
ATTACHMENT C - TEST REPORT

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road · Columbia, MD 21045 · U.S.A.
TEL (410) 290-6652 · FAX (410) 290-6654
http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE

Manufacturer

Namsung Telecom Co., Ltd.

345-30, Gasan-Dong, Geumcheon-Gu

Seoul, Korea

Attn: Y.B. Kim, General Manager

Dates of Tests: May 15-16, 2001 Test Report S/N: B.210430257.NTC

Test Site: PCTEST Lab, MD U.S.A.

FCC ID

ONLFMT100

APPLICANT

NAMSUNG TELECOM CO., LTD.

Rule Part(s): FCC Part 15.239 Subpart C

Equipment Class: Low Power Communication Device Transmitter (DXX)

EUT Type: FM Stereo Modulator Frequency Range: 88.7 / 89.1 MHz
Trade Name(s): AUDIOVOX®
Model(s): FMT-100, RF70

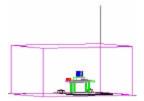
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Alfred Cirwithian

Vice President Engineering


210430257. NTC

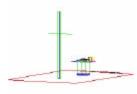


TABLE OF CONTENTS

ATTACHMENT A: COVER LETTER(S)	
ATTACHMENT B: ATTESTATION STATEMENT(S)	
ATTACHMENT C: TEST REPORT	
1.1 SCOPE	1
2.1 INTRODUCTION (SITE DESCRIPTION)	2
3.1 PRODUCTION INFORMATION	3
4.1 DESCRIPTION OF TESTS (CONDUCTED)	4
4.3 DESCRIPTION OF TESTS (RADIATED)	5
5.1 LIST OF SUPPORT EQUIPMENT	6
6.1 TEST DATA (CONDUCTED)	7
7.1 TEST DATA (RADIATED)	8-9
8.1 SAMPLE CALCULATIONS	10
9.1 ACCURACY OF MEASUREMENT	11
10.1 LIST OF TEST EQUIPMENT	12
11.1 TEST SOFTWARE USED	13
12.1 CONCLUSION	14
ATTACHMENT D: TEST PLOTS	
ATTACHMENT E: FCC ID LABEL & LOCATION	
ATTACHMENT F: SCHEMATIC DIAGRAM(S)	
ATTACHMENT G: TEST SETUP PHOTOGRAPHS	
ATTACHMENT H: EXTERNAL PHOTOGRAPHS	
ATTACHMENT I: INTERNAL PHOTOGRAPHS	
ATTACHMENT I: LISER'S MANULAL	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Applicant Name: Namsung Telecom Co., Ltd. Address: 345-30, Gasan-Dong, Geumcheon-Gu

Seoul, Korea

Attention: Y.B. Kim, General Manager

• FCC ID: ONLFMT100

Equipment Class: Low Power Communication Device Transmitter (DXX)

• EUT Type: FM Stereo Modulator

Trade Name(s): AUDIOVOX®
 Model(s): FMT-100, RF70
 Frequency Range: 88.7 / 89.1 MHz

Power Cord: Unshielded DC power cord
 Rule Part(s): FCC Part 15 Subpart C

Test Procedure(s): ANSI C63.4 (1992)
 Dates of Tests: May 15-16, 2001

Place of Tests:
 PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: B.210430257.NTC

2.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated and conducted emissions emanating from **Namsung Telecom Co., Ltd. FM Stereo Modulator FCC ID: ONLFMT100.**

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

2.2 PCTEST Location

The map at right shows the location of the PCTEST Lab, its proximity to the FCC Lab, the Columbia vicinity area, the Baltimore-Washington International (BWI) airport, and the city of Baltimore, and the Washington, D.C. area. (see Figure 1).

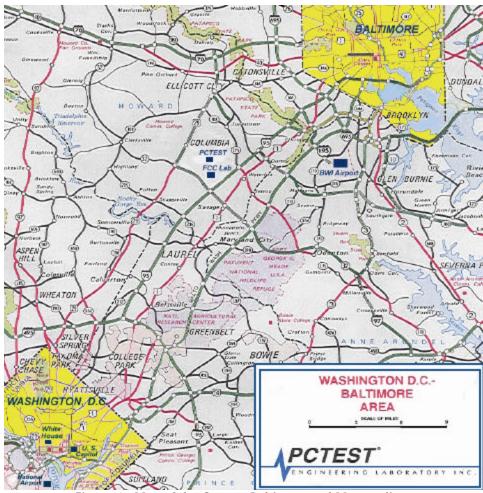


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

3.1 Product Information

3.2 Equipment Description

The Equipment Under Test (EUT) is the Namsung Telecom Co., Ltd. (NAMSUNG Models: FMT-100, RF70) FM Stereo Modulator FCC ID: ONLFMT100.

