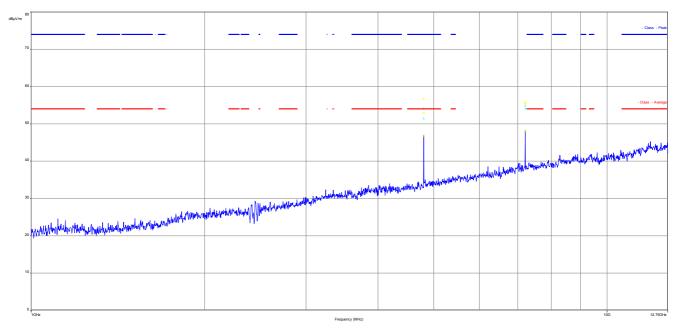
Limits:

FCC IC							
TX spurious emissions radiated In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
	§15	.209					
Frequency (MHz)	Frequency (MHz) Field strength (dBµV/m) Measurement distance						
Above 960	54	54.0 3					

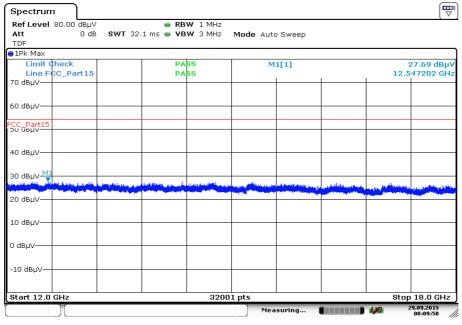
Results: Transmitter mode

	TX spurious emissions radiated [dBμV/m]											
	2402 MHz			2440 MHz			2480 MHz					
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]				
4803	Peak	56.7	4880	Peak		4960	Peak	54.9				
4003	AVG	49.6	4000	AVG	45.9	4900	AVG	46.8				
7206	Peak	55.8	7320	Peak	55.5	7440	Peak	58.0				
7200	AVG	48.7	7320	AVG	45.9	7440	AVG	49.9				
	Peak			Peak			Peak					
	AVG			AVG			AVG					

Results: Receiver mode

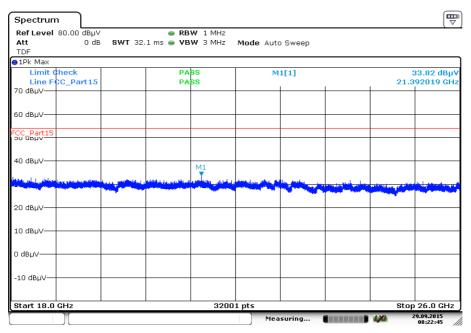

RX spurious emissions radiated [dBμV/m]				
F [MHz]	Detector	Level [dBµV/m]		
All detected emissions are more than 20 dB below the limit.				
	Peak			
	AVG			

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

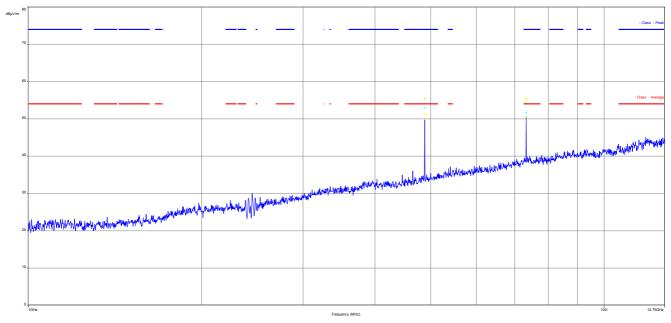

Plots: Transmitter mode

Plot 1: 1 GHz to 12.75 GHz, TX mode, channel 00, vertical & horizontal polarization

