

FCC Radio Test Report

FCC ID: OMOLTV-TH2

This report concerns (check one): Original Grant Class II Change

Project No. : 1705C283
Equipment : TH SENSOR
Model Name : LTV-TH2,LTV-TH1
Applicant : La Crosse Technology Ltd.
Address : 2809 Losey Blvd. South La Crosse, WI 54601. U.S.A.

Date of Receipt : Jun. 01, 2017
Date of Test : Jun. 01, 2017 ~ Jun. 15, 2017
Issued Date : Jun. 16, 2017
Tested by : BTL Inc.

Testing Engineer : shawn xiao
(Shawn Xiao)

Technical Manager : David Mao
(David Mao)

Authorized Signatory : Steven Lu
(Steven Lu)

B T L I N C .

No.3,Jinshagang 1st Road, Shixia,Dalang Town, Dongguan,
Guangdong, China.

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents

	Page
1 . CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 .GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.4 DESCRIPTION OF SUPPORT UNITS	10
4 .EMC EMISSION TEST	11
4.1 CONDUCTED EMISSION MEASUREMENT	11
4.1.1 POWER LINE CONDUCTED EMISSION	11
4.1.2 TEST PROCEDURE	11
4.1.3 DEVIATIONFROMTESTSTANDARD	11
4.1.4 TEST SETUP	12
4.1.5 EUT OPERATING CONDITIONS	12
4.1.6 EUT TEST CONDITIONS	12
4.1.7 TEST RESULTS	12
4.2 RADIATED EMISSION MEASUREMENT	13
4.2.1 RADIATED EMISSION LIMITS	13
4.2.2 TESTP ROCEDURE	15
4.2.3 DEVIATION FROM TEST STANDARD	15
4.2.4 TEST SETUP	16
4.2.5 EUT OPERATING CONDITIONS	17
4.2.6 EUT TEST CONDITIONS	17
4.2.7 TEST RESULTS (BELOW 30MHz)	17
4.2.8 TEST RESULTS (30 TO 1000 MHz)	17
4.2.9 TEST RESULTS(ABOVE1000 MHz)	17
5 . BANDWIDTH TEST	18
5.1 TEST PROCEDURE	18
5.2 DEVIATION FROM STANDARD	18
5.3 TEST SETUP	18
5.4 EUT OPERATION CONDITIONS	18
5.5 EUT TEST CONDITIONS	18
5.6 TEST RESULTS	18
6 . MEASUREMENT INSTRUMENTS LIST AND SETTING	19
7 . EUT TEST PHOTO	20

Table of Contents**Page**

ATTACHMENT A - CONDUCTED EMISSION	23
ATTACHMENT B -RADIATED EMISSION (9KHZ to 30MHZ)	24
ATTACHMENT C -RADIATED EMISSION (30MHZ TO 1000MHZ)	29
ATTACHMENT D -RADIATED EMISSION (ABOVE 1000MHZ)	34
ATTACHMENT E - BANDWIDTH	37

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1705C283	Original Issue.	Jun. 16, 2017

1. CERTIFICATION

Equipment : TH SENSOR
Brand Name : La Crosse Technology
Model Name : LTV-TH2,LTV-TH1
Applicant : La Crosse Technology Ltd.
Manufacturer : La Crosse Technology Ltd.
Address : 2809 Losey Blvd. South La Crosse, WI 54601. U.S A.
Date of Test : Jun. 01, 2017 ~ Jun. 15, 2017
Test Sample : Engineering Sample
Standard(s) : FCC Part15, Subpart C(15.249)/ ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1705C283) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart C (15.249)			
StandardSection	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	Note (1)
15.209 15.249	Radiated Spurious Emission	PASS	
-	Bandwidth	PASS	

NOTE:

- (1)"N/A" denotes test is not applicable in this test report.
- (2) EUT is used new battery.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, DalangTown,Dongguan, Guangdong, China.

BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty figures shall be calculated according the methods described in the ETSI TR 100 028 and shall correspond to an expansion factor (coverage factor) $k=1.96$ or $k=2$ (which provide confidence levels of respectively 90% and 95.45% in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement Uncertainty for a Level of Confidence of 95 %, $U=2xU_c(y)$.

The BTL measurement uncertainty as below table:

A. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB03	CISPR	9KHz~30MHz	V	3.79
		9KHz~30MHz	H	3.57
		30MHz~200MHz	V	3.82
		30MHz~200MHz	H	3.78
		200MHz~ 1,000MHz	V	4.10
		200MHz~ 1,000MHz	H	4.06
		1GHz~18GHz	V	3.12
		1GHz~18GHz	H	3.68
		18GHz~40GHz	V	4.15
		18GHz~40GHz	H	4.14

3.GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	TH SENSOR	
Brand Name	La Crosse Technology	
Model Name	LTV-TH2,LTV-TH1	
Model Difference	Only differ in model name and model LTV-TH1 without LCD.	
Product Description	Operation Frequency	915 MHz
	Modulation Technology	FSK
	Data rate	9.6Kbps
	Field Strength	80.47dBuV/m
Power Source	Supplied from 2*AA battery.	
Power Rating	DC 3V	

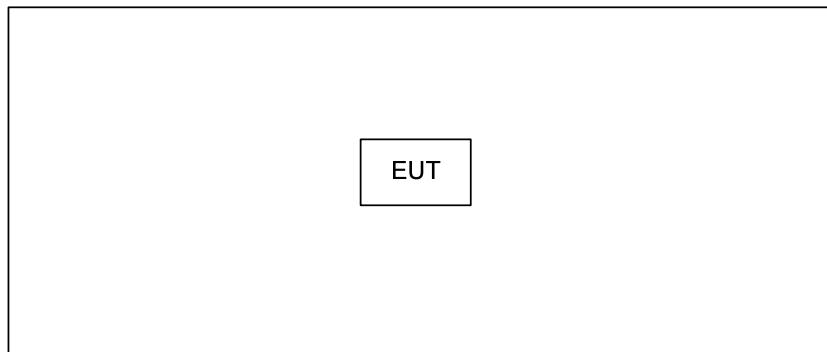
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Chann	Frequency (MHz)
01	915

