

FCC&IC Radio Test Report

FCC ID: OMOTX141W
IC: 5049A-TX141W

This report concerns (check one): Original Grant Class II Change

Project No. : 1506C244
Equipment : Wind Speed Weather Station
Model Name : TX141W
Applicant : La Crosse Technology Ltd.
Address : 2809 Losey Blvd. S. La Crosse Wisconsin 54601
United States

Date of Receipt : Jun. 25, 2015
Date of Test : Jun. 25, 2015~ Jul. 06, 2015
Issued Date : Jul. 07, 2015
Tested by : BTL Inc.

Testing Engineer : David Mao
(David Mao)

Technical Manager : Leo Hung
(Leo Hung)

Authorized Signatory : Steven Lu
(Steven Lu)

B T L I N C .

No.3,Jinshagang 1st Road, Shixia,Dalang Town, Dongguan,
Guangdong, China.

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
1 . CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
3.4 DESCRIPTION OF SUPPORT UNITS	11
4 .EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSIONLIMITS	12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD	12
4.1.4 TEST SETUP	13
4.1.5 EUT OPERATING CONDITIONS	13
4.1.6 EUT TEST CONDITIONS	13
4.1.7 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	14
4.2.1 FIELD STRENGTH OF FUNDAMENTAL EMISSIONS MEASUREMENT LIMIT	14
4.2.2 MEASURING INSTRUMENTS AND SETTING (FIELD STRENGTH OF FUNDAMENTAL EMISSIONS)	14
4.2.3 RADIATED EMISSIONS MEASUREMENT	15
4.2.4 DWELL TIME OF PERIODIC OPERATION MEASUREMENT	16
4.2.5 TEST PROCEDURE	18
4.2.6 DEVIATION FROM TEST STANDARD	18
4.2.7 TEST SETUP	18
4.2.8 EUT OPERATING CONDITIONS	19
4.2.9 EUT TEST CONDITIONS	19
4.3.0 TEST RESULTS (9KHz to 30MHz)	20
4.3.1 TEST RESULTS (30MHz to 1000MHz)	20
4.3.2 TEST RESULTS (Above 1000 MHz)	20
5. 20dB SPECTRUM BANDWIDTH MEASUREMENT	21
5.1 MEASURING INSTRUMENTS AND SETTING	21
5.2 TEST PROCEDURES	21
5.3 TEST SETUP LAYOUT	21
5.4 TEST DEVIATION	21

Table of Contents	Page
5.5 EUT OPERATION DURING TEST	22
5.6 EUT TEST CONDITIONS	22
5.7 TESTRESULTS	22
6. TIMING TESTING	23
6.1 MEASURING INSTRUMENTS AND SETTING	23
6.2 TEST PROCEDURES	23
6.3 TEST SETUP LAYOUT	23
6.4 TEST DEVIATION	23
6.5 EUT OPERATION DURING TEST	23
6.6 EUT OPERATION DURING TEST	24
6.7 TEST RESULTS	24
7. MEASUREMENT INSTRUMENTS LIST AND SETTING	25
8. EUT TEST PHOTO	26
ATTACHMENT A - CONDUCTED EMISSION	29
ATTACHMENT B - RADIATED EMISSION (9KHz to 30MHz)	30
ATTACHMENT C - RADIATED EMISSION (30MHz to 1000MHz)	32
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHz)	37
ATTACHMENT E - 20dB SPECTRUM BANDWIDTH	40
ATTACHMENT F - TIMING TESTING	42

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-1-1506C244	Original Issue.	Jul. 07, 2015

1. CERTIFICATION

Equipment : Wind Speed Weather Station
Trade Name : LA CROSSE
Model Name : TX141W
Applicant : La Crosse Technology Ltd.
Manufacturer : La Crosse Technology Ltd.
Address : 2809 Losey Blvd. S. La Crosse Wisconsin 54601 United States
Factory : La Crosse Technology Ltd.
Address : 2809 Losey Blvd. S. La Crosse Wisconsin 54601 United States
Date of Test : Jun. 25, 2015~ Jul. 06, 2015
Test Sample : ENGINEERING SAMPLE
Standard(s) : FCC Part15, Subpart C(15.231)/ ANSI C63.10-2013/ANSI C63.4-2014
Canada RSS-210 ISSUE 8 DEC 2010

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-1-1506C244) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart C (15.231); Canada RSS-210 ISSUE 8				
Standard(s) Section		Test Item	Judgment	Remark
RSS-Gen 8.8	15.207	Conducted Emission	N/A	Note(1) Note(2)
RSS-210 A1.1.5	15.209& 15.231(e)	Radiated Spurious Emission	PASS	
RSS-210 A1.1.3	15.231(c)	20dB Occupied Bandwidth Measurement	PASS	
RSS-210 A1.1.5	15.231(e)	Timing Testing	PASS	

NOTE:

- (1)" N/A" denotes test is not applicable to this device.
- (2) EUT is used new battery.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's test firm number for FCC319330

BTL's test firm number for IC 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

A. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)	Note
DG-CB03	CISPR	9KHz~30MHz	V	3.79	
		9KHz~30MHz	H	3.57	
		30MHz~200MHz	V	3.82	
		30MHz~200MHz	H	3.60	
		200MHz~1,000MHz	V	3.86	
		200MHz~1,000MHz	H	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	H	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	H	4.14	

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wind Speed Weather Station	
Trade Name	La Crosse	
Model Name	TX141W	
Model Difference	N/A	
Product Description	Product Type	Low Power Communication Device
	Operation Frequency	433.92 MHz
	Modulation Type	ASK
	Number Of Channel	1CH, please see note 2.
	Antenna Designation	Internal antenna
	Field Strength	71.68dBuV/m (AV Max.)
PowerSource	Supplied from 2*AAA battery.	
Power Rating	DC 3V	

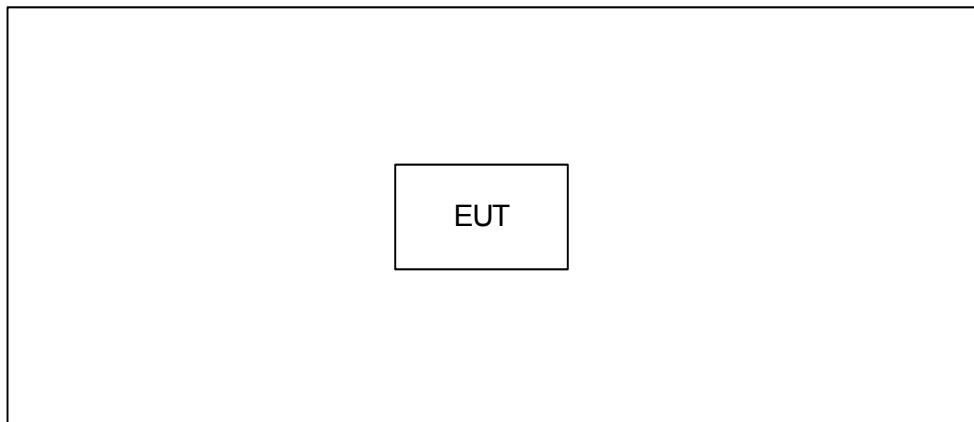
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. Channel List:

Channel	Frequency (MHz)
01	433.92

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Pretest Mode	Description
Mode 1	TX CH 433.92MHz

For Radiated Test	
Final Test Mode	Description
Mode 1	TX CH 433.92MHz

Note:

- (1) The EUT is used new battery.
- (2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on Z-plane. Therefore only the test data of this Z-plane was used for radiated emission measurement test.