Frequency Range(s): 88.7 / 89.1 MHz

Power Supply: + 12V from car battery
Power Cord(s): Unshielded DC power cord

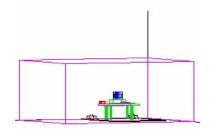


Figure 2. Shielded Enclosure Line-Conducted Test Facility

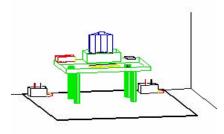


Figure 3. Line Conducted Emission Test Set-Up

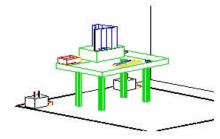


Figure 4. Wooden Table & Bonded LISNs

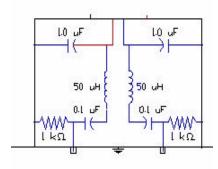


Figure 5. LISN Schematic Diagram

4.1 Description of Tests

4.2 Conducted Emissions

The line-conducted facility is located inside a 16'x20'x10' shielded enclosure. It is manufactured by Ray Proof Series 81 (see Figure 2). The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m. x 1.5m. wooden table 80cm. high is placed 40cm. away from the vertical wall and 1.5m away from the side wall of the shielded room (see Figure 3). Electronics and EMCO Model 3725/2 (10kHz-30MHz) 50Ω/50μH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room (see Figure 4). The EUT is powered from the Solar LISN and the support equipment is powered from the EMCO LISN. Power to the LISNs are filtered by a high-current high-insertion loss Ray Proof power line filters (100dB 14kHz-10GHz). The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure. All electrical cables are shielded by braided tinned copper zipper tubing with an inner diameter of 1/2". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from, and the supply lines will be connected to the Solar LISN schematic diagram is shown in Figure 5. interconnecting cables more than 1 meter were shortened by noninductive bundling (serpentine fashion) to a 1-meter length. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 450kHz to 30MHz with 20 msec. sweep time. The frequency producing the maximum level was reexamined using EMI/ Field Intensity Meter and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode. The bandwidth of the receiver was set to 10 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Attachment H. Each EME reported was calibrated using the HP8640B signal generator.

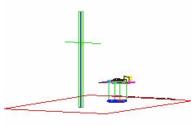


Figure 6. 3-Meter Test Site

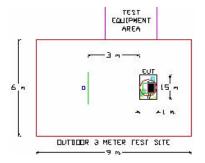


Figure 7. Dimensions of Outdoor Test Site

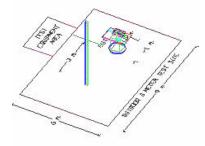


Figure 8. Turntable and System Setup

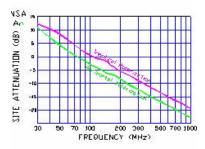


Figure 9. Normalized Site Attenuation Curves (H&V)

4.1 Description of Tests (continued)

4.3 Radiated Emissions

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 200 MHz using biconical antenna and from 200 to 1000 MHz using log-spiral antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using Roberts[™] Dipole antennas or horn antenna (see Figure 6). The test equipment was placed on a wooden and plastic bench situated on a 1.5 x 2 meter area adjacent to the measurement area (see Figure 7). Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100kHz or 1 MHz depending on the frequency or type of signal.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8meter high non-metallic 1 x 1.5 meter table (see Figure 8). The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying he mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment; powering the monitor from the floor mounted outlet box and the computer aux AC outlet if applicable, and changing the polarity of the antenna; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Attachment H. Each EME reported was calibrated using the HP8640B signal generator. The Theoretical Normalized Site Attenuation Curves for both horizontal and vertical polarization are shown in Figure 9.

5.1 Support Equipment Used

1. NAMSUNG FM Stereo Modulator FCC ID: ONLFMT100 (EUT)

(3x) 0.9 m. unshielded DC power cord (+12 V constant, +12 V

AC power & ground)

0.4 m. shielded cable to changer (unterminated)

0.6 m. shielded cable to radio antenna 0.6 m. shielded cable to car antenna

1.6 m. shielded cable to control unit (unterminated)

2. AQUATRONICS Car Stereo Model: MS-407

1.5 m. unshielded DC power cord

3. AIWA Speaker Model: SX-R150

3.0 m. unshielded speaker cable

4. HARADA Car Antenna Model: FMB10

1.2 m. shielded antenna cable

(See "Attachment G - Test Setup Photographs" for actual system test setup.)