Table for Filed Antenna:


Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	0

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode
Final Test Mode	Description
Mode 1	TX Mode

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

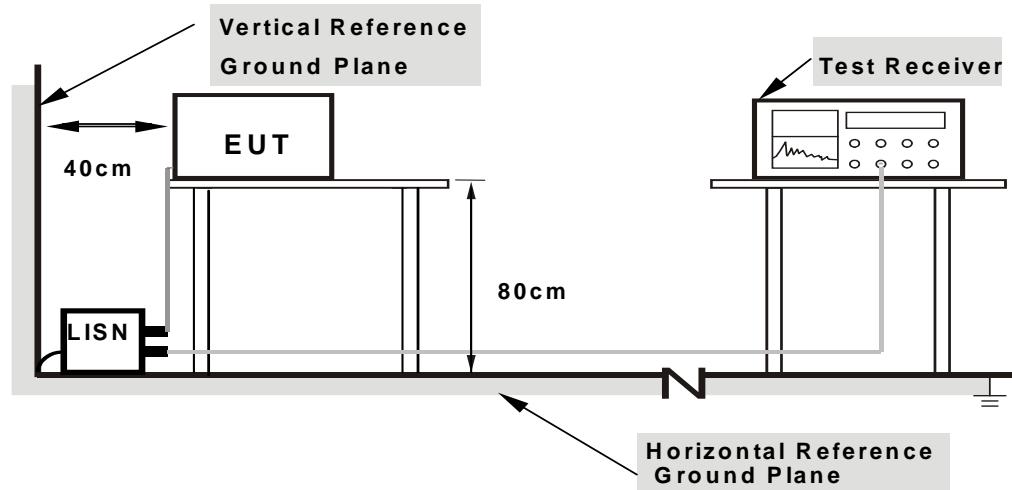
Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 -0.5	66 to 56*	56 to 46*
0.50 -5.0	56	46
5.0 -30.0	60	50

Note:

(1) The limit of " * " decreases with the logarithm of the frequency

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.2 TEST PROCEDURE

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the groundplane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting mode.

4.1.6 EUT TEST CONDITIONS

Temperature: N/A

Relative Humidity: N/A

Test Voltage: N/A

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of『Note』. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a “*” marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (FCC 15.209 and 15.249)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Harmonic emissions limits comply with below 54dB_{UV}/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Fundamental Frequency	Field Strength of Fundamental (micorvolts/meter)	Field Strength of Harmonics (micorvolts/meter)
902-928	50	500

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dB_{UV}/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.209)

FREQUENCY (MHz)	(dB _{UV} /m) (at 3m)	
	PEAK	AVERAGE
Above 1000	74	54

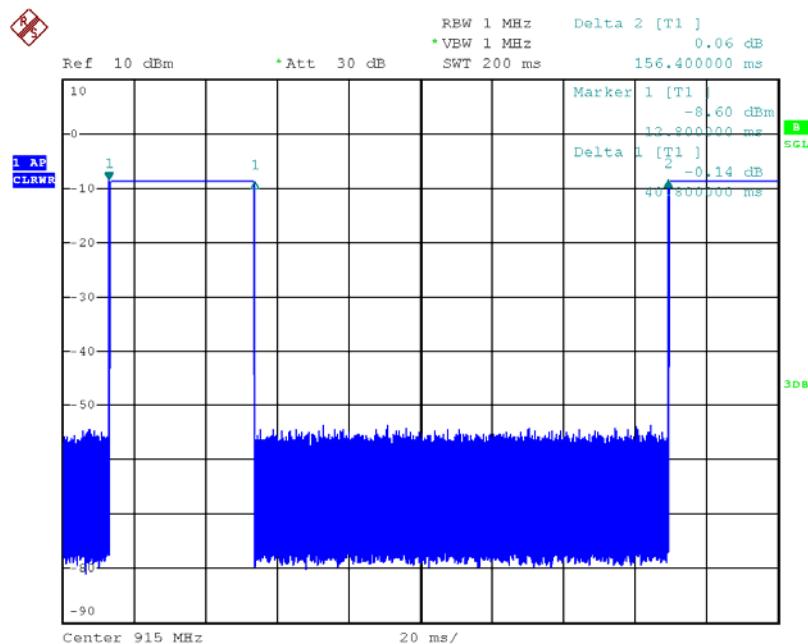
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dB_{UV}/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector
Start ~ Stop Frequency	Above 1GHz for AVG detector