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

Note:

- (1) For detachable type I/O cable should be specified the length in m in 『Length』 column.

4.EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 -0.5	66 to 56*	56 to 46*
0.50 -5.0	56	46
5.0 -30.0	60	50

Note:

(1) The limit of " * " decreases with the logarithm of the frequency

(2) The test result calculated as following:

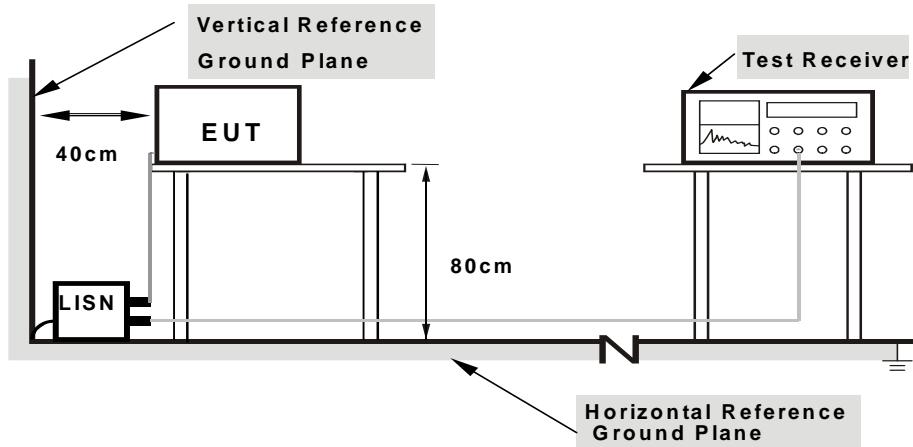
Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)

Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.2 TEST PROCEDURE

- The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the groundplane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 EUT TEST CONDITIONS

Temperature: N/A ° C

Relative Humidity: N/A %

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of «Note». If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a “*” marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) “N/A” denotes test is not applicable to this device.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 FIELD STRENGTH OF FUNDAMENTAL EMISSIONS MEASUREMENT LIMIT

Frequency Band (MHz)	Fundamental Emissions Limit(µV/m) at 3m
40.66-40.70	1000
70-130	500
130-174	500-1500(**)
174-260	1500
260-470	1500-5000(**)
Above 470	5000

**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) For the band 130 - 174 MHz, $\mu\text{V/m}$ at 3 meters = $22.72727 \times (\text{operating frequency, MHz}) - 2454.545$;
- (2) For the band 260 - 470 MHz, $\mu\text{V/m}$ at 3 meters = $16.6667 \times (\text{operating frequency, MHz}) - 2833.3333$.

So the field strength of emission limits has been calculated in below table.

Carrier Frequency (MHz)	Fundamental Emissions Limit(dBuV/m) at 3m
433.92 MHz	72.87 (Average)
433.92 MHz	92.87 (Peak)

4.2.2 MEASURING INSTRUMENTS AND SETTING (FIELD STRENGTH OF FUNDAMENTAL EMISSIONS)

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RBW	120 kHz
Detector	Peak / Average

4.2.3 RADIATED EMISSIONS MEASUREMENT

Devices complying with 47 CFR FCC part 15 subpart C, section 15.231(e). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Spurious Emissions Limit(uV/m) at 3m
40.66-40.70	100
70-130	50
130-174	50-150(**)
174-260	150
260-470	150-500(**)
Above 470	500

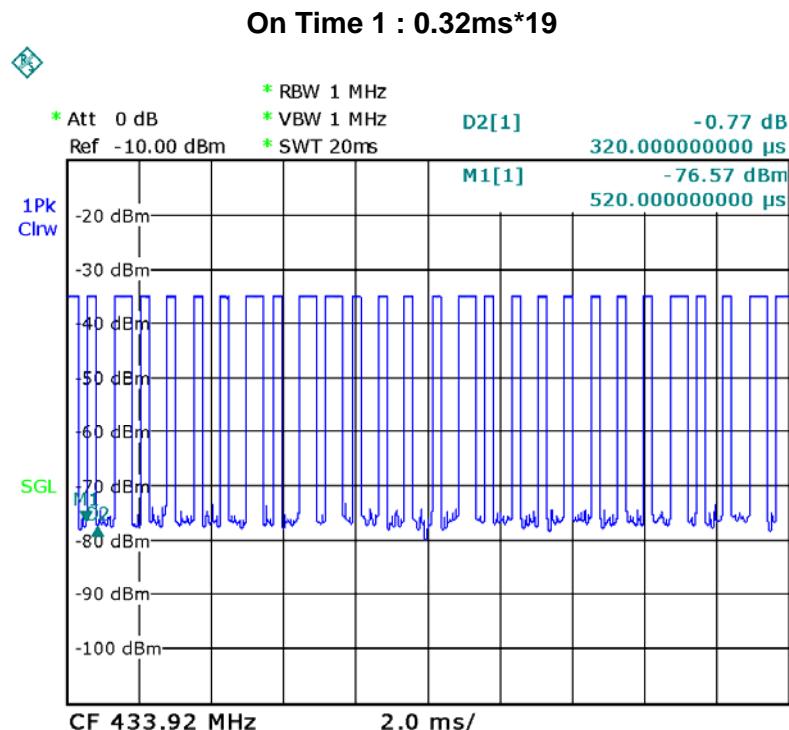
**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) For the band 130 - 174 MHz, $\mu\text{V/m}$ at 3 meters = $22.72727 \times (\text{operating frequency, MHz}) - 2454.545$;
- (2) For the band 260 - 470 MHz, $\mu\text{V/m}$ at 3 meters = $16.6667 \times (\text{operating frequency, MHz}) - 2833.3333$.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

