



Shenzhen TCT Testing Technology Co., Ltd.

## FCC ID TEST REPORT

for

COOL-CO TECHNOLOGY CO.,LIMITED

Model: BLUET40

FCC ID: OMABLUET40

Prepared for: COOL-CO TECHNOLOGY CO.,LIMITED  
5 Floor, 3Building Rongtaijia Industrial, Lisongl Gongming Town,  
Shenzhen, China.

Prepared by: Shenzhen TCT Testing Technology Co.,Ltd  
1F, Building 1, Yibaolai Industrial Park, Qiaotou Village, Fuyong Town,  
Baoan District, Shenzhen, Guangdong, China

TEL: +86-0755-27363466  
FAX: +86-0755-27673332

Report Number: TCS1213003-1  
Date of Test: January 06~16, 2013  
Date of Report: January 16, 2013

*The results detailed in this test report relate only to the specific sample(s) tested. It is the Application's responsibility to ensure that all production units are manufactured with equivalent EMC characteristics. This report is not to be reproduced except in full, without written approval from TCT Testing Technology.*

## Table of Contents

|             |                                                |           |
|-------------|------------------------------------------------|-----------|
| <b>1.0</b>  | <b>General Details .....</b>                   | <b>3</b>  |
| 1.1         | Test Lab Details.....                          | 3         |
| 1.2         | Applicant Details.....                         | 3         |
| 1.3         | Description of EUT .....                       | 4         |
| 1.4         | Submitted Sample.....                          | 4         |
| 1.5         | Test Duration.....                             | 4         |
| 1.6         | Test By.....                                   | 4         |
| <b>2.0</b>  | <b>List of Measurement Equipment.....</b>      | <b>5</b>  |
| <b>3.0</b>  | <b>Technical Details.....</b>                  | <b>6</b>  |
| 3.1         | Summary of Test Results.....                   | 6         |
| 3.2         | Test Standards.....                            | 6         |
| <b>4.0</b>  | <b>EUT Modification.....</b>                   | <b>6</b>  |
| <b>5.0</b>  | <b>Measurement Uncertainty.....</b>            | <b>6</b>  |
| <b>6.0</b>  | <b>Power Line Conducted Emission Test.....</b> | <b>7</b>  |
| 6.1         | Schematics of the test.....                    | 7         |
| 6.2         | Test Method and Test Procedure.....            | 7         |
| 6.3         | EUT Operating Condition.....                   | 7         |
| 6.4         | Test Equipment.....                            | 7         |
| 6.5         | Conducted Emission Limit.....                  | 8         |
| 6.6         | Photo documentation of the test set-up .....   | 8         |
| 6.7         | Test specification.....                        | 8         |
| 6.8         | Test result.....                               | 8         |
| <b>7.0</b>  | <b>20 dB Bandwidth Measurement.....</b>        | <b>11</b> |
| 7.1         | Test Equipment.....                            | 11        |
| 7.2         | Test Specification.....                        | 11        |
| 7.3         | Limit.....                                     | 11        |
| 7.4         | Test Result.....                               | 11        |
| <b>8.0</b>  | <b>Maximum Peak Output Power.....</b>          | <b>14</b> |
| <b>9.0</b>  | <b>Carrier Frequency Separation.....</b>       | <b>15</b> |
| <b>10.0</b> | <b>Number of Hopping Channels.....</b>         | <b>18</b> |
| <b>11.0</b> | <b>Time of Occupancy (Dwell Time).....</b>     | <b>20</b> |
| <b>12.0</b> | <b>Band age Measurement.....</b>               | <b>23</b> |
| <b>13.0</b> | <b>Spurious Emission Test.....</b>             | <b>28</b> |
| <b>14.0</b> | <b>Antenna Requirement.....</b>                | <b>37</b> |
| <b>15.0</b> | <b>Maximum Permissible Exposure.....</b>       | <b>38</b> |
| <b>16.0</b> | <b>FCC ID Label.....</b>                       | <b>39</b> |
| <b>17.0</b> | <b>Photos of testing.....</b>                  | <b>40</b> |
| <b>18.0</b> | <b>Photos for the EUT.....</b>                 | <b>42</b> |



Shenzhen TCT Testing Technology Co., Ltd.

## 1.0 General Details

### 1.1 Test Lab Details

Name : Shenzhen Tongce Testing Lab  
Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan District, Shenzhen City, China  
Telephone: +86-755-33026382  
Fax: +86-755-27952656

Site Listed with Federal Communication Commission

Registration Number: 572331

For 3m chamber

Site Listed with Industry Canada of Ottawa, Canada

Registration Number IC: 10668A-1

For 3m chamber

### 1.2 Applicant Details

Applicant: COOL-CO TECHNOLOGY CO.,LIMITED  
Address: 5 Floor, 3Building Rongtaijia Industrial, Lisongl Gongming Town, Shenzhen, China.  
Telephone: 0086 755 29168210  
Fax: 0086 755 29168210

Manufacturer: SHENZHEN KINGFEEL ELECTRONIC CO., LTD

Address: 5 Floor, 3Building Rongtaijia Industrial, Lisongl Gongming Town, Shenzhen, China.

Telephone: 0086 755 29168210

Fax: 0086 755 29168210

1.3 Description of EUT

Product: Multimedia speaker  
Model No.: BLUET40  
Additional Model No.: N/A  
Brand Name:   
Additional Trade Name: N/A  
Rating: AC 110-220V 50-60Hz  
Modulation Type: GFSK  
Transfer Data Rate: 1 Mbps  
Channel number: 79  
Channel spacing: 1 MHz  
Operation Frequency: 2402~2480MHz  
Antenna Designation: A PCB antenna and the maximum gain is 0 dBi.

1.4 Statement: N/A

1.5 Test Duration

2013-01-06 to 2013-01-16

1.6 Test Engineer

The sample tested by



Printed name: Jack Kang

## 2.0 Test equipments and Associated Equipment used during the test.

### 2.1 Test Equipments

| Instrument Type     | Manufacturer  | Model   | Serial No.  | Date of Cal. | Due Date   |
|---------------------|---------------|---------|-------------|--------------|------------|
| ESPI Test Receiver  | ROHDE&SCHWARZ | ESPI 3  | 100379      | 2012-12-03   | 2013-12-02 |
| Ultra Broadband ANT | ROHDE&SCHWARZ | HL562   | 100157      | 2012-12-03   | 2013-12-02 |
| System Controller   | CT            | SC100   | -           | 2012-02-17   | 2013-02-16 |
| Spectrum Analyzer   | ROHDE&SCHWARZ | FSEM    | 848597/001  | 2012-02-17   | 2013-02-16 |
| Pre-amplifier       | Teseq         | LAN6900 | --          | 2012-02-17   | 2013-02-16 |
| Pre-amplifier       | Agilent       | 8447D   | 83153007374 | 2012-02-17   | 2013-02-16 |
| Pre-amplifier       | Agilent       | 8449B   | 3008A01738  | 2012-02-17   | 2013-02-16 |
| Triple-loop antenna | ROHDE&SCHWARZ | HM020   | 843885/002  | 2012-02-17   | 2013-02-16 |
| Horn Antenna        | ETS LINDGREN  | 3117    | --          | 2012-02-17   | 2013-02-16 |
| Horn Antenna        | ETS LINDGREN  | 3160    | --          | 2012-02-17   | 2013-02-16 |

### 2.2 AE used during the test

| Equipment type | Manufacturer | Model |
|----------------|--------------|-------|
| N/A            |              |       |