6.1 LINE-CONDUCTED TEST DATA

6.2 Conducted Emissions

(See Data under PLOTS - Attachment D)

NOTES:

- 1. All video modes & resolutions were investigated and the worst-case emissions are reported.
- 2. The limit for Class B device is 250mV from 450kHz to 30MHz.
- 3. Line A = Phase: Line B = Neutral
- 4. Deviations to the Specifications: None

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} Measurements using CISPR quasi-peak mode.

7.1 RADIATED TEST DATA

7.2 Radiated Power Output

FREQ. (MHz)	Level* (dBm)	AFCL** (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (μV/m)	Margin*** (dB)
88.7	- 74.0	8.5	V	2.1	90	118.9	- 4.0
89.1	- 75.0	8.5	V	2.1	90	106.0	- 5.0

Table 1. Radiated Power Output

NOTE:

Output Measurements by Substitution Method:

The EUT was placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This Output level is recorded. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

7.1 RADIATED TEST DATA (Continued)

7.3 Radiated Emissions

FREQ. (MHz)	Level* (dBm)	AFCL** (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (μV/m)	Margin*** (dB)
80.4	- 80.9	7.5	Н	2.9	75	47.9	- 6.4
175.3	- 84.2	13.5	V	2.6	120	65.4	- 7.2
187.1	- 87.1	15.9	V	2.6	155	61.7	- 7.7
321.5	- 92.6	21.3	Н	1.8	90	61.5	- 10.2
361.3	- 93.1	22.6	V	1.7	115	66.9	- 9.5
472.7	- 96.7	25.4	Н	1.3	170	61	- 10.3

Table 2. Radiated Measurements at 3-meters.

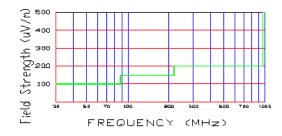


Figure 10. Limits at 3 meters

NOTES:

- 1. All video modes & resolutions were investigated and the worst-case emissions are reported.
- 2. The radiated limits are shown on Figure 10. Above 1GHz the limit is $500 \, \text{mV/m}$.

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss (30 ft. RG58C/U).

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

8.1 Sample Calculations

 $dBmV = 20 \log_{10} (mV/m)$

dBmV = dBm + 107

8.2 Example 1:

@ 20.3 MHz

Class B limit = $250 \mu V = 47.96 dB\mu V$

Reading = - 67.8 dBm (calibrated level)

Convert to $db\mu V$ = $-67.8 + 107 = 39.2 dB\mu V$

 $10^{(39.2/20)}$ = 91.2 μ V

Margin = 39.2 - 47.96 = -8.76

= 8.8 dB below limit

8.3 Example 2:

@ 66.7 MHz

Class B limit = $100 \mu V/m = 47.96 dB\mu V/m$ Reading = -76.0 dBm (calibrated level) Convert to $db\mu V/m$ = $-76.0 + 107 = 31.0 dB\mu V/m$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \text{ dB}\mu\text{V/m}$

Margin = 36.8 - 40.0 = -3.2

= 3.2 dB below limit

9.1 Accuracy of Measurement

9.2 Measurement Uncertainty Calculations:

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Contribution	Probability	Uncertainty (± dB)	
(Line Conducted)	Distribution	9kHz-150MHz	150-30MHz
Receiver specification	Rectangular	1.5	1.5
LISN coupling specification	Rectangular	1.5	1.5
Cable and input attenuator calibration	Normal (k=2)	0.3	0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$			
LISN VRC Γ_{R} = 0.8 (9kHz) 0.2 (30MHz)	U-Shaped	0.2	0.35
Uncertainty limits $20Log(1 \pm \Gamma_1 \Gamma_R)$			
System repeatability	Std. deviation	0.2	0.05
Repeatability of EUT		•	-
Combined standard uncertainty	Normal	1.26	1.30
Expanded uncertainty	Normal (k=2)	2.5	2.6