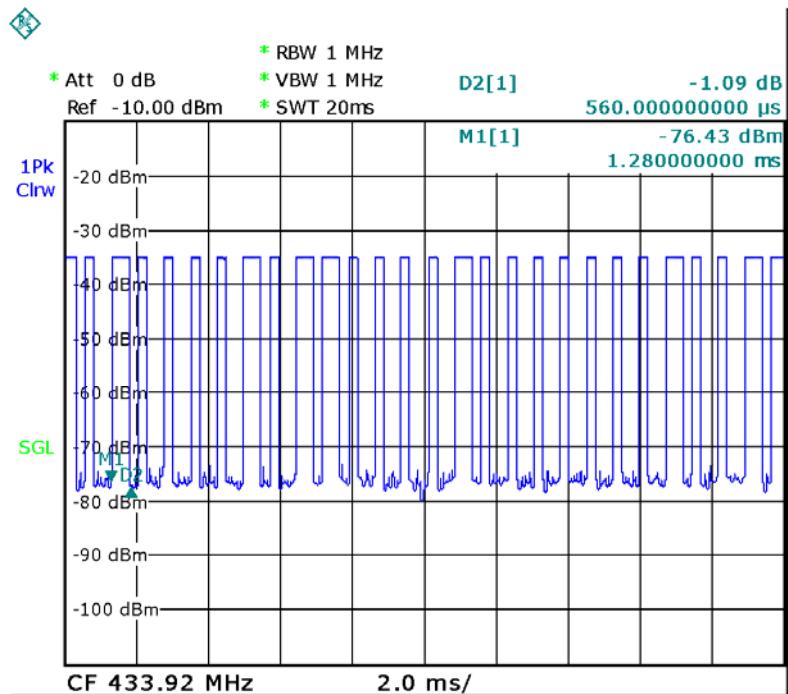
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, AV Mode with Dwell time

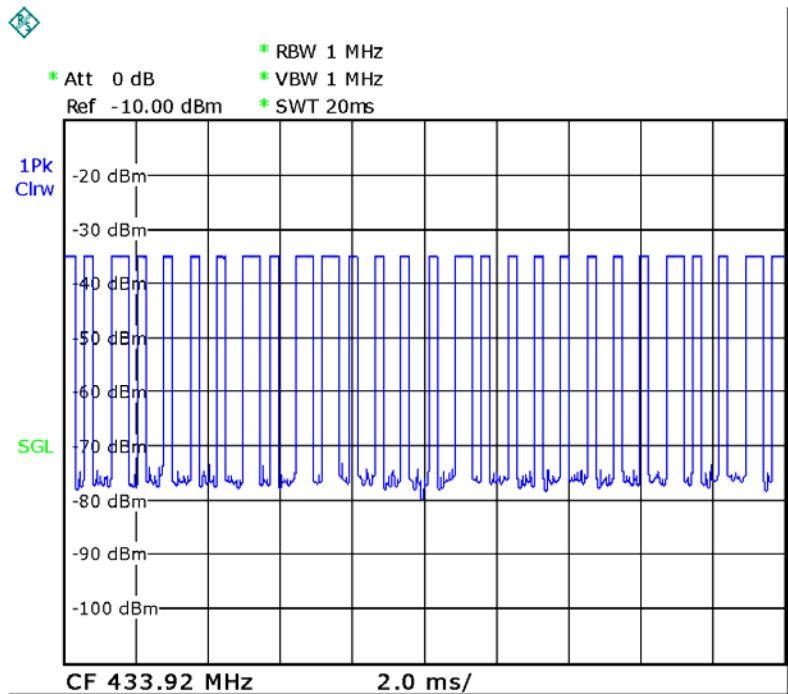

4.2.4 DWELL TIME OF PERIODIC OPERATION MEASUREMENT

Duty Cycle = (N1*L1+N2*L2+...+Nn-1*Ln-1+Nn*Ln)/100 or T

Duty Cycle = (0.32*19+0.56*9)/100msec=55.6%


Average Reading = Peak Reading (dBuV/m) + 20log (Duty cycle)