### 3.0 Technical Details

#### 3.1 Summary of test results

**The EUT has been tested according to the following specifications**

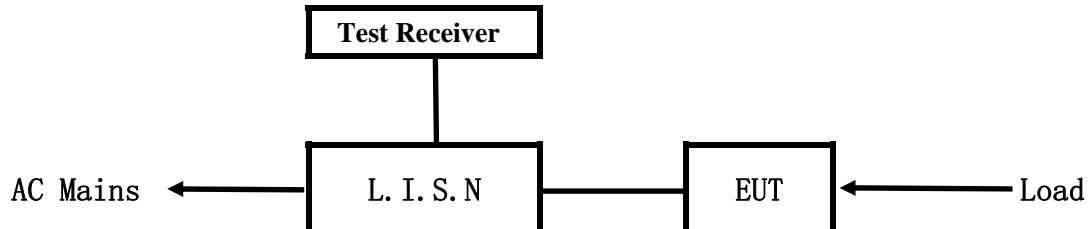
| Requirement                                         | CFR 47 Section                            | Result      | Notes           |
|-----------------------------------------------------|-------------------------------------------|-------------|-----------------|
| <b>Power Line Conducted Emission Test</b>           | <b>15.207(a)</b>                          | <b>PASS</b> | <b>Complies</b> |
| <b>20dB Channel Bandwidth</b>                       | <b>15.247 (a)(1), 15.215(c)</b>           | <b>PASS</b> | <b>Complies</b> |
| <b>Maximum Peak Output Power</b>                    | <b>15.247(b)(1)</b>                       | <b>PASS</b> | <b>Complies</b> |
| <b>Carrier Frequency Separation</b>                 | <b>15.247 (a)(1)</b>                      | <b>PASS</b> | <b>Complies</b> |
| <b>Number of Hopping Channels</b>                   | <b>15.247(b)(1)</b>                       | <b>PASS</b> | <b>Complies</b> |
| <b>Time of Occupancy (Dwell Time)</b>               | <b>15.247(a)(iii)</b>                     | <b>PASS</b> | <b>Complies</b> |
| <b>Band age Measurement, Spurious Emission Test</b> | <b>15.247 (d), 15.205 (a), 15.209 (a)</b> | <b>PASS</b> | <b>Complies</b> |
| <b>Antenna Requirement</b>                          | <b>15.203</b>                             | <b>PASS</b> | <b>Complies</b> |
| <b>RF Exposure</b>                                  | <b>15.247(b), 1.1307(b)</b>               | <b>PASS</b> | <b>Complies</b> |

#### 3.2 Test Standards

FCC Part 15:2011 Subpart C, Paragraph 15.247

### 4.0 EUT Modification

No modification by Shenzhen TCT Testing Technology Co., Ltd


### 5.0 Measurement Uncertainty (95% confidence levels, k=2)

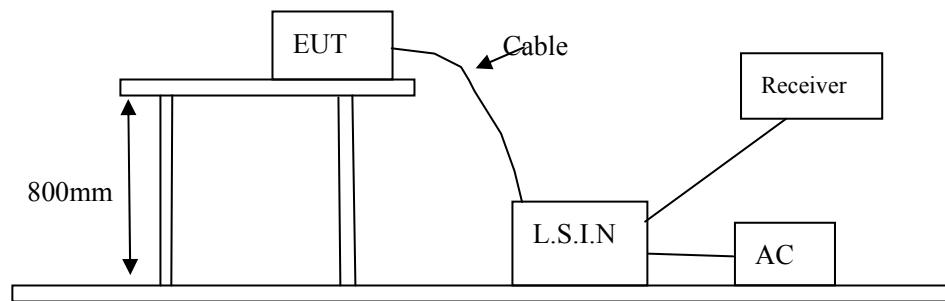
| No. | Item                          | MU                      |
|-----|-------------------------------|-------------------------|
| 1.  | Radio Frequency               | $\pm 1 \times 10^{-9}$  |
| 2.  | Temperature                   | $\pm 0.1^\circ\text{C}$ |
| 3.  | Humidity                      | $\pm 1.0\%$             |
| 4.  | RF power, conducted           | $\pm 0.34\text{dB}$     |
| 5.  | RF power density, conducted   | $\pm 1.45\text{dB}$     |
| 6.  | Spurious emissions, conducted | $\pm 3.70\text{dB}$     |
| 7.  | All emissions, radiated       | $\pm 4.50\text{dB}$     |

Note: 1) The EUT is a Bluetooth device, which has a MP3 port, which is connected MP3 player.  
 2) The EUT can operate in BT mode, MP3 audio in mode.  
 3) Low channel: 2402MHz, Middle channel: 2441MHz, High channel: 2480MHz  
 4) The Bluetooth version is Bluetooth 2.0, which does not support an EDR function.

## 6.0 Power Line Conducted Emission Test

### 6.1 Schematics of the test




EUT: Equipment Under Test

### 6.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2009. The Frequency spectrum From 0.15MHz to 30MHz was investigated.

Test Voltage: 120V~, 60Hz

Block diagram of Test setup



---

### 6.3 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2009

- 1) Setup the EUT and simulators as shown on the following
- 2) Enable AF signal and confirm EUT active to normal condition

### 6.4 Test Equipment

Please refer to the Section 2

## 6.5 Conducted Emission Limit

| Frequency(MHz) | Class A Limits (dB $\mu$ V) |               | Class B Limits (dB $\mu$ V) |               |
|----------------|-----------------------------|---------------|-----------------------------|---------------|
|                | Quasi-peak Level            | Average Level | Quasi-peak Level            | Average Level |
| 0.15 ~ 0.50    | 79.0                        | 66.0          | 66.0~56.0*                  | 56.0~46.0*    |
| 0.50 ~ 5.00    | 73.0                        | 60.0          | 56.0                        | 46.0          |
| 5.00 ~ 30.00   | 73.0                        | 60.0          | 60.0                        | 50.0          |

Notes: 1) \*Decreasing linearly with logarithm of frequency.  
2) The tighter limit shall apply at the transition frequencies

## 6.6 Photo documentation of the test set-up

Please refer to the Section 17

## 6.7 Test specification:

Environmental conditions: Temperature: 22° C Humidity: 52% Atmospheric pressure: 103kPa

Frequency range: 0.15 MHz – 30 MHz

The test was carried out in the following operation mode(s):