DWELL TIME OF PERIODIC OPERATION MEASUREMENT


Duty Cycle = On Time/100

T_{ON} : 40.80 ms

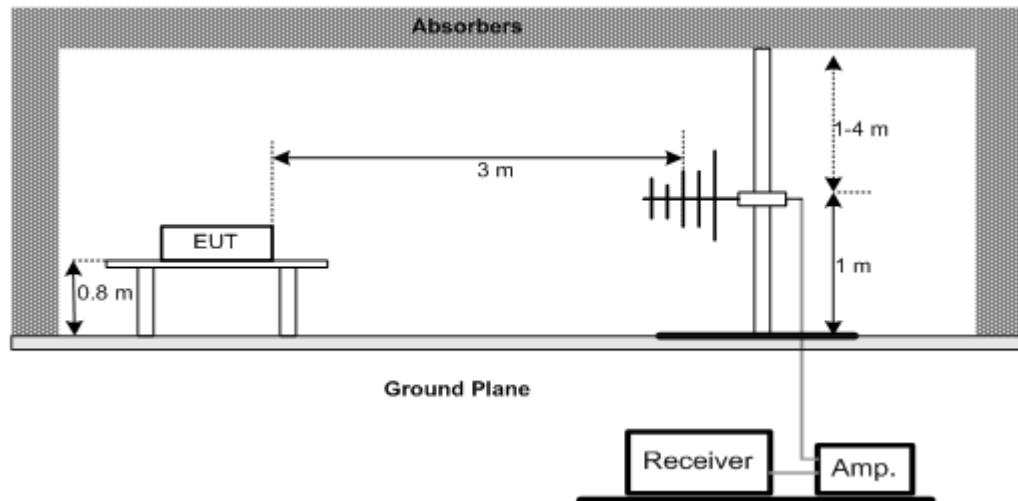
Duty Cycle = $40.8/100=40.8\%$

Average Reading = Peak value + $20\log$ (Duty cycle) , AV=Peak-7.79

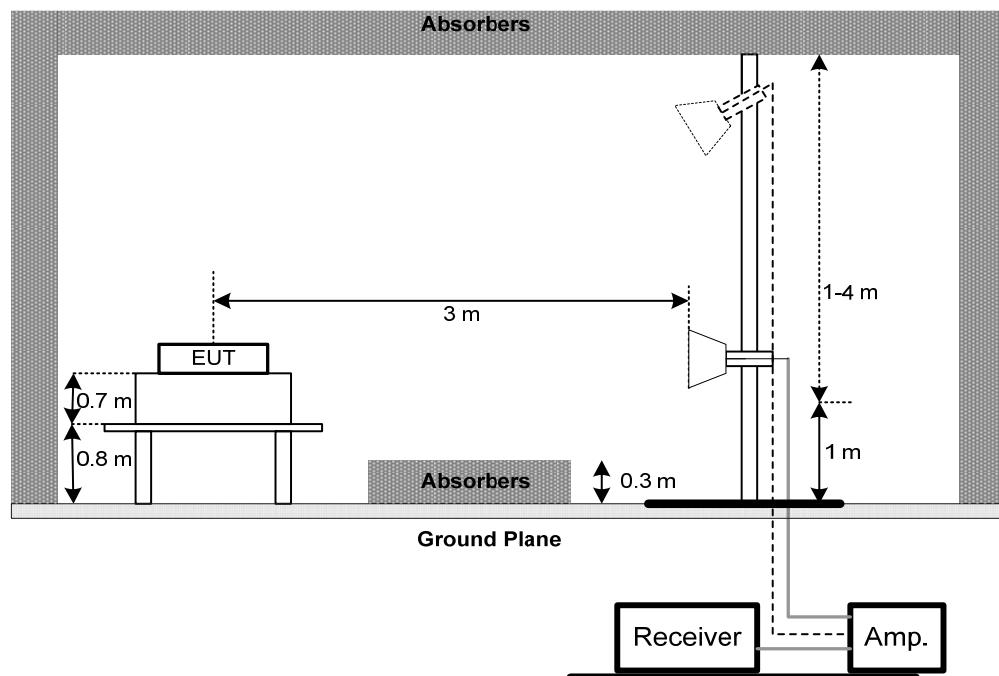
On Time & Total Time

Date: 14.JUN.2017 18:46:33

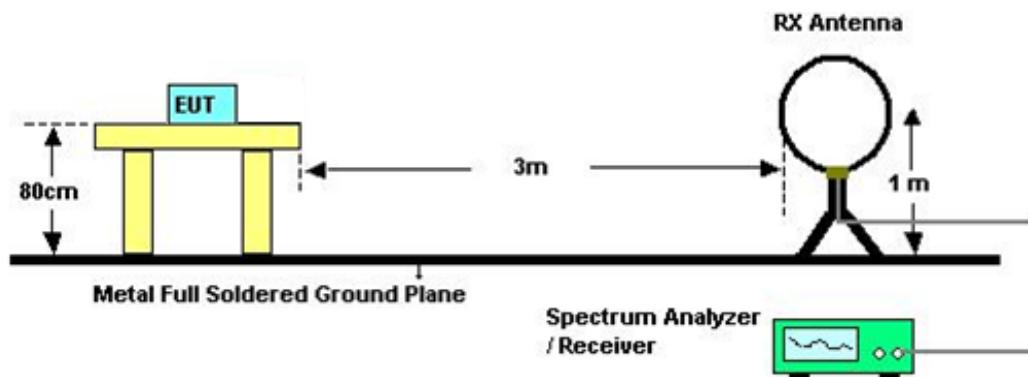
4.2.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

(C) For radiated emissions below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 EUT TEST CONDITIONS

Temperature: 24°C

Relative Humidity: 52%

Test Voltage: DC 3V

4.2.7 TEST RESULTS (BELOW 30MHz)

Please refer to the Attachment B.

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);.
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor..

4.2.8 TEST RESULTS (30 TO 1000 MHz)

Please refer to the Attachment C

4.2.9 TEST RESULTS(ABOVE1000 MHz)

Please refer to the Attachment D

Remark:

- (1) EUT Orthogonal Axis:
 "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (2) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

5. BANDWIDTH TEST

5.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3kHz, VBW=3kHz, Sweep time = Auto.

5.2 DEVIATION FROM STANDARD

No deviation.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.5 EUT TEST CONDITIONS

Temperature: 25°C
Relative Humidity: 55%
Test Voltage: DC 3V

5.6 TEST RESULTS

Please refer to the Attachment E

6. MEASUREMENT INSTRUMENTS LIST AND SETTING

Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2018
2	Amplifier	HP	8447D	2944A09673	Feb. 22, 2018
3	Receiver	AGILENT	N9038A	MY52130039	Sep. 04, 2017
4	Cable	emci	LMR-400(30MHz-1GHz)(8m+5m)	N/A	Jun. 27, 2017
5	Antenna	ETS	3115	00075789	Mar. 28, 2018
6	Amplifier	Agilent	8449B	3008A02274	Feb. 22, 2018
7	Cable	emci	EMC104-SM-SM-10000 (1GHz—26.5GHz)(10m)	N/A	Jun. 30, 2017
8	Controller	CT	SC100	N/A	N/A
9	Position Control	MF	MF-7802	MF780208416	N/A
10	Active Loop Antenna	Schwarzbeck	HXYZ9170	9170-110	Mar. 26, 2018
11	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

Bandwidth

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Sep. 04, 2017
2	Cable	emci	EMC104-SM-SM-9000(0.01GHz—26.5GHz)	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