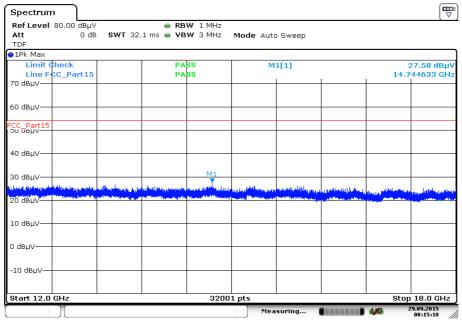
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 12.75 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 29.SEP.2015 08:09:50

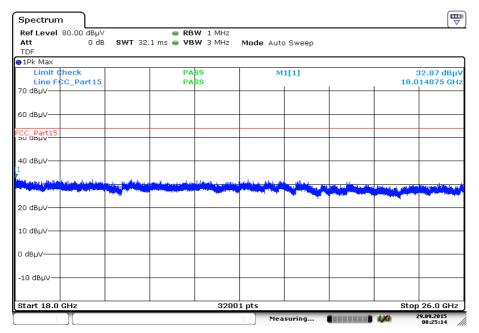

Plot 3: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 29.SEP.2015 08:22:45

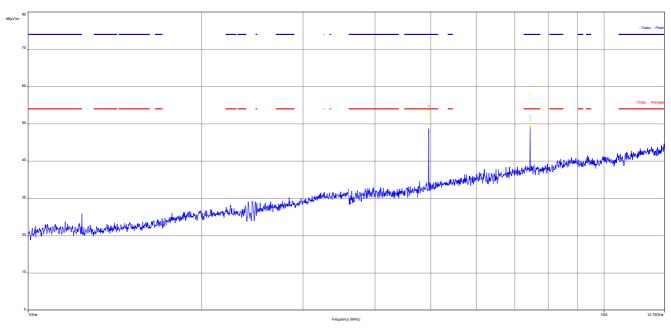


Plot 4: 1 GHz to 12.75 GHz, TX mode, channel 19, vertical & horizontal polarization

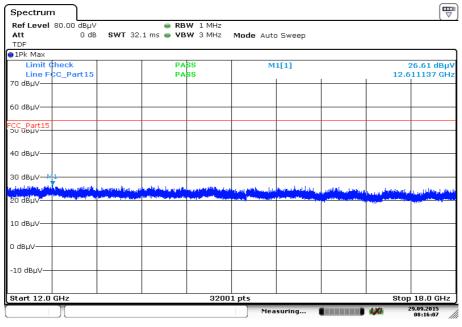
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 5: 12.75 GHz to 18 GHz, TX mode, channel 19, vertical & horizontal polarization

Date: 29.SEP.2015 08:15:18

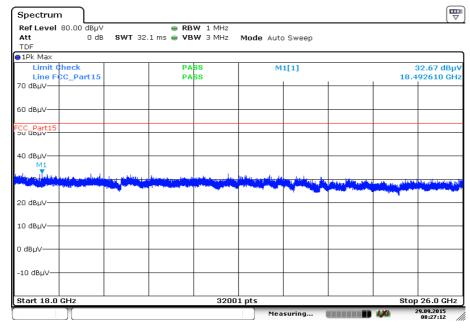

Plot 6: 18 GHz to 26 GHz, TX mode, channel 19, vertical & horizontal polarization

Date: 29.SEP.2015 08:25:14



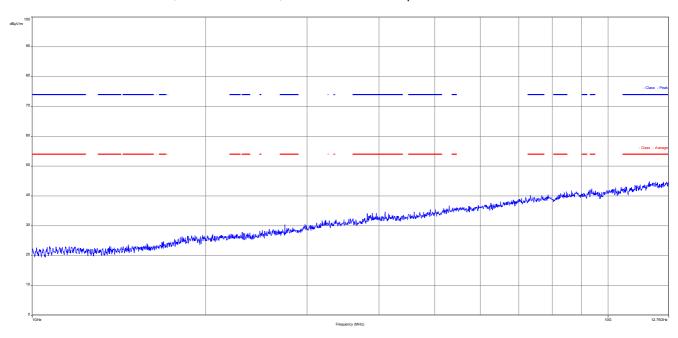
Plot 7: 1 GHz to 12.75 GHz, TX mode, channel 39, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