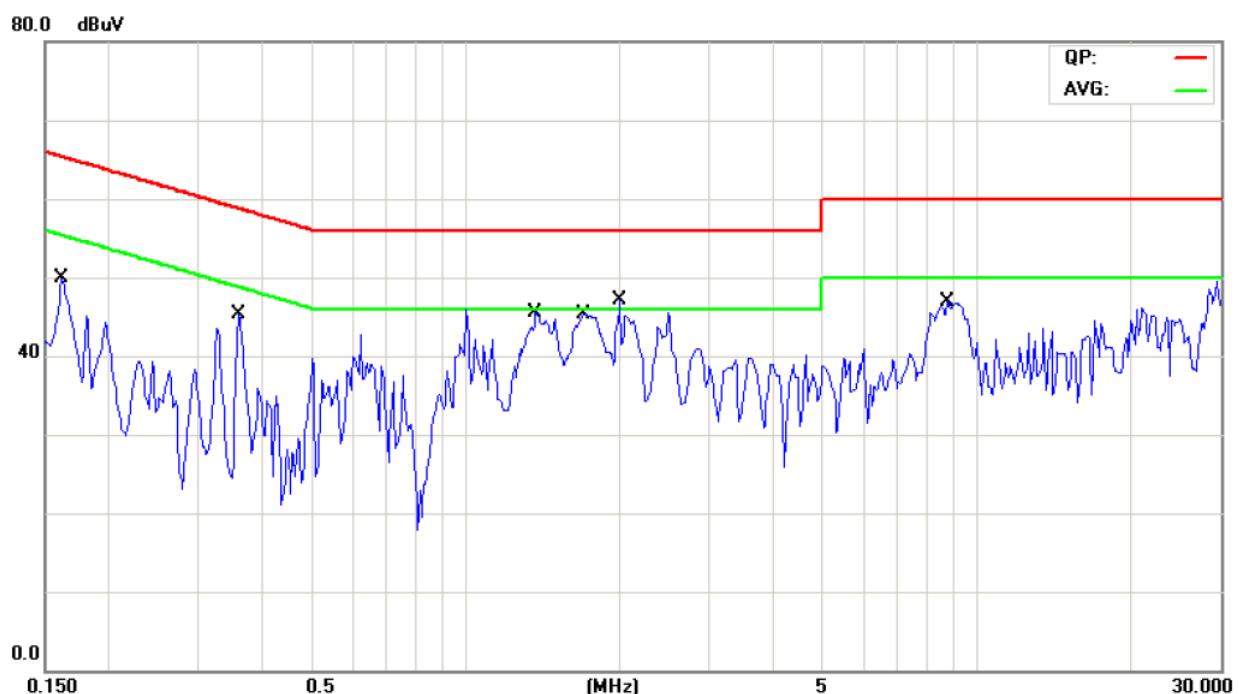
- Normal operation mode

## 6.8 Test result

Min. limit margin 10.24 dB at 2.0016 MHz

The requirements are FULFILLED

Remarks: According to FCC part 15.207(a)

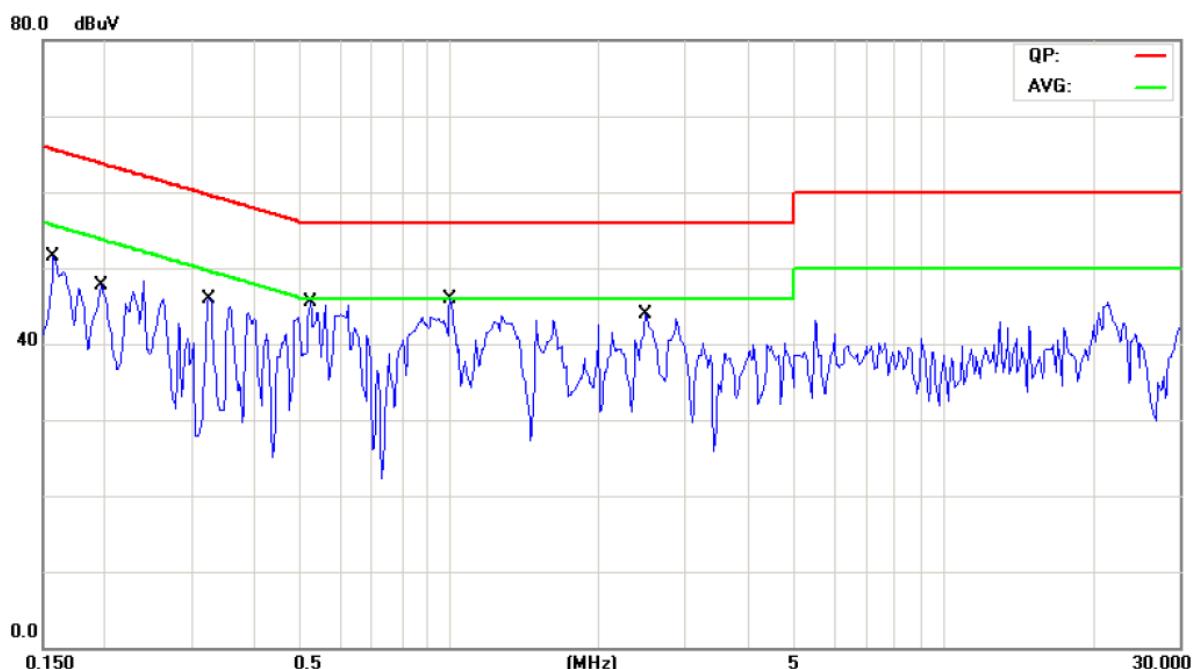

---

---

**A Conducted Emission on Line Terminal of the power line (150kHz to 30MHz)**

EUT Description: Multimedia speaker  
 Operation Mode: Normal operation mode  
 Tested By: Charlle Lai  
 Test date: January 10, 2013

Start Frequency Stop Frequency Step IF BW Detector Final M-Time  
 0.15MHz 30MHz 4.5KHz 10KHz QP+AV 1s




| Frequency<br>(MHz) | Reading(dB $\mu$ V) |         |            |         | Limit<br>(dB $\mu$ V) |         |
|--------------------|---------------------|---------|------------|---------|-----------------------|---------|
|                    | Live                |         | Neutral    |         |                       |         |
|                    | Quasi-peak          | Average | Quasi-peak | Average | Quasi-peak            | Average |
| 0.1617             | 45.65               | 39.18   | --         | --      | 65.37                 | 55.37   |
| 0.3608             | 45.03               | 34.62   | --         | --      | 58.71                 | 48.71   |
| 1.3727             | 43.13               | 32.89   | --         | --      | 56.00                 | 46.00   |
| 1.7047             | 44.56               | 35.57   | --         | --      | 56.00                 | 46.00   |
| 2.0016             | 45.76               | 31.38   | --         | --      | 56.00                 | 46.00   |
| 8.7734             | 41.74               | 32.89   | --         | --      | 60.00                 | 50.00   |

**B Conducted Emission on Neutral Terminal of the power line (150kHz to 30MHz)**

EUT Description: Multimedia speaker  
 Operation Mode: Normal operation mode  
 Tested By: Charlle Lai  
 Test Data: January 10, 2013

Start Frequency Stop Frequency Step IF BW Detector Final M-Time  
 0.15MHz 30MHz 4.5KHz 10KHz QP+AV 1s



| Frequency<br>(MHz) | Reading(dB $\mu$ V) |         |            |         | Limit<br>(dB $\mu$ V) |         |
|--------------------|---------------------|---------|------------|---------|-----------------------|---------|
|                    | Live                |         | Neutral    |         |                       |         |
|                    | Quasi-peak          | Average | Quasi-peak | Average | Quasi-peak            | Average |
| 0.1578             | --                  | --      | 44.40      | 37.82   | 65.57                 | 55.57   |
| 0.1969             | --                  | --      | 45.84      | 42.04   | 63.74                 | 53.74   |
| 0.3258             | --                  | --      | 45.02      | 37.21   | 59.56                 | 49.56   |
| 0.5211             | --                  | --      | 42.76      | 30.71   | 56.00                 | 46.00   |
| 1.0016             | --                  | --      | 42.10      | 32.53   | 56.00                 | 46.00   |
| 2.4977             | --                  | --      | 41.32      | 33.02   | 56.00                 | 46.00   |