Average Reading = Peak value + 20log(Duty cycle) , AV=PK-5.10


Date: 21.SEP.2015 08:14:54

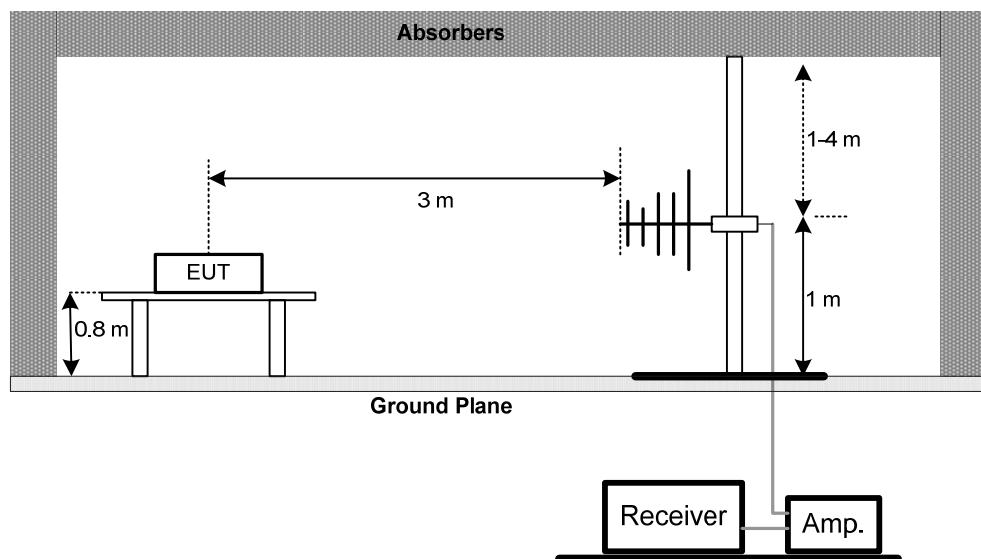
On Time 2 :0.56ms*9

Date: 21.SEP.2015 08:15:17

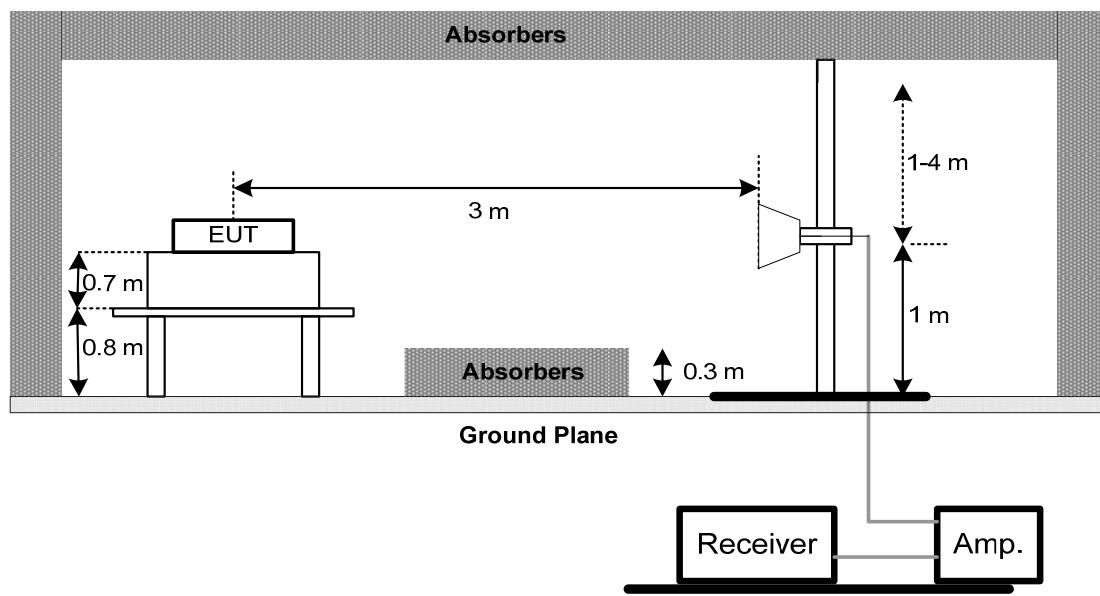
Duty Cycle

Date: 21.SEP.2015 08:14:21

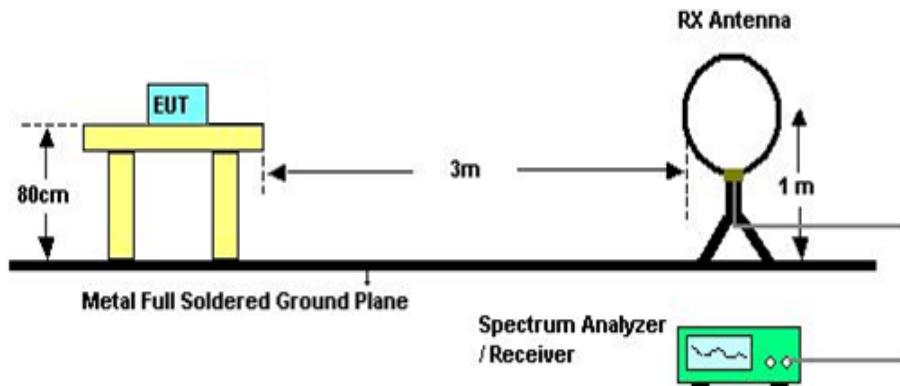
4.2.5 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 or 1.5 meters above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 or 1.5 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.6 DEVIATION FROM TEST STANDARD


No deviation

4.2.7 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

(C) For radiated emissions below 30MHz

4.2.8 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.9 EUT TEST CONDITIONS

Temperature: 23° C
 Relative Humidity: 55%
 Test Voltage: DC 3V

4.3.0 TEST RESULTS (9KHz to 30MHz)

Please refer to the Attachment B.

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);.
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor..

4.3.1 TEST RESULTS (30MHz to 1000MHz)

Please refer to the Attachment C.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』 . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

4.3.2 TEST RESULTS (Above 1000 MHz)

Please refer to the Attachment D.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』 . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

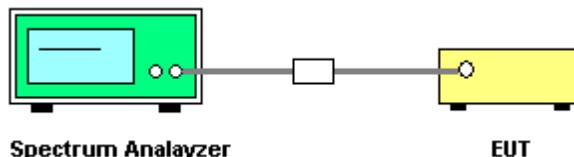
5. 20dB SPECTRUM BANDWIDTH MEASUREMENT

Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20dB Bandwidth Limits (MHz)
433.92 MHz	1.0848

5.1 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	10 kHz
VB	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
3. Measured the spectrum width with power higher than 20dB below carrier.

5.3 TEST SETUP LAYOUT

5.4 TEST DEVIATION

There is no deviation with the original standard.

5.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

5.6 EUT TEST CONDITIONS

Temperature: 23° C

Relative Humidity: 55%

Test Voltage: DC 3V

5.7 TESTRESULTS

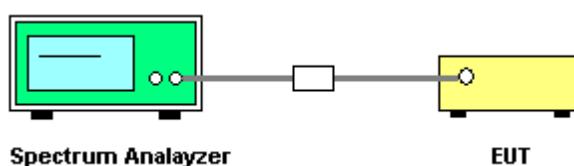
Please refer to the Attachment E.

6. TIMING TESTING

Limit

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.1 MEASURING INSTRUMENTS AND SETTING


Please refer to section 6 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	Zero Span
RB	1MHz
VB	1MHz
Detector	Peak
Trace	Max Hold
Sweep Time	100 seconds

6.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 1MHz and the video bandwidth of 1MHz were used.

6.3 TEST SETUP LAYOUT

6.4 TEST DEVIATION

There is no deviation with the original standard.

6.5 EUT OPERATION DURING TEST

The EUT was programmed to be in normal mode.

6.6 EUT OPERATION DURING TEST

Temperature: 23° C

Relative Humidity: 55%

Test Voltage: DC 3V

6.7 TEST RESULTS

Please refer to the Attachment F.

7. MEASUREMENT INSTRUMENTS LIST AND SETTING

Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2016
2	Amplifier	HP	8447D	2944A09673	Nov. 17, 2015
3	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015
4	Test Cable	emci	LMR-400(30MHz-1GHz)	C-01	Jun. 28, 2016
5	Controller	CT	SC100	N/A	N/A
6	Amplifier	Agilent	8449B	3008A02274	Mar. 28, 2016
7	Receiver	AGILENT	N9038A	MY52130039	Aug. 23, 2015
8	Test Cable	emci	EMC104-SM-S M-10000(1GHz-26.5GHz)	C-68	Jun. 28, 2016
9	Test Cable	emci	RG223(9KHz-30MHz)	C_17	Mar. 13, 2016
10	Controller	CT	SC100	N/A	N/A
11	Horn Antenna	EMCO	3115	9605-4803	Mar. 28, 2016
12	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Mar. 28, 2016
13	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