7. EUT TEST PHOTO

Radiated Measurement Photos

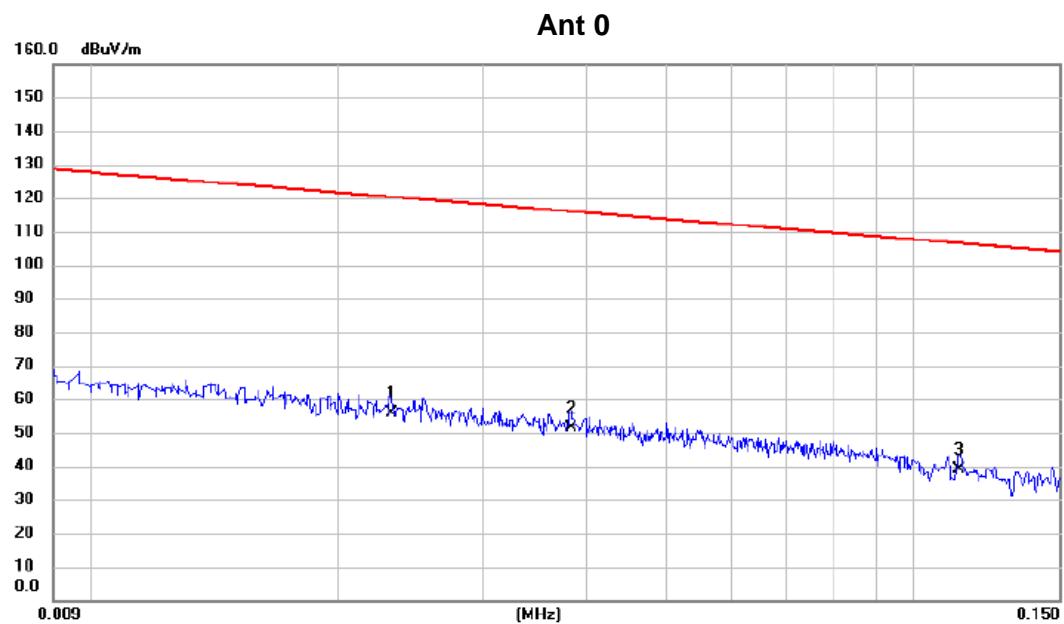
9KHz to 30MHz

Radiated Measurement Photos

30MHz to 1000MHz

Radiated Measurement Photos

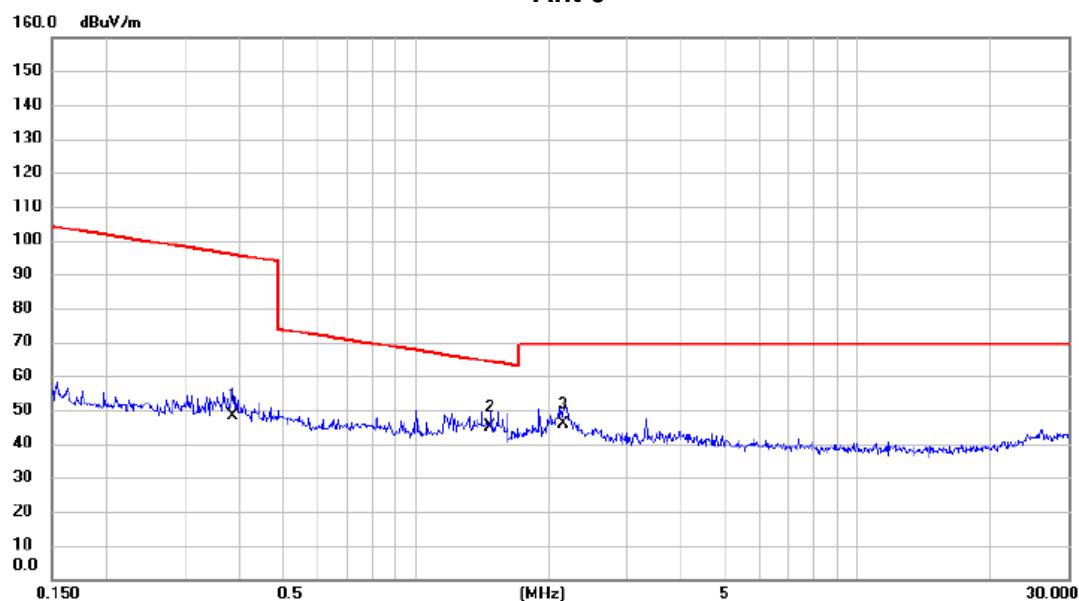
Above 1000MHz


ATTACHMENT A - CONDUCTED EMISSION

Test Mode: N/A

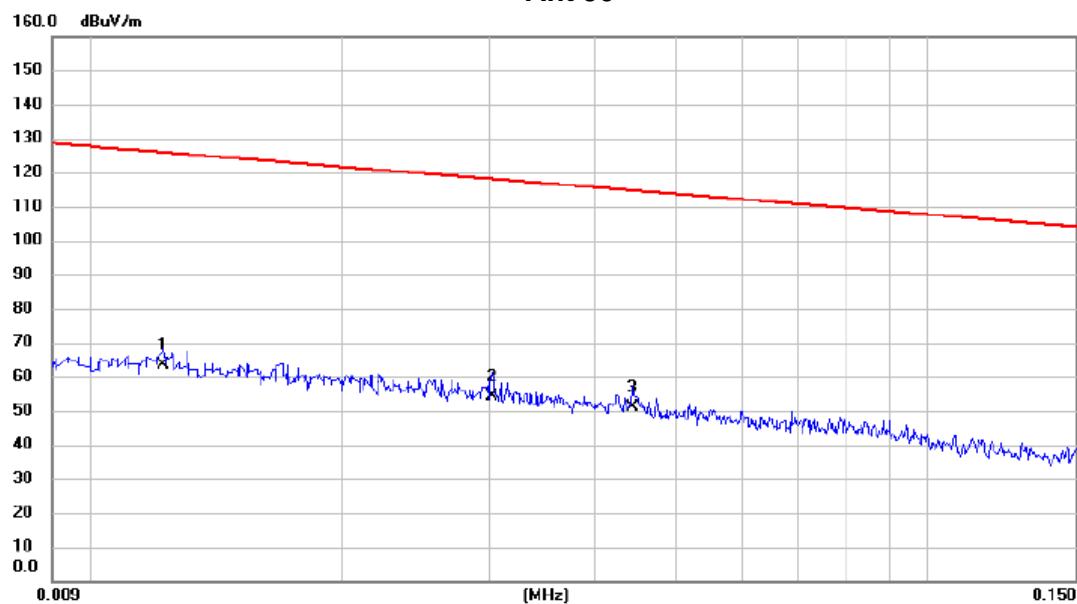
Note: "N/A" denotes test is not applicable to this device.