## 7.0 20dB Bandwidth Measurement

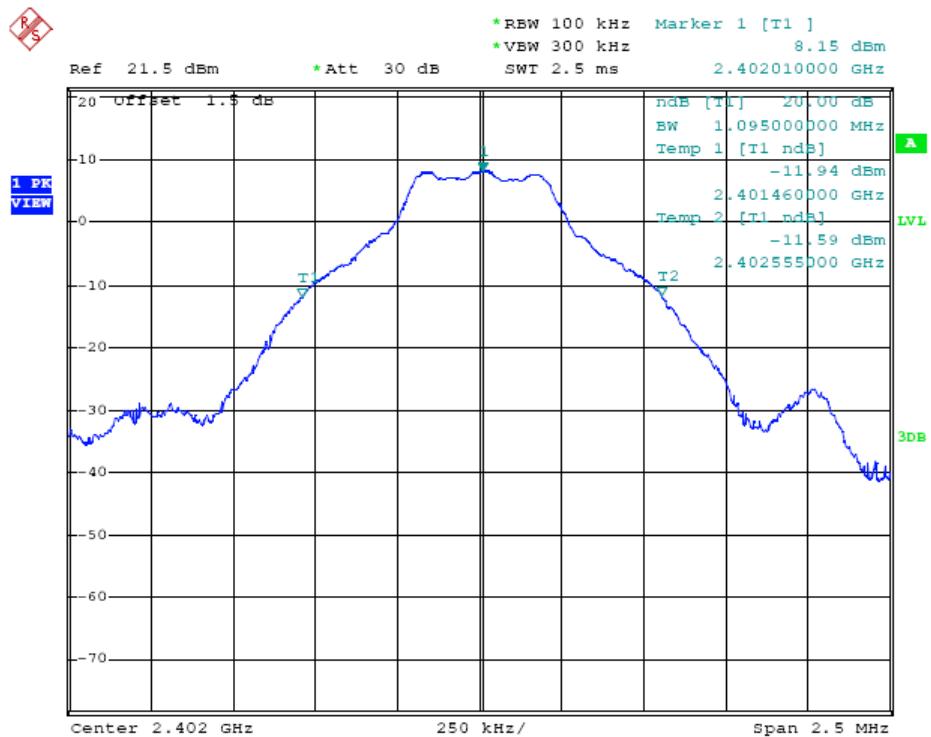
### 7.1 Test Equipment

Please refer to the Section 2

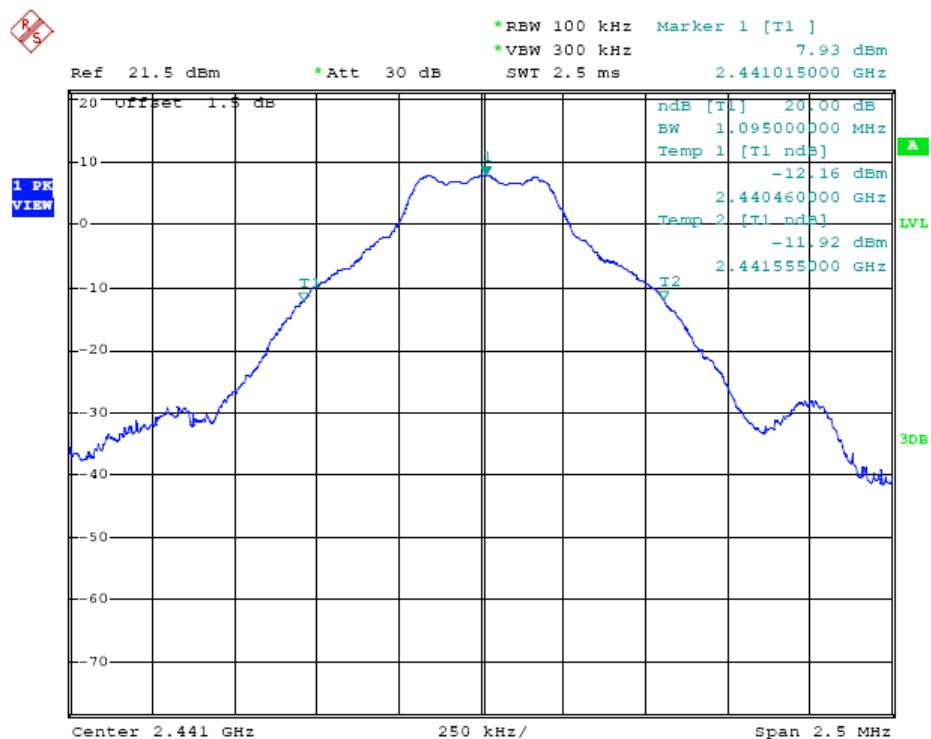
### 7.2 Test Specification:

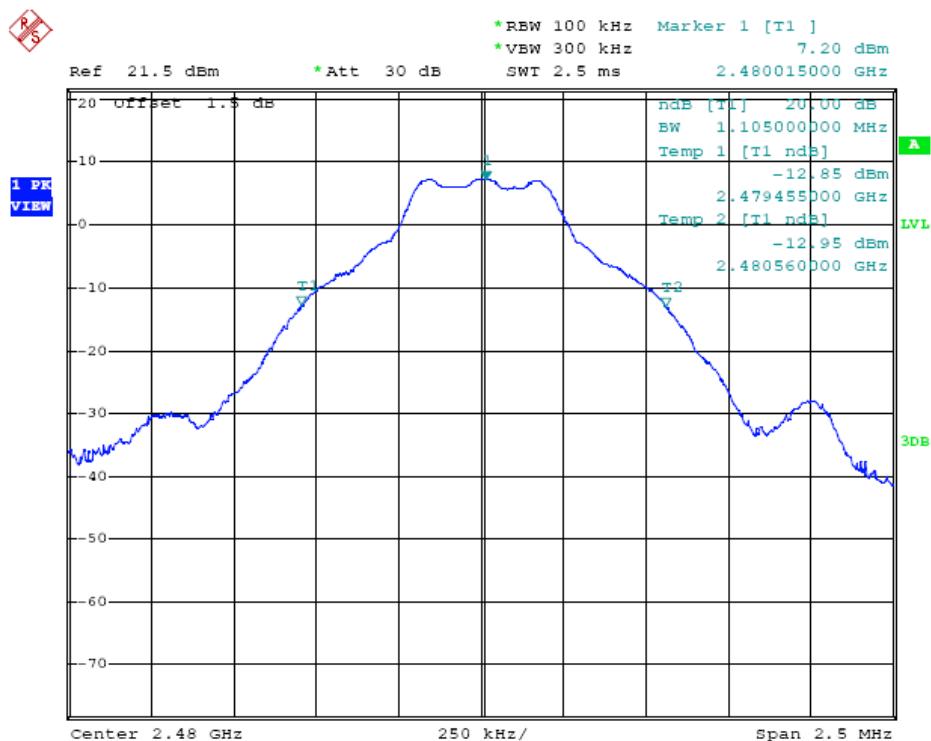
Environmental conditions: Temperature 23° C Humidity: 52% Atmospheric pressure: 103kPa

### 7.3 Limit


Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

### 7.4 Test Result:


| Modulation Type | Channel number | 20dB Bandwidth (kHz) | Limit (kHz) | Conclusion |
|-----------------|----------------|----------------------|-------------|------------|
| GFSK            | Low            | 1095                 | ---         | PASS       |
|                 | Middle         | 1095                 | ---         | PASS       |
|                 | High           | 1105                 | ---         | PASS       |


Modulation: GFSK

Low channel



Middle channel





## 8.0 Maximum Peak Output Power

### 8.1 Test Equipment

Please refer to the Section 2

### 8.2 Test specification:

Environmental conditions: Temperature 23° C Humidity: 51% Atmospheric pressure: 103kPa

### 8.3 Test Procedure

- 1) Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2) Set the spectrum analyzer as follows: Span = approximately 5 times the 20 dB bandwidth, centred on a hopping channel; RBW > the 20 dB bandwidth of the emission being measured; VBW  $\geq$  RBW; Sweep =auto; Detector function = peak; Trace = max hold
- 3) Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 4) Repeat above procedures until all frequencies measured were complete.