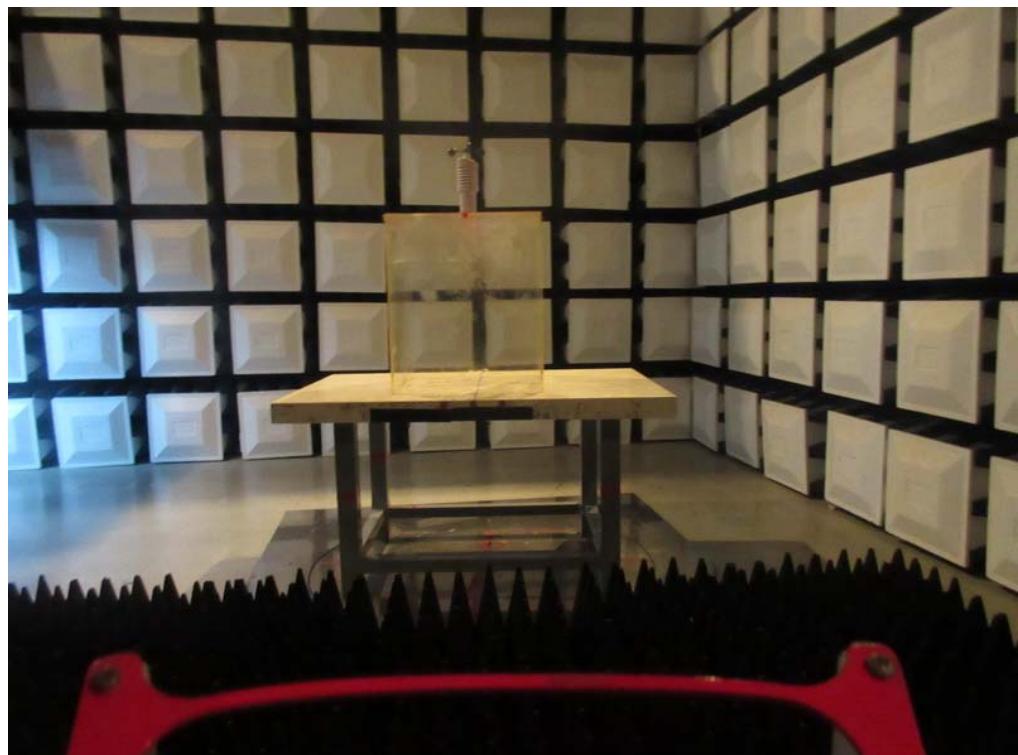
20dB Spectrum Bandwidth Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 02, 2015
2	Test Cable	N/A	RG316	Cable4-001	Jul. 15, 2016
3	Attenuator	AGILENT	6dB	43608 46-202-1	Jul. 07, 2016

Timing Testing					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 02, 2015
2	Test Cable	N/A	RG316	Cable4-001	Jul. 15, 2016
3	Attenuator	AGILENT	6dB	43608 46-202-1	Jul. 07, 2016

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

8. EUT TEST PHOTO**Radiated Measurement Photos****9KHz to 30MHz**


Radiated Measurement Photos

30MHz to 1000MHz

Radiated Measurement Photos

Above 1000MHz

ATTACHMENT A - CONDUCTED EMISSION

Test Mode: N/A

Note: "N/A" denotes test is not applicable to this device.
EUT is used new battery.

ATTACHMENT B - RADIATED EMISSION (9KHz to 30MHz)

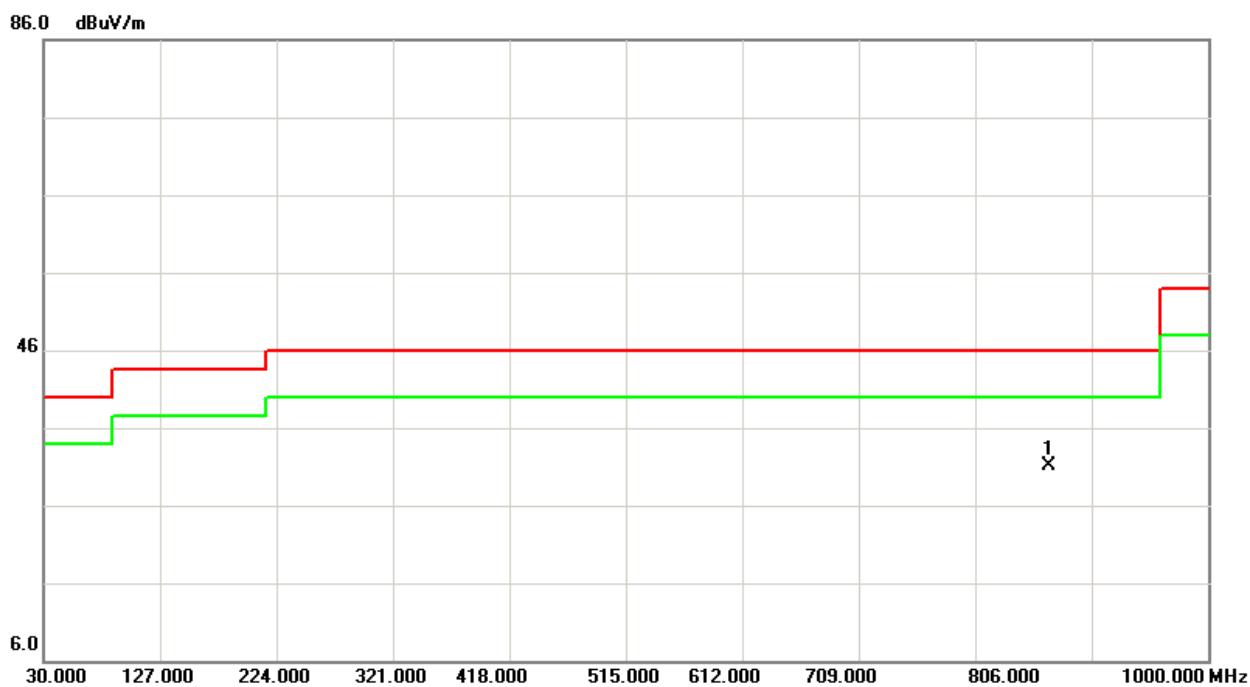
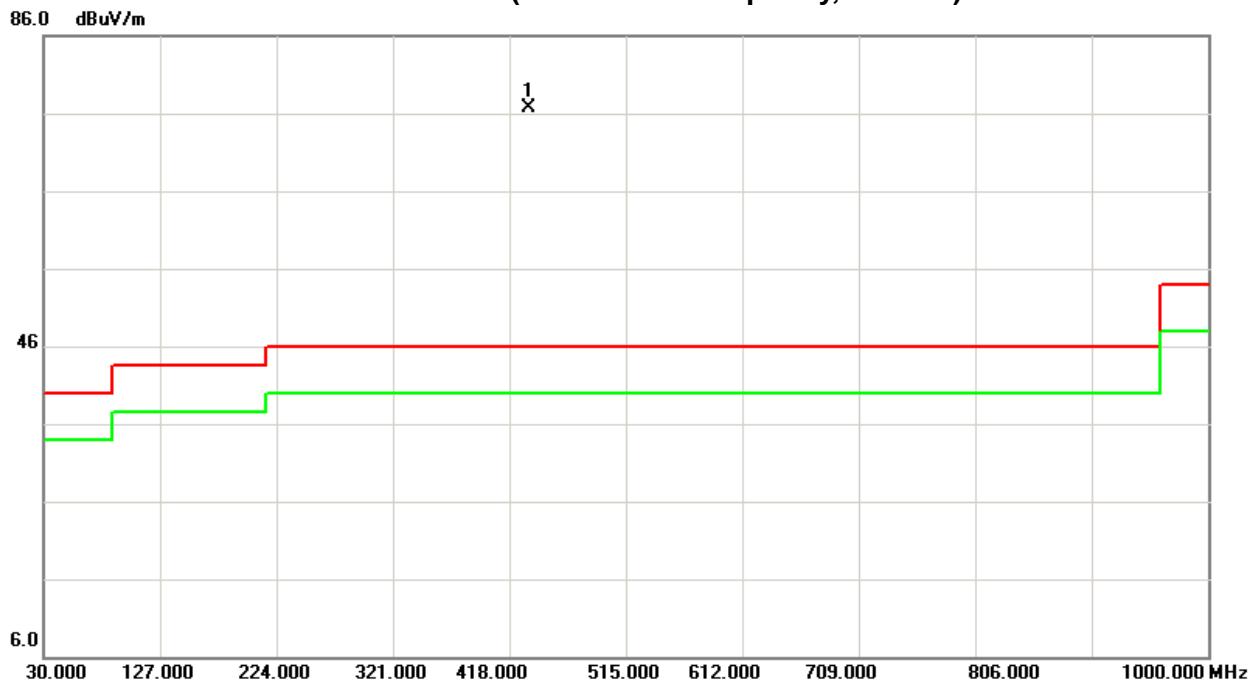
Test Mode:	TX CH 433.92MHz
------------	-----------------