ATTACHMENT B -RADIATED EMISSION (9KHZ to 30MHZ)


Test Mode: TX Mode

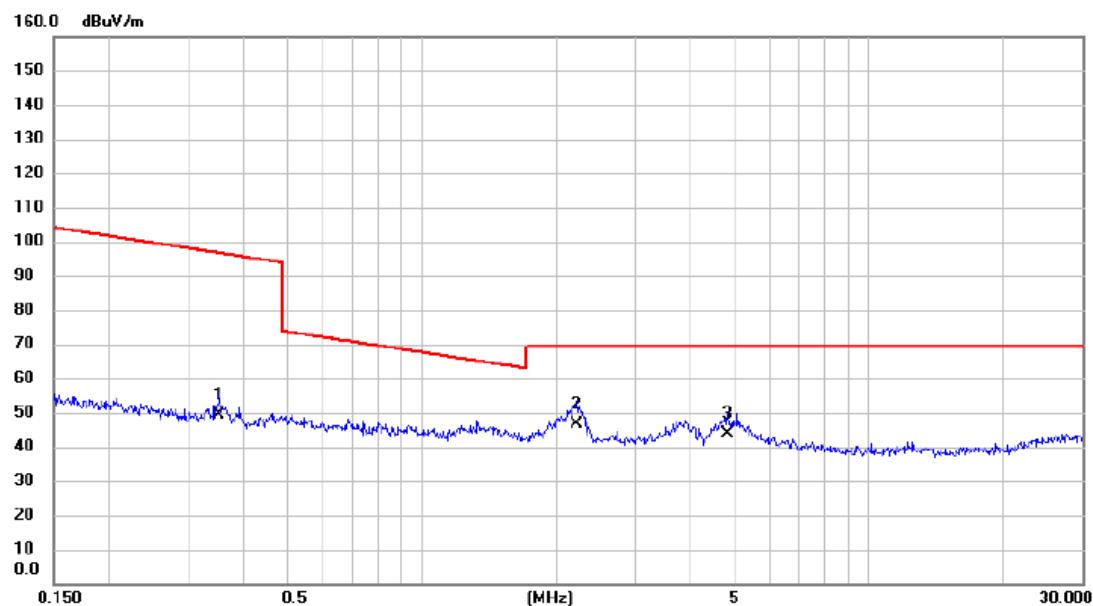
No.	Mk.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
		Freq.	Level	Factor				
			MHz	dBuV	dB	dBuV/m	dB	
1	*	0.023	36.29	19.52	55.81	120.30	-64.49	AVG
2		0.038	32.17	19.07	51.24	115.92	-64.68	AVG
3		0.114	21.58	17.44	39.02	106.51	-67.49	AVG

Test Mode: TX Mode


Ant 0

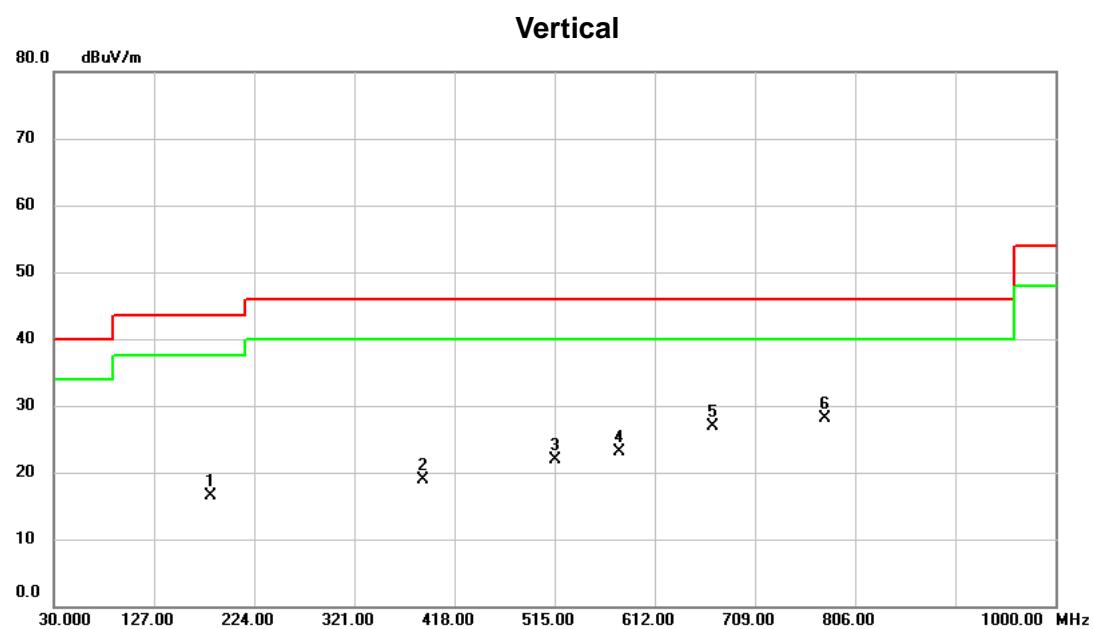
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Comment
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB	Detector	
1		0.385	31.58	16.55	48.13	95.89	-47.76	AVG
2 *		1.480	29.36	15.70	45.06	64.20	-19.14	QP
3		2.155	30.29	15.46	45.75	69.54	-23.79	QP