### 8.4 Limits

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5MHz band: 0.125 watts. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 8.5 Test Result

| Modulation Type | Channel Frequency (MHz) | Peak Power Output (dBm) | Peak Power Limit (dBm) | Pass/ Fail |
|-----------------|-------------------------|-------------------------|------------------------|------------|
| GFSK            | 2402                    | 4.32                    | 30                     | Pass       |
|                 | 2441                    | 4.18                    | 30                     | Pass       |
|                 | 2480                    | 4.05                    | 30                     | Pass       |

Note: Peak Power Output = Peak Power Reading + Cable loss + Attenuator

## 9.0 Carrier Frequency Separation

### 9.1 Test Equipment

Please refer to the Section 2

### 9.2 Test specification:

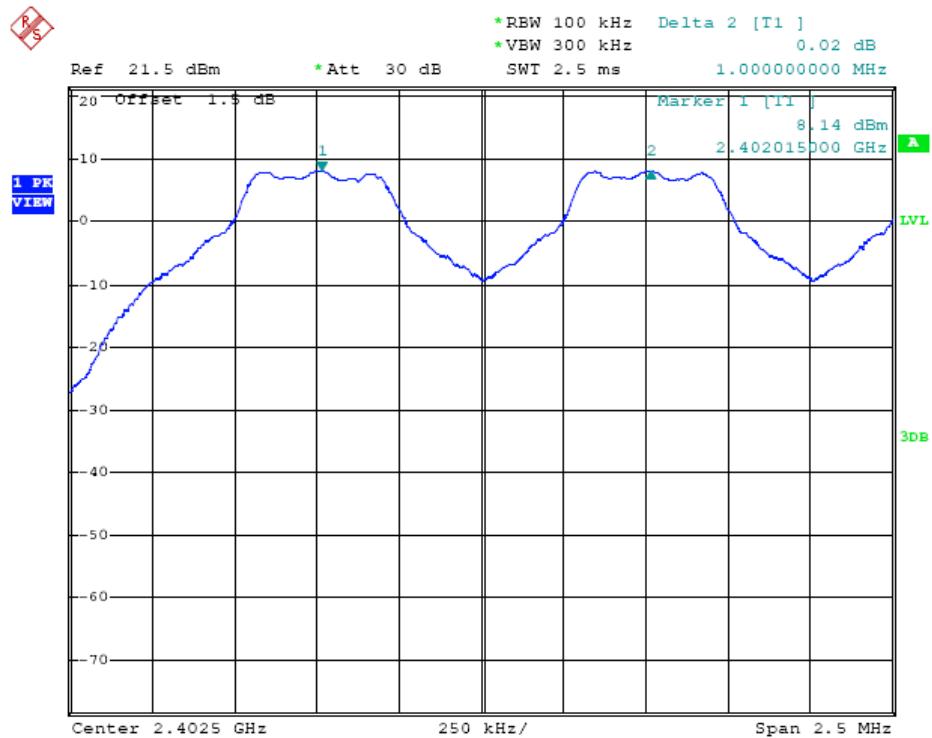
Environmental conditions: Temperature 23° C Humidity: 52% Atmospheric pressure: 103kPa

### 9.3 Test Procedure

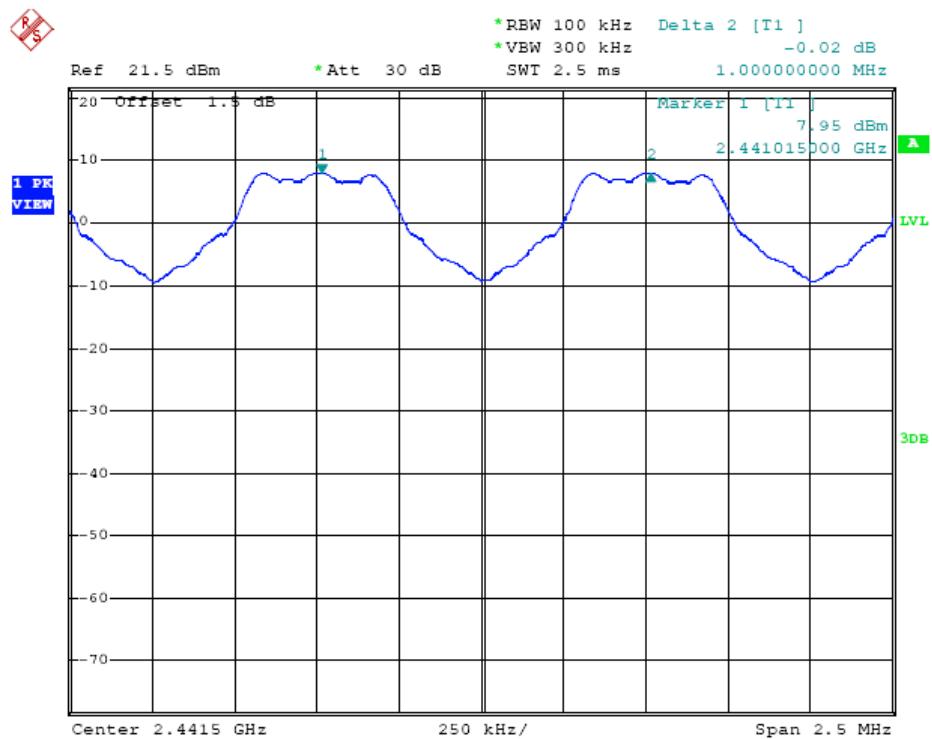
1. Set the spectrum analyzer as follows: Span = wide enough to capture the peaks of two adjacent channels; Resolution (or IF) Bandwidth (RBW)  $\geq$  1% of the span; Video (or Average) Bandwidth (VBW)  $\geq$  RBW; Sweep = auto; Detector function = peak; Trace = max hold
2. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
3. Repeat above procedures until all frequencies measured were complete.

### 9.4 Limits

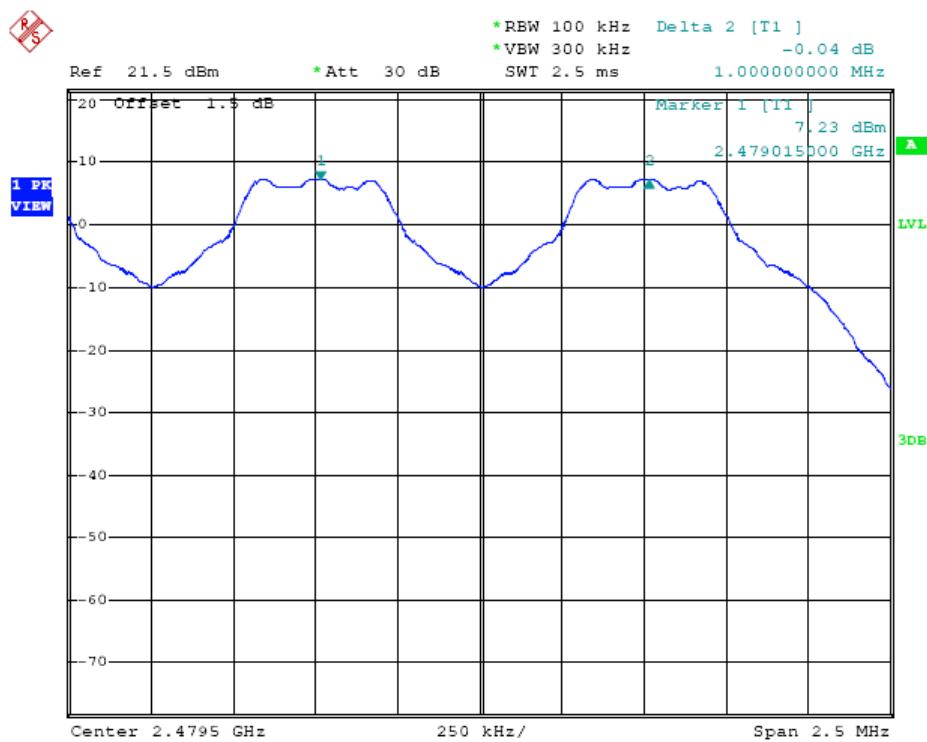
According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


### 9.5 Test Result

| Modulation Type | Channel number | Carrier Frequency Separation | Limit                                             | Pass/ Fail |
|-----------------|----------------|------------------------------|---------------------------------------------------|------------|
| GFSK            | Low            | 1.000MHz                     | $\geq$ 25 kHz or<br>two-thirds<br>20 dB bandwidth | Pass       |
|                 | Middle         | 1.000MHz                     |                                                   | Pass       |
|                 | High           | 1.000MHz                     |                                                   | Pass       |