Frequency (MHz)	Ant 0°/90°	Read level dBuV/m	Factor (dB)	Measured(FS) (dBuV/m)	Limit(QP) (dBuV/m)	Margin (dB)	Note
0.0092	0°	13.31	24.98	38.29	128.30	-90.01	AVG
0.0092	0°	14.14	24.98	39.12	148.30	-109.18	PEAK
0.0218	0°	6.62	24.19	30.81	120.84	-90.03	AVG
0.0218	0°	8.11	24.19	32.30	140.84	-108.54	PEAK
0.0314	0°	3.16	23.58	26.74	117.67	-90.93	AVG
0.0314	0°	5.34	23.58	28.92	137.67	-108.75	PEAK
0.0421	0°	1.12	22.90	24.02	115.12	-91.10	AVG
0.0421	0°	2.41	22.90	25.31	135.12	-109.81	PEAK
0.4924	0°	19.27	19.82	39.09	73.76	-34.67	QP
1.7162	0°	23.53	19.53	43.06	69.54	-26.48	QP

Frequency (MHz)	Ant 0°/90°	Read level dBuV/m	Factor (dB)	Measured(FS) (dBuV/m)	Limit(QP) (dBuV/m)	Margin (dB)	Note
0.0093	90°	13.14	24.30	37.44	128.23	-90.79	AVG
0.0093	90°	14.74	24.30	39.04	148.23	-109.19	PEAK
0.0246	90°	7.23	24.01	31.24	119.79	-88.55	AVG
0.0246	90°	8.76	24.01	32.77	139.79	-107.02	PEAK
0.0307	90°	5.20	23.62	28.82	117.86	-89.04	AVG
0.0307	90°	6.16	23.62	29.78	137.86	-108.08	PEAK
0.0424	90°	1.31	22.88	24.19	115.06	-90.87	AVG
0.0424	90°	2.73	22.88	25.61	135.06	-109.45	PEAK
0.4912	90°	22.14	19.82	41.96	73.78	-31.82	QP
1.7136	90°	24.29	19.53	43.82	69.54	-25.72	QP

ATTACHMENT C - RADIATED EMISSION (30MHz to 1000MHz)

Test Mode : TX CH 433.92MHz



About the duty cycle correction factor calculated, please refer to the page 16~18

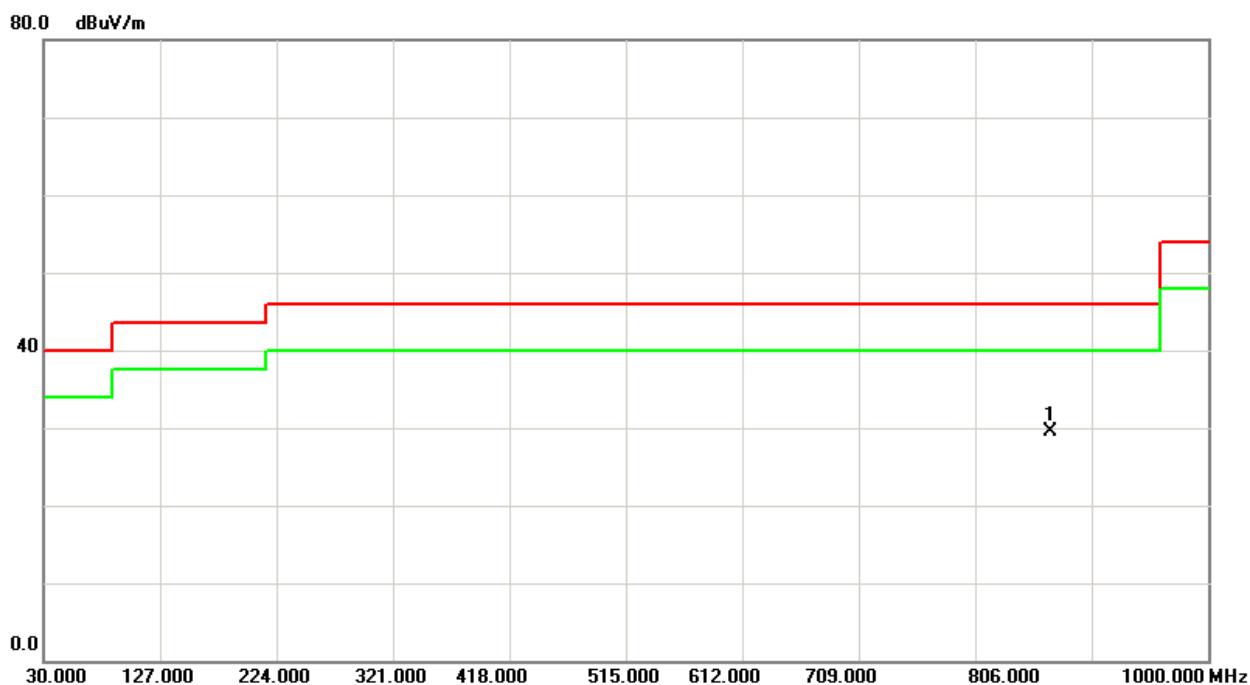
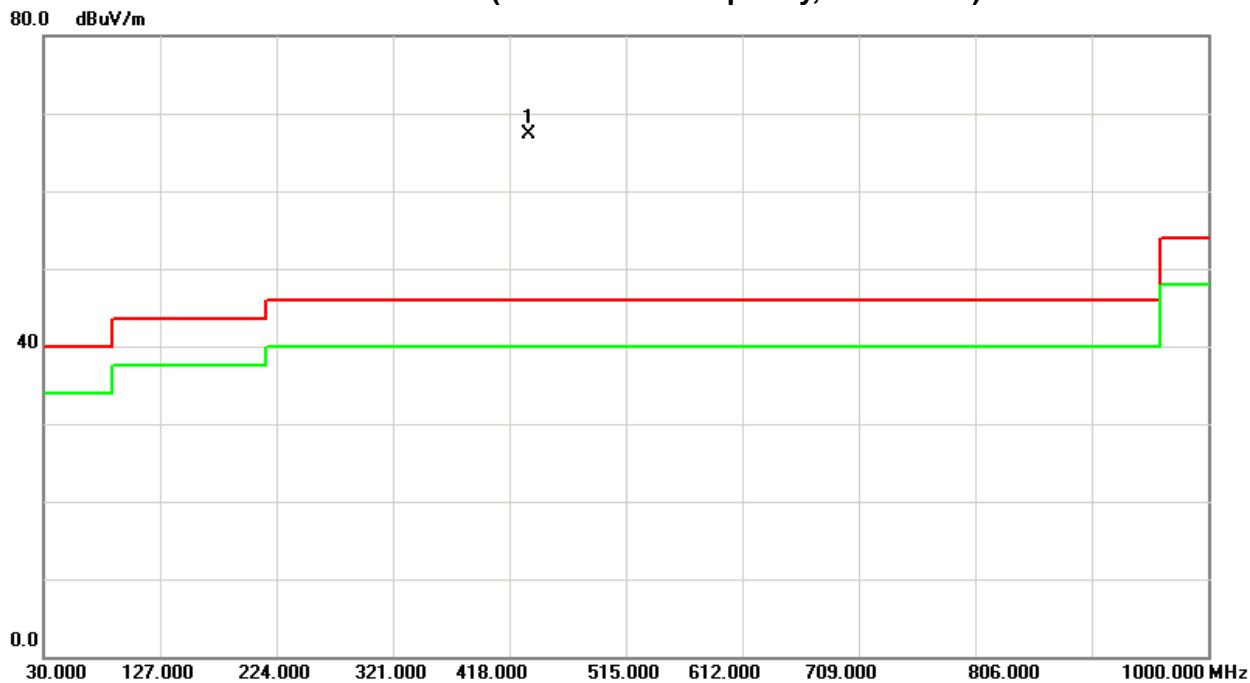
Freq. (MHz)	Ant.Pol. H/V	Reading		Ant./CF CF(dB)	Act.		Limit		Result
		Peak (dBuV)	AV (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	
433.92	V	83.13		-6.35	76.78	71.68	92.87	72.87	X/F
867.11	V	30.37		0.65	31.02	25.92	72.87	52.87	X/H