Test Mode: TX Mode

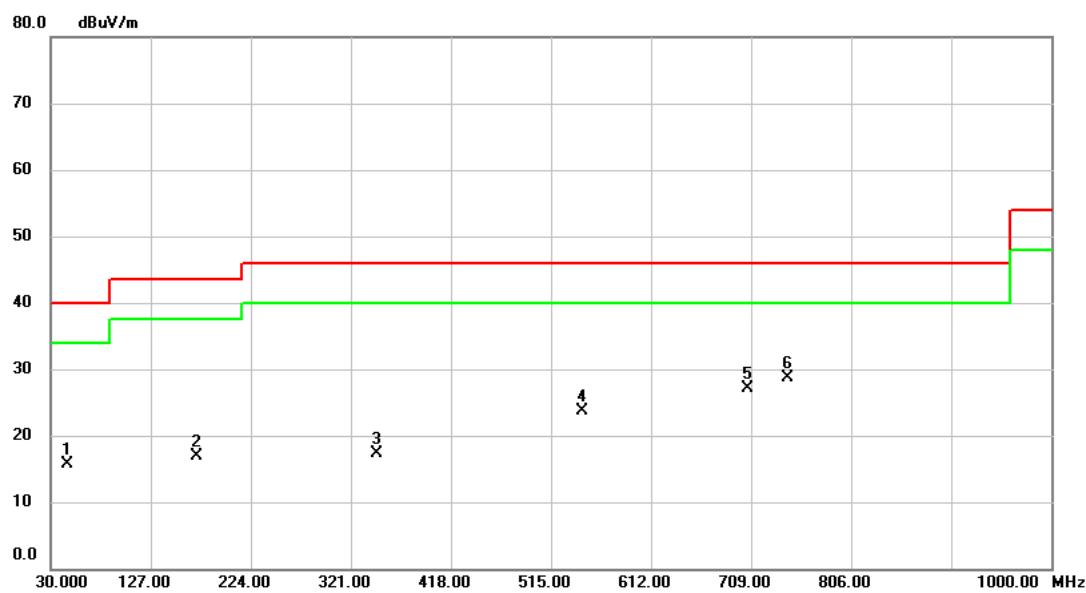

Ant 90

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Comment
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB	Detector	
1	*	0.012	42.65	20.63	63.28	125.88	-62.60	AVG
2		0.030	34.72	19.31	54.03	118.00	-63.97	AVG
3		0.044	32.16	18.89	51.05	114.66	-63.61	AVG

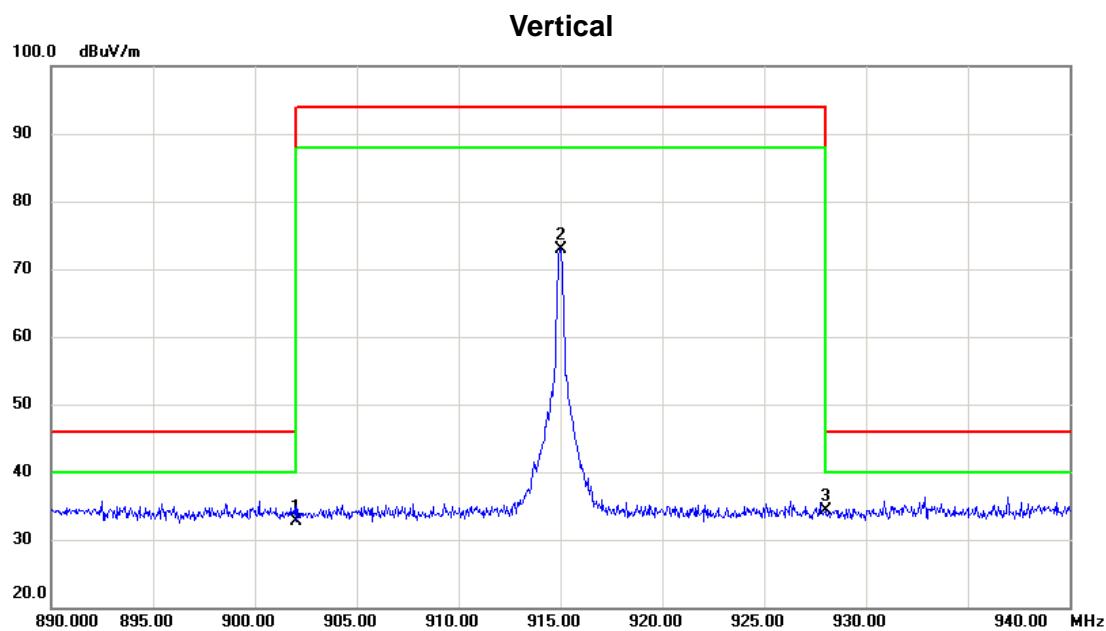
Test Mode: TX Mode


Ant 90

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB	Detector	Comment
1		0.352	32.67	16.58	49.25	96.67	-47.42	AVG
2 *		2.225	31.26	15.44	46.70	69.54	-22.84	QP
3		4.822	29.43	14.49	43.92	69.54	-25.62	QP


ATTACHMENT C -RADIATED EMISSION (30MHZ TO 1000MHZ)

Test Mode: TX Mode


No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1		181.320	28.30	-11.75	16.55	43.50	-26.95	peak	
2		387.930	29.86	-10.86	19.00	46.00	-27.00	peak	
3		515.000	29.57	-7.60	21.97	46.00	-24.03	peak	
4		578.050	29.25	-6.10	23.15	46.00	-22.85	peak	
5		668.260	30.80	-3.93	26.87	46.00	-19.13	peak	
6 *		776.900	28.95	-0.79	28.16	46.00	-17.84	peak	