Note: Two-thirds 20 dB bandwidth: 736.7 kHz

Modulation: GFSK


Low channel



Middle channel



Shenzhen TCT Testing Technology Co., Ltd.  
High channel



## 10.0 Number of Hopping Channels

### 10.1 Test Equipment

Please refer to the Section 2

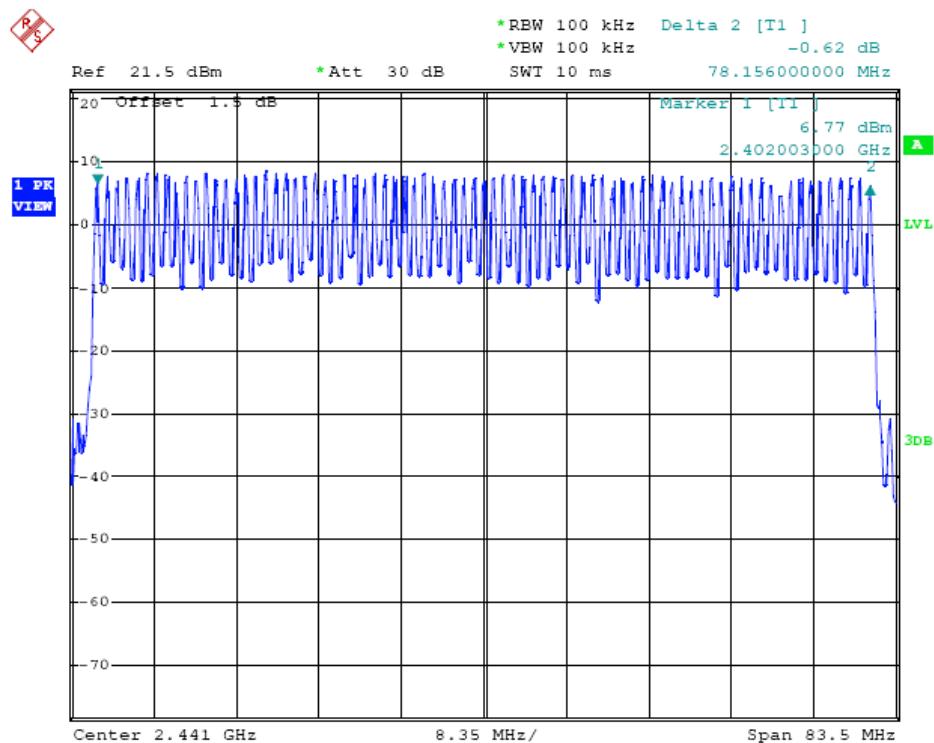
### 10.2 Test specification:

Environmental conditions: Temperature 22° C Humidity: 52% Atmospheric pressure: 103kPa

### 10.3 Test Procedure

Set the spectrum analyzer as follows: Span = the frequency band of operation; RBW  $\geq$  1% of the span; VBW  $\geq$  RBW; Sweep = auto; Detector function = peak; Trace = max hold

### 10.4 Limits


According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1watt.

### 10.5 Test Result

| Modulation Type | Operating Frequency | Number of hopping channels | Limit     | Pass/ Fail |
|-----------------|---------------------|----------------------------|-----------|------------|
| GFSK            | 2402-2480MHz        | 79                         | $\geq 75$ | Pass       |

Test Plot:

Modulation Type: GFSK



## 11.0 Time of Occupancy (Dwell Time)

### 11.1 Test Equipment

Please refer to the Section 2

### 11.2 Test specification:

Environmental conditions: Temperature 22° C Humidity: 52% Atmospheric pressure: 103kPa

### 11.3 Test Procedure

Span = zero span, centred on a hopping channel; RBW = 1 MHz; VBW  $\geq$  RBW; Detector function = peak;

Sweep = as necessary to capture the entire dwell time per hopping channel; Trace = max hold

Measure the dwell time using the marker-delta function.

Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

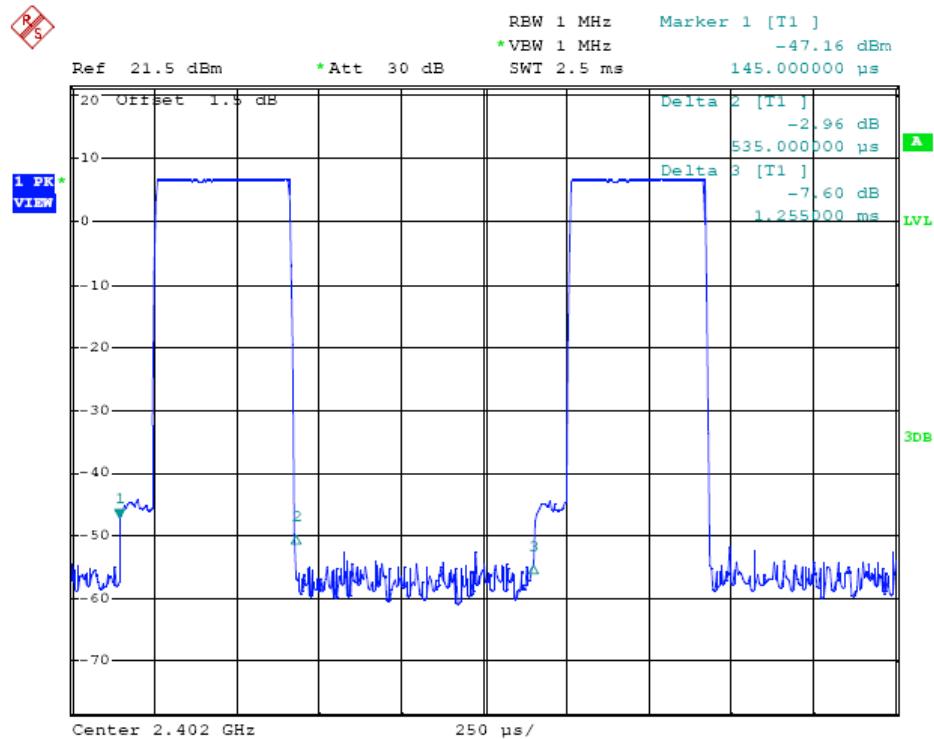
### 11.4 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed