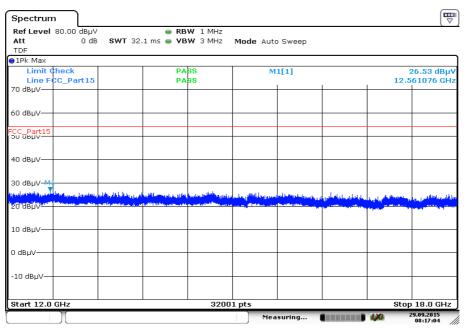

Plot 8: 12.75 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 29.SEP.2015 08:16:06

Plot 9: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

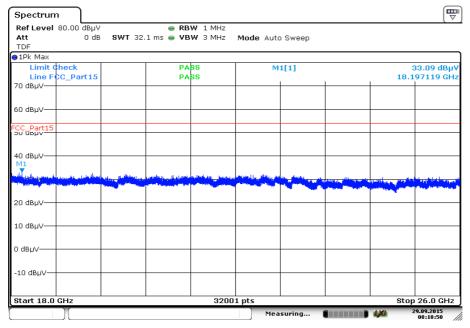


Date: 29.SEP.2015 08:27:12



Plots: Receiver mode

Plot 1: 1 GHz to 12.75 GHz, RX / idle – mode, vertical & horizontal polarization


Plot 2: 12.75 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 29.SEP.2015 08:17:04

Plot 3: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 29.SEP.2015 08:18:50

1	3	n	bservations
•	.)	J	uservations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-10-30

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW Hardware Industry Canada IC Inventory number Inv. No. -N/A Not applicable PP Positive peak QΡ Quasi peak S/N Serial number Software SW

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

DAkkS Deutsche Akkreditierungsstelle GmbH Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, II.AC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Darbtgebundene Kommunikation einschließlich xDSL voll und DeCT Akustik Fund einschließlich WLAN Short Range Devices (SRD) RFID WIMMAX and Richtfunk Mobiltunk (KSM / DCS, Over the Air (OTA) Performance) Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive Produktsicherheit SAR und Hearing Aid Compatibility (HAC) Umweltsimulation Smart Card Terminals Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsminnen D-Pt-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit Inagesamt 77 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-00

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstra 3e 6 60594 Frankfurt am Main

Standort Braunschwe Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffertlichung der Akkredicierungsurkunde bestanf der verhanigen schriftlichen Zustimmung der Deutsche Aktreditierungsstelle Grahlf (DAMS), Ausgenommen abwon ist die separate Weiterverbreitung des Decklarites durch die umsettig generante Konformitätsbewertungsstelle in unserb detert Portn.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereichs erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über des Akkreditierungsstells (AlASstelleG) vom 31. Juli 2009 (RGR). 1.5.2655) sowie der Verontrung (25G) Nr. 7655/2008 des Europäischen Prähenerts und des Retes vom 9. Juli 2008 (Rdr der Versnehlten (der Akkreditierung und Mahrtüberwaltung im Zusammenhang mit der Vermunktung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAkk Sist Unterverbersiel der Verliktlichstellen Akkremmen unz gegenze Bigen Arselfen nung der Europen ers operation for Auszelfsichen (EA), des International Acceptation forum (NA) und der International Laberdung Auszendation on Geoppration ((LAC). Die Unterzeichner eileser Abkommen orkomnen ihre Akkreditierungen gegenstellig an.

Der üktue in Stund der Viligliedschaft kann folgenden Webseiten entnommen werden: FA: www.muropuun-accred tation.org IIAC: www.ibcu.org IAC: www.ibcu.org

Frankfurt om Main, 07.03.2014

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

https://www.cetecom.com/en/cetecom-group/europe/germany-saarbruecken/accreditations.html