Calculations for 150kHz to 30MHz:

$$u_{C}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{\frac{1.5^{2} + 1.5^{2}}{3} + (\frac{0.5}{2})^{2} + 0.35} = \pm 1.298dB$$

$$U = 2U_{C}(y) = \pm 2.6dB$$

Contribution	Probability	Uncertainties (± dB)	
(Radiated Emissions)	Distribution	3 m	10 m
Ambient Signals		-	-
Antenna factor calibration	Normal (k=2)	± 1.0	± 1.0
Cable loss calibration	Normal (k=2)	± 0.5	± 0.5
Receiver specification	Rectangular	± 1.5	±1.5
Antenna directivity	Rectangular	+ 0.5 / - 0	+ 0.5
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase centre variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	±. 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$		+ 1.1	
Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp)	U-Shaped		± 0.5
Uncertainty limits 20Log(1 $\pm \Gamma_1 \Gamma_R$)		- 1.25	
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+ 2.19 / - 2.21	+ 1.74 / - 1.72
Expanded uncertainty U	Normal (k=2)	+ 4.38 / - 4.42	+ 3.48 / - 3.44

Calculations for 3m biconical antenna. Coverage factor of k=2 will ensure that the level of confidence will be approximately 95%, therefore:

$$U=2u_{C}(y) = 2 \times \pm 2.19 = \pm 4.38dB$$

10.1 Test Equipment

10.2 Type	Model	Cal. Due Date	S/N
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	12/05/01	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/02	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (9kHz-1.8GHz)	06/02/02	3144A02458
Spectrum Analyzer	HP 8591A (9kHz-1.8GHz)	10/15/01	3108A02053
Spectrum Analyzer	HP 8594A (9kHz-2.9GHz)	11/02/01	3051A00187
Signal Generator*	HP 8640B (500Hz-1GHz)	06/02/02	2232A19558
Signal Generator*	HP 8640B (500Hz-1GHz)	06/02/02	1851A09816
Signal Generator*	Rohde & Schwarz (0.1-1000MHz)	09/11/01	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/02	0792-03271
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/02	0805-03334
Ailtech/Eaton Receiver	NM17/27A (0.1-32MHz)	09/17/01	0608-03241
Quasi-Peak Adapter	HP 85650A	08/09/01	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/02	0194-04082
RG58 Coax Test Cable	No.167		n/a
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115
Broadband Amplifier (2)	HP 8447D		1145A00470,1937A0334
Broadband Amplifier	HP 8447F		2443A03784
Transient Limiter	HP11947A (9kHz-200MHz)		2820A00300
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Hom Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)		9203-2178
Biconical Antenna (4)	Eaton 94455/Eaton 94455-1/Si	nger 94455-1/Compliance Desi	
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1	.go. 7 , 100 % 0011 p.i.a. 100 2 001	0608,1103,1104
Roberts Dipoles	Compliance Design (1 set) A100		5118
Ail tech Dipoles	DM-105A (1 set)		33448-111
EMCO LISN (2)	3816/2		1077,1079
EMCO LISN	3725/2		2009
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		3123/100101
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8591A		3034A01395
Modulation Analyzer	HP 8901A		2432A03467
NTSC Pattern Generator	Leader 408		0377433
Noise Figure Meter	HP 8970B		3106A02189
Noise Figure Meter	Ailtech 7510		TE31700
Noise Generator	Ailtech 7010		1473
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931
Digital Thermometer	Extech Instruments 421305		426966
Attenuator	HP 8495A (0-70dB) DC-4GHz		720700
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)		
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
Shielded Semi-Anechoic Chamber	· ·		
	Ray Proof Model S81	5 (Tomporaturo/Llumidity)	R2437 (PCT278)
Environmental Chamber	Associated Systems Model 1025	o (remperature/Humlarty)	PCT285

^{*} Calibration traceable to the National Institute of Standards and Technology (NIST).

11.1 Test Software Used

- 10 CLS: LCD 7,0
- 20 FOR I = 1 TO 80
- 30 PRINT H:
- 40 NEXT I
- 50 FOR K= 1 TO 25
- 60 LPRINT H;
- 70 NEXT K
- 80 OPEN COM1:1200,N,8,1,CS0,DS0" FOR OUTPUT AS #1
- 90 PRINT#1,ATDT,0123456789"
- 100 CLOSE: GOTO 20

NOTE: This is a sample of the basic program used during the test. However, during testing, a different software program may be used; whichever determines the worst-case condition. In addition, the program used also depends on the number and type of devices being tested.

Actual program used is the "H" pattern in Notepad under Windows environment.

12.1 Conclusion

The data collected shows that the **Namsung Telecom Co.**, **Ltd. FM Stereo Modulator FCC ID: ONLFMT100** complies with §15.239 of the FCC Rules.