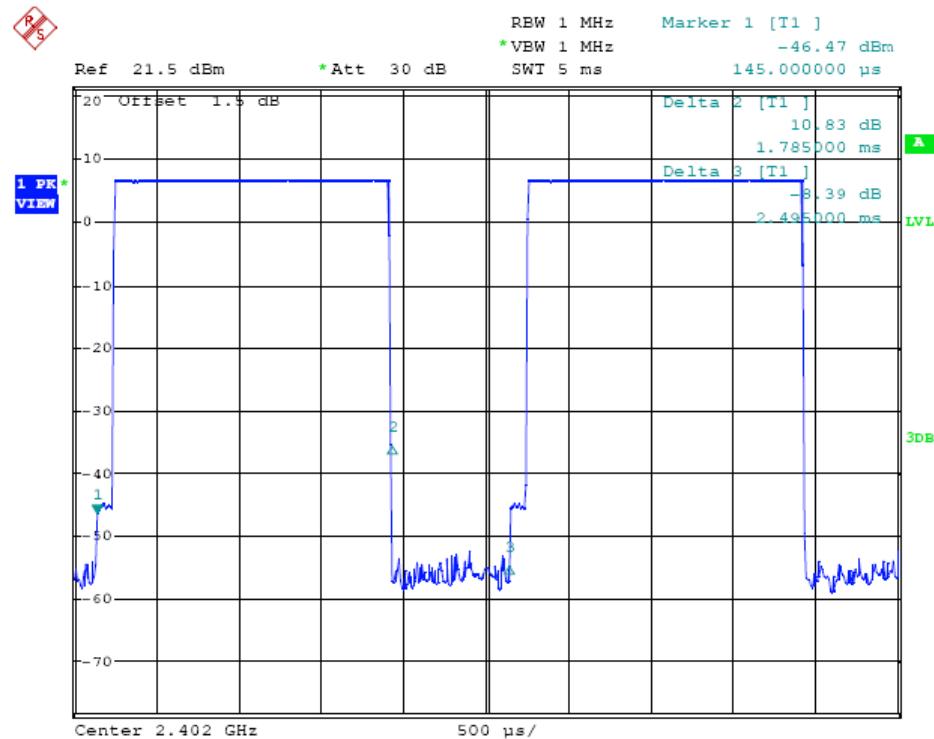
### 11.5 Test Result

| Modulation Type | Packet | Reading (ms) | Hopping Rate | Actual (s) | Limit (s) |
|-----------------|--------|--------------|--------------|------------|-----------|
| GFSK            | DH1    | 0.535        | 800hop/s     | 0.1712     | 0.4       |
|                 | DH3    | 1.785        | 400hop/s     | 0.2856     | 0.4       |
|                 | DH5    | 3.045        | 266.667hop/s | 0.3248     | 0.4       |

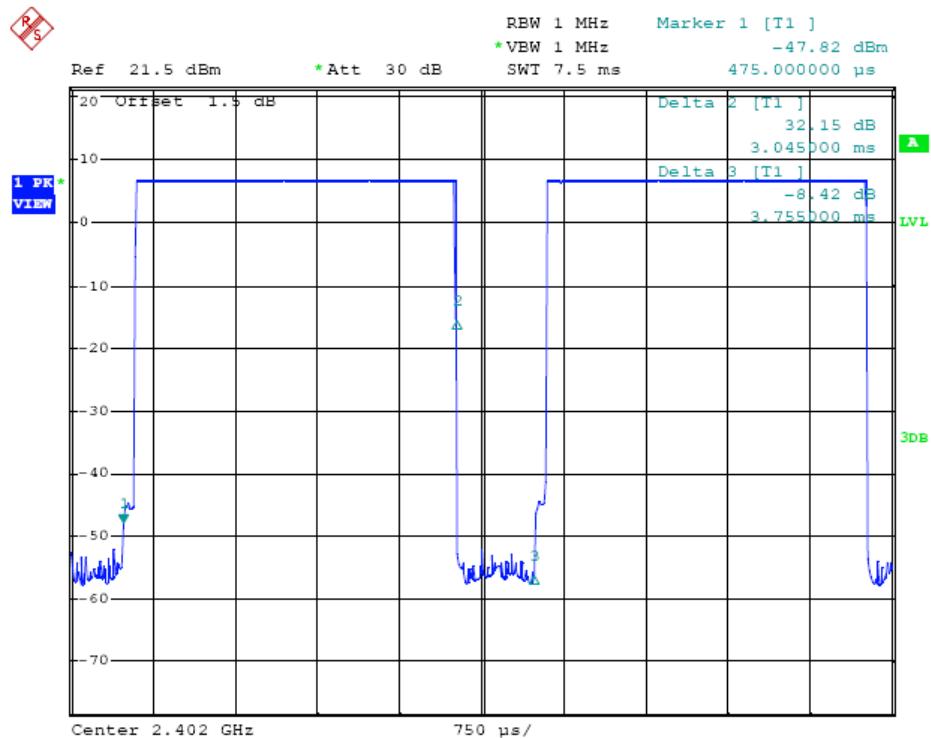
Note: 1) The measurements were conducted in High, Middle, Low channel. The Low channel could represent the character of the other channels, so the low channel measurement was submitted in the report only.


2) Actual = Reading  $\times$  (Hopping rate / Number of channels)  $\times$  Test period

3) The EUT makes worst case 1600 hops per second or 1 time slot has a length of 625 $\mu$ s with 79 channels.


A DH5 Packet needs 5 time slot for transmitting and 1 time slot for receiving. So the EUT makes worst case 266.667 hops per second with 79 channels, and the DH5 is the worst case.

Modulation Type: GFSK


Packet Type: DH1



Packet Type: DH3



Packet Type: DH5



## **12.0 Bandage Measurement**

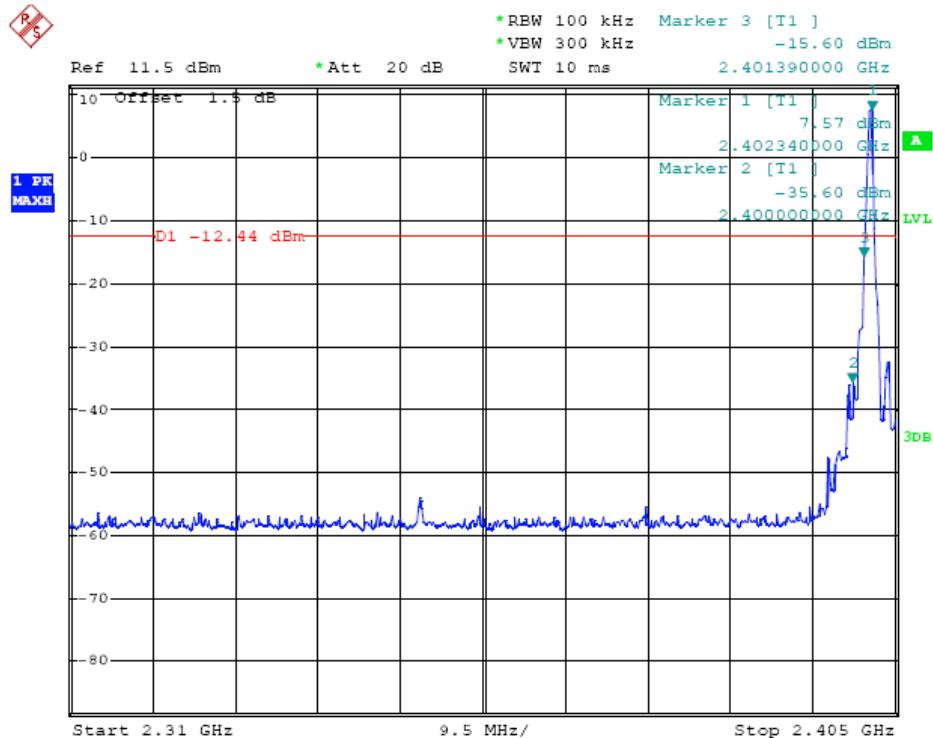
### 12.1 Test Equipment

Please refer to the Section 2

### 12.2 Test specification:

Environmental conditions: Temperature 24° C Humidity: 52% Atmospheric pressure: 103kPa

### 12.3 Test Procedure

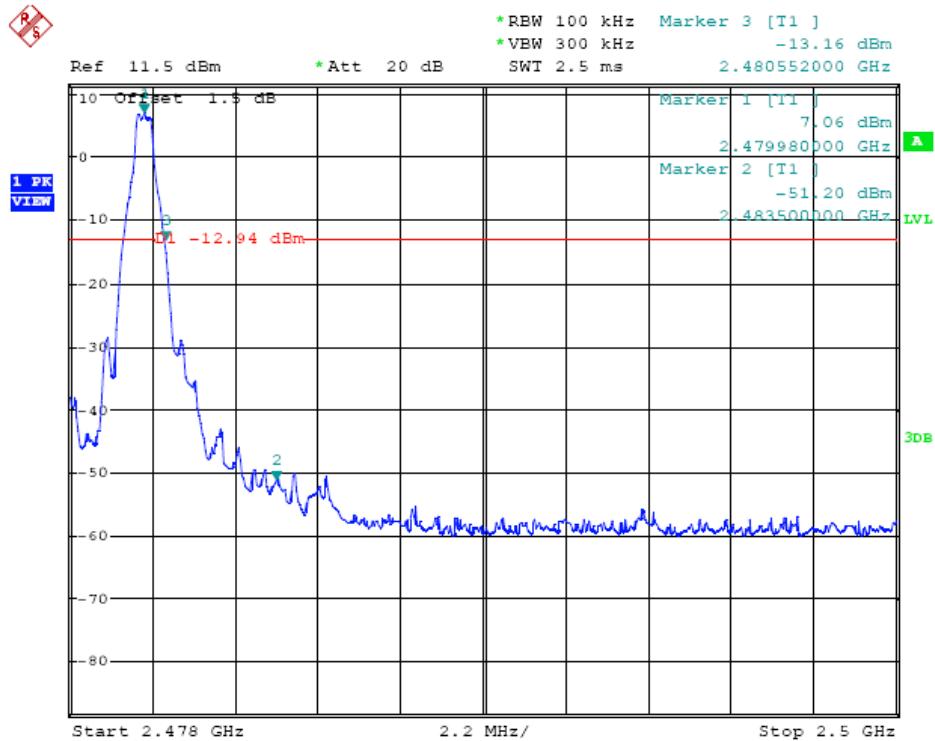

For bandage test, the spectrum set as follows: RBW=VBW=100 kHz. A conducted measure method is used. For signals allocated in the restricted bands above and below the 2.4-2.483GHz, a radiated measurement is made (Peak values with RBW=VBW=1MHz and PK detector. AV value with RBW=1MHz, VBW=10Hz and PK detector)

### 12.4 Limit

Below -20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

EUT operation mode: Keep transmitting in low channel

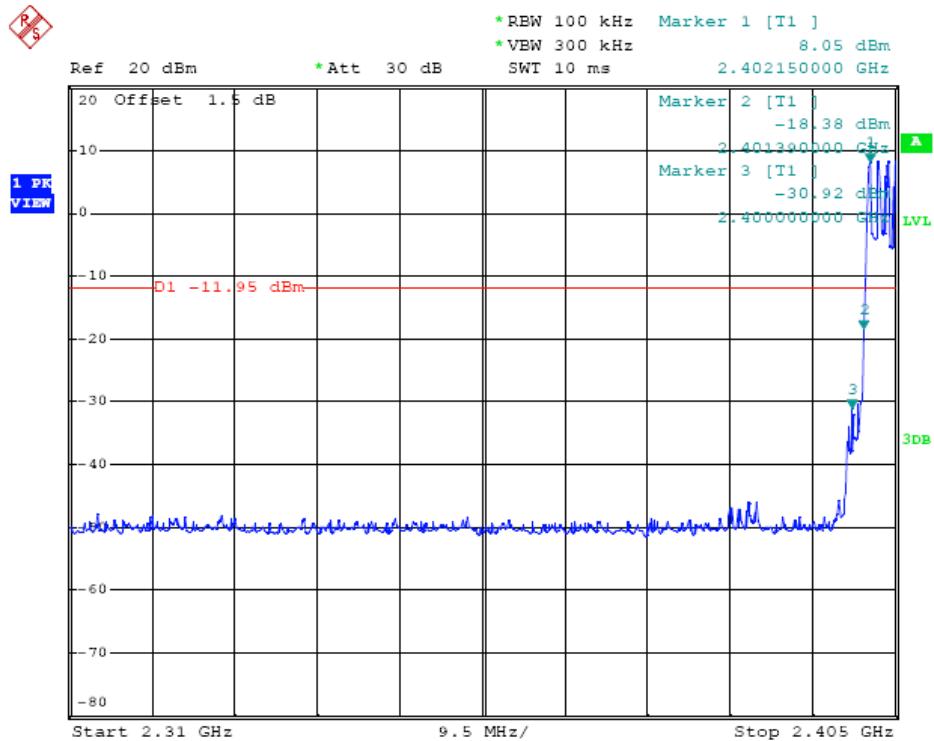



Remark: 1) The test plot above indicates that the maximum emission outside the operating band is below -20dB of the highest emission level of the operating band.

2) Emissions measurements which fall in the restricted band, as defined in 15.205(a), were conducted in radiated method, and the maximum emission was 44.25dB<sub>AV</sub> at 2349.9 MHz, which is less than the Average limit. The AV test data is no required.

3) The radiated measurement was made in horizontal and vertical polarity.

EUT operation mode: Keep transmitting in high channel

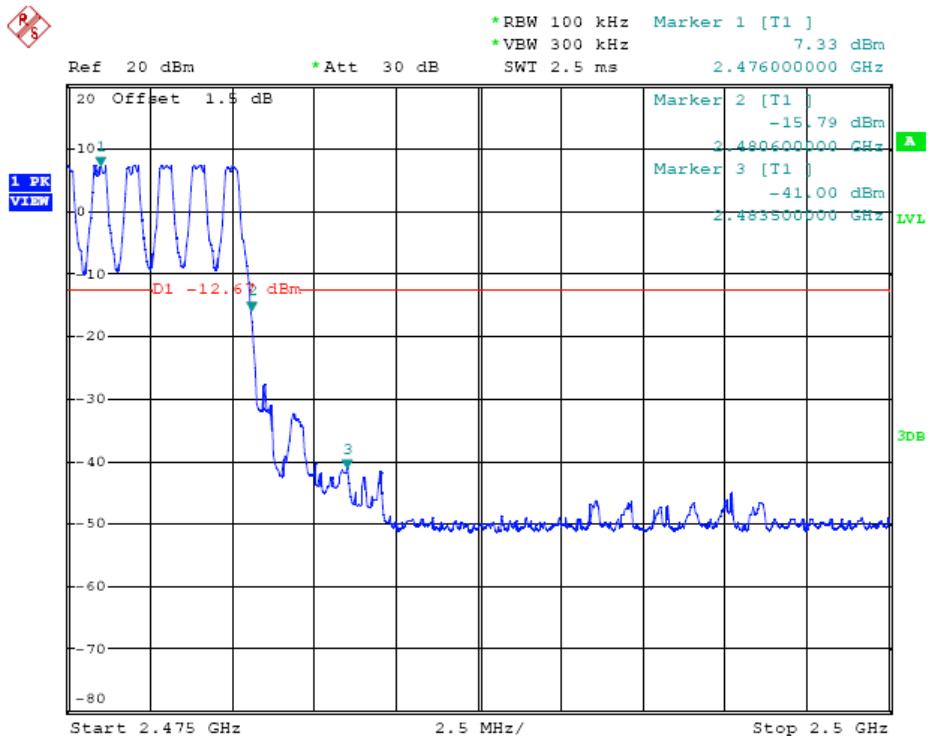



Remark: 1) The test plot above indicates that the maximum emission outside the operating band is below -20dB of the highest emission level of the operating band.

2) Emissions measurements which fall in the restricted band, as defined in 15.205(a), were conducted in radiated method, and the maximum emission was 41.95dB<sub>AV</sub> at 2487.3 MHz, which is less than the Average limit. The AV test data is no required.

3) The radiated measurement was made in horizontal and vertical polarity.

EUT operation mode: Keep hopping




Remark: 1) The test plot above indicates that the maximum emission outside the operating band is below -20dB of the highest emission level of the operating band.

2) Emissions measurements which fall in the restricted band, as defined in 15.205(a), were conducted in radiated method, and the maximum emission was 51.09dB<sub>AV</sub> at 2389.8 MHz, which is less than the Average limit. The AV test data is no required.

3) The radiated measurement was made in horizontal and vertical polarity.

