

Product Name : R200 (025-1A) FCC ID: LOZ025-1A

Name of Test : Processing Gain

FCC Part 15.247 (e) specific

The processing gain of a direct sequence system shall be at least 10dB.

Guidance on measurement by FCC

The processing gain may be measured using a CW jamming margin method. The test consists of stepping a signal generator in 50kHz increments across the pass band of the system. At each point, the generator level required to produce the recommended Bit Error Rate (10-5) is recorded. This is the jammer level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) is then calculated. Discard the 20% worst of the J/S data points. Total losses in a system including transmitter and receiver, should be assumed to be no more than 2dB.

Therefore , processing gain = $S/N + M_j + L_{sys}$

Where

S/N = Signal to Noise ratio required at the output receiver for 10-5 error rate of an ideal receiver.

M_j = Jammer to Signal ratio

L_{sys} = System Losses (2dB max)

Test Results

For 2mb data rate

$S/N = 13\text{dB}$: taken from Wireless Information Networks by Pahlavan & Levesque

$M_j = 2.9 \text{ dB}$: from test in lab (20% worst discarded)

$L_{sys} = 1.5 \text{ dB}$: system losses

Processing gain at 2 mb is $13\text{dB} - 2.9 \text{ dB} + 1.5 \text{ dB} = 10.7$

For 1mb data rate

$S/N = 13\text{dB}$: taken from Wireless Information Networks by Pahlavan & Levesque

$M_j = 3.0 \text{ dB}$: from test in lab (20% worst discarded)

$L_{sys} = 1.5 \text{ dB}$: system losses

Processing gain at 1 mb is $13\text{dB} - 3.1 \text{ dB} + 1.5 \text{ dB} = 10.5$

For 512 kb data rate

S/N = 13dB: taken from Wireless Information Networks by Pahlavan & Levesque

M_j = 3.0 dB: from test in lab (20% worst discarded)

L_{sys} = 1.5 dB: system losses

Processing gain at 512kb is 13dB - 2.8 dB + 1.5 dB = 10.8