Remark:

(1) The average value of fundamental frequency is:
 Average = Peak value + 20log(Duty cycle), Final AV=PK-5.10

Orthogonal Axis: Z
TX 433.92 MHz (Fundamental frequency, Vertical)

Test Mode : TX CH 433.92MHz



About the duty cycle correction factor calculated, please refer to the page 16~18

Freq. (MHz)	Ant.Pol. H/V	Reading		Ant./CF CF(dB)	Act.		Limit		Result
		Peak (dBuV)	AV (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	
433.92	H	73.68		-6.35	67.33	62.23	92.87	72.87	X/F
868.08	H	28.80		0.68	29.48	24.38	72.87	52.87	X/H

Remark:

(1) The average value of fundamental frequency is:
 Average = Peak value + 20log(Duty cycle), Final AV= PK-5.10

Orthogonal Axis: Z
TX 433.92 MHz (Fundamental frequency, *Horizontal*)

ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHz)

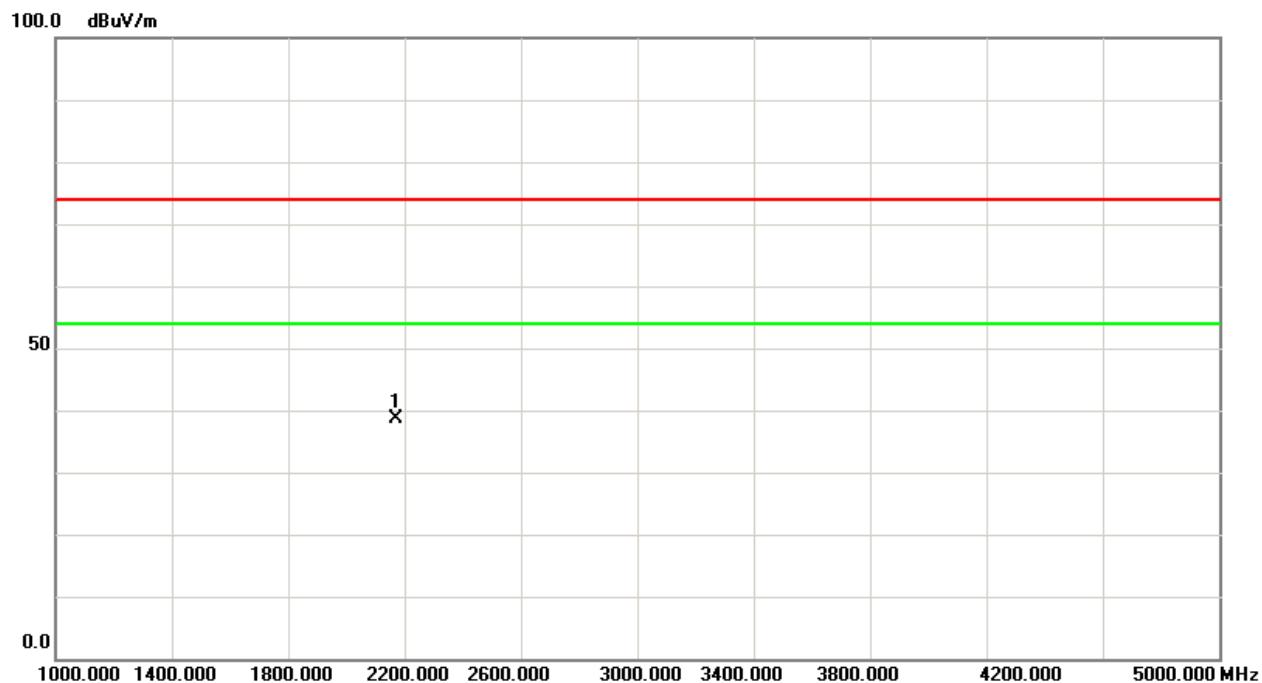
Test Mode : TX CH 433.92MHz

About the duty cycle correction factor calculated, please refer to the page 16~18

Freq. (MHz)	Ant.Pol. H/V	Reading		Ant./CF CF(dB)	Act.		Limit		Margin		Note
		Peak (dBuV)	AV (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	
2169.62	V	44.54		0.47	45.01		74.00	54.00	-28.99		X/E

Remark:

(1) Peak value is much lower than the limit, so AV value isn't shown on this test item.

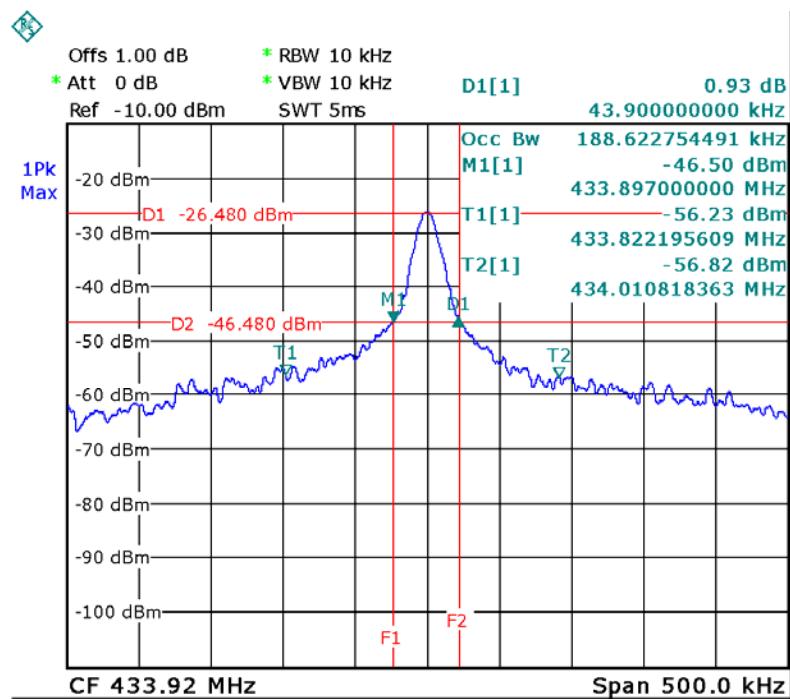

Test Mode :	TX CH 433.92MHz
-------------	-----------------

<i>About the duty cycle correction factor calculated, please refer to the page 16~18</i>	
---	--

Freq. (MHz)	Ant.Pol. H/V	Reading		Ant./CF CF(dB)	Act.		Limit		Margin		Note
		Peak (dBuV)	AV (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)	
2169.62	H	38.12		0.47	38.59		74.00	54.00	-35.41		X/E

Remark:

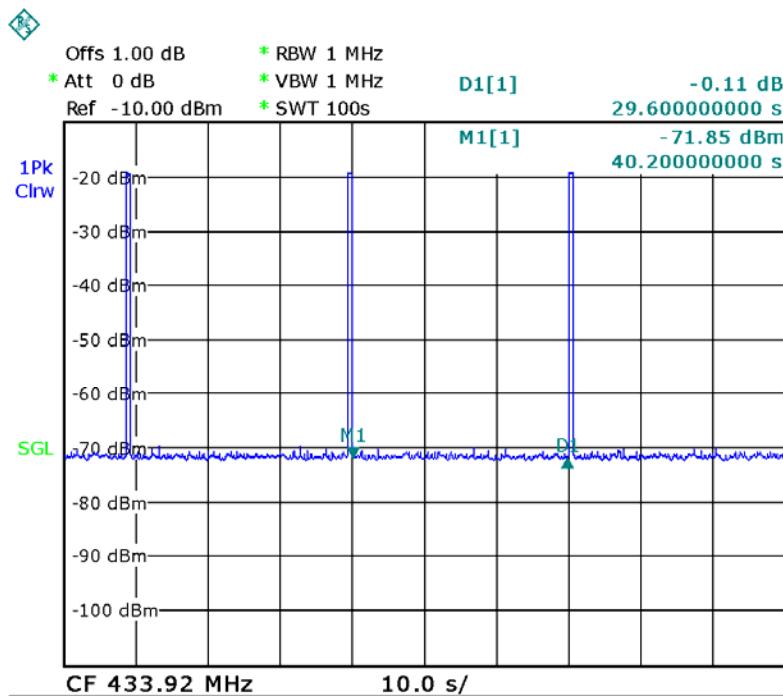
(1) Peak value is much lower than the limit, so AV value isn't shown on this test item.

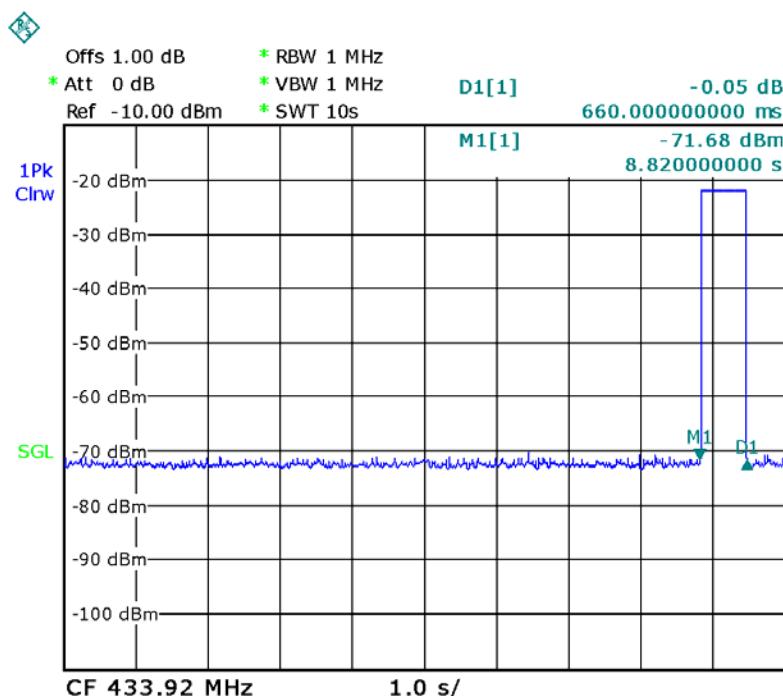


ATTACHMENT E - 20dB SPECTRUM BANDWIDTH

Test Mode: TX CH 433.92MHz

Frequency (MHz)	20dB Bandwidth (kHz)	99% Occupied BW(kHz)	20 dB BW Limits(MHz)
433.92	43.90	188.62	1.0848


TX CH01


ATTACHMENT F - TIMING TESTING

Test Mode: TX CH 433.92MHz

Test Channel	Frequency	Silent period	Silent period limit	Result	
	(MHz)	(s)	(s)		
CH01	433.92	29.6000	>10	PASS	
Silent period =	29.6000	>30*	0.6600	=	19.8000

Date: 30.JUN.2015 08:26:50

Date: 30.JUN.2015 08:28:46