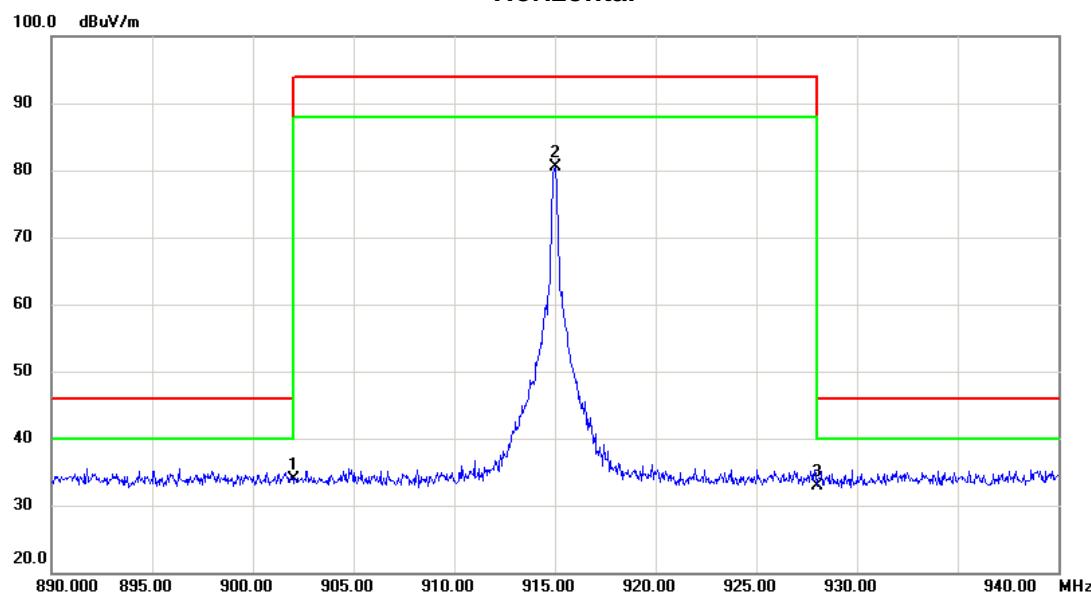
Test Mode: TX Mode

Horizontal

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1		45.520	28.44	-12.81	15.63	40.00	-24.37	peak	
2		171.620	28.80	-11.90	16.90	43.50	-26.60	peak	
3		346.220	28.82	-11.42	17.40	46.00	-28.60	peak	
4		545.070	30.61	-6.96	23.65	46.00	-22.35	peak	
5		706.090	29.83	-2.73	27.10	46.00	-18.90	peak	
6 *		744.890	30.19	-1.55	28.64	46.00	-17.36	peak	

Orthogonal Axis :	X
Test Mode :	TX Mode

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		902.000	26.65	5.95	32.60	46.00	-13.40	peak	
2		915.050	66.87	6.02	72.89	94.00	-21.11	peak	
3 *		928.000	28.24	6.08	34.32	46.00	-11.68	peak	


(1) The QP value of fundamental frequency is:

QP Reading = Peak value + 20log(Duty cycle) , QP=Peak-7.79

Frequency (MHz)	Peak value (dBuV/m)	QP value (dBuV/m)	QP Limit (dBuV/m)	Result
915	72.89	65.10	94	PASS

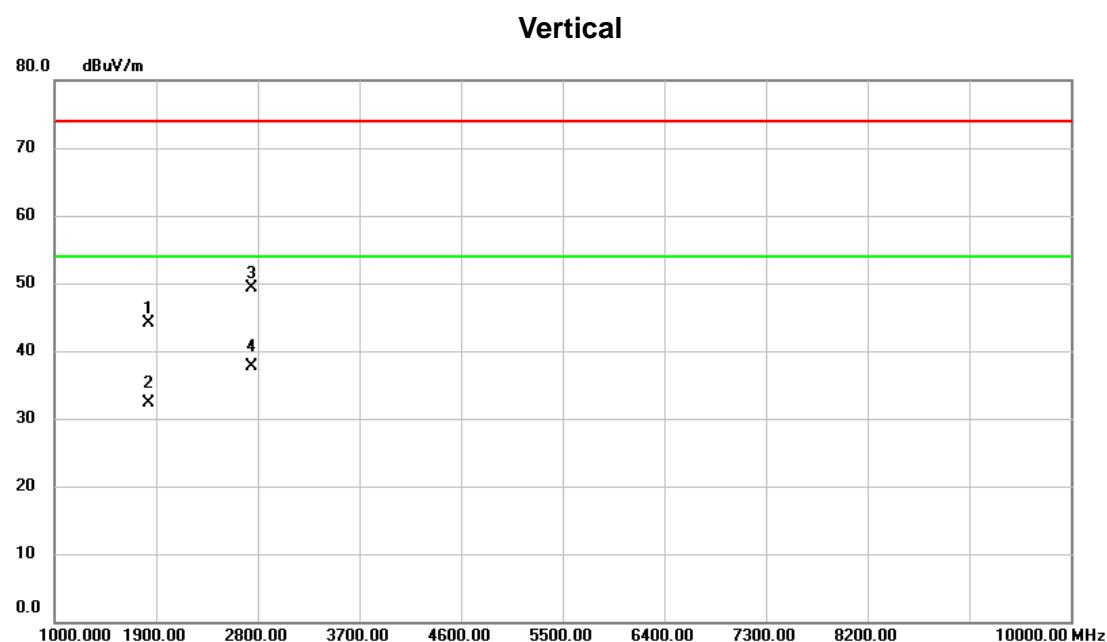
Orthogonal Axis : X

Test Mode : TX Mode

Horizontal

No.	Mk.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	902.000	27.87	5.95	33.82	46.00	-12.18	peak
2		915.000	74.45	6.02	80.47	94.00	-13.53	peak
3		928.000	26.76	6.08	32.84	46.00	-13.16	peak

(1) The QP value of fundamental frequency is:


$$\text{QP Reading} = \text{Peak value} + 20\log(\text{Duty cycle}), \text{QP} = \text{Peak} - 7.79$$

Frequency (MHz)	Peak value (dBuV/m)	QP value (dBuV/m)	QP Limit (dBuV/m)	Result
915	80.47	72.68	94	PASS

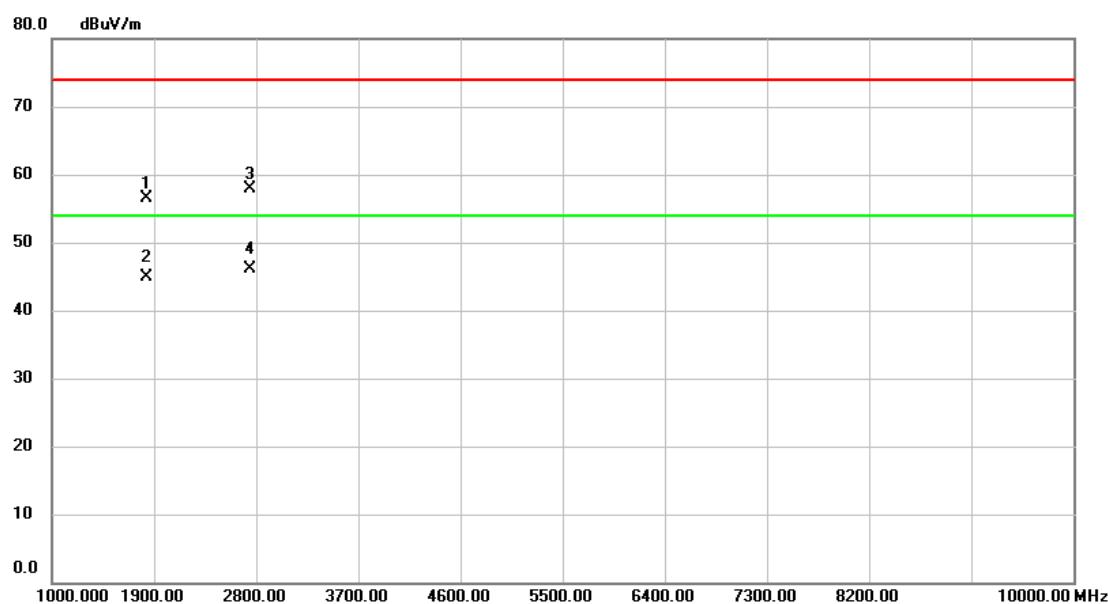
ATTACHMENT D -RADIATED EMISSION (ABOVE 1000MHZ)

Orthogonal Axis : X

Test Mode : TX Mode

No.	Mk.	Reading	Correct	Measure-	Limit	Margin	
		Freq.	Level	Factor			
		MHz	dBuV	dB	dBuV/m	dB	Detector
1		1828.000	47.67	-3.59	44.08	74.00	-29.92 peak
2		1828.000	35.97	-3.59	32.38	54.00	-21.62 AVG
3		2746.000	49.16	0.16	49.32	74.00	-24.68 peak
4 *		2746.000	37.46	0.16	37.62	54.00	-16.38 AVG

Remark:


(1) The average value of fundamental frequency is:

Average Reading = Peak value + 20log(Duty cycle) , AV=Peak-7.79

Frequency (MHz)	Peak value (dBuV/m)	AV value (dBuV/m)	AV Limit (dBuV/m)	Result
1828.00	47.67	39.88	54.00	PASS
2746.00	49.16	41.37	54.00	PASS

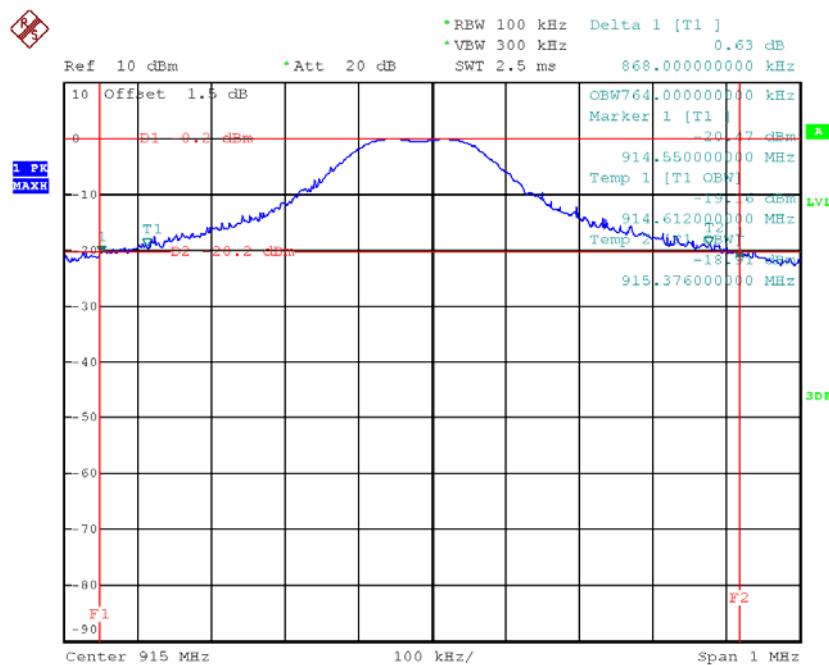
Orthogonal Axis :	X
Test Mode :	TX Low Channel

Horizontal

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1		1828.000	60.19	-3.59	56.60	74.00	-17.40	peak	
2		1828.000	48.49	-3.59	44.90	54.00	-9.10	AVG	
3		2746.000	57.72	0.16	57.88	74.00	-16.12	peak	
4	*	2746.000	46.02	0.16	46.18	54.00	-7.82	AVG	

Remark:

- (1) The average value of fundamental frequency is:
 Average Reading = Peak value + 20log(Duty cycle) , AV=Peak-7.79


Frequency (MHz)	Peak value (dBuV/m)	AV value (dBuV/m)	AV Limit (dBuV/m)	Result
1828.00	60.19	52.40	54.00	PASS
2746.00	57.72	49.93	54.00	PASS

ATTACHMENT E - BANDWIDTH

Test Mode : TX Mode

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)
915	0.868	0.764

TX Mode

Date: 7.JUN.2017 09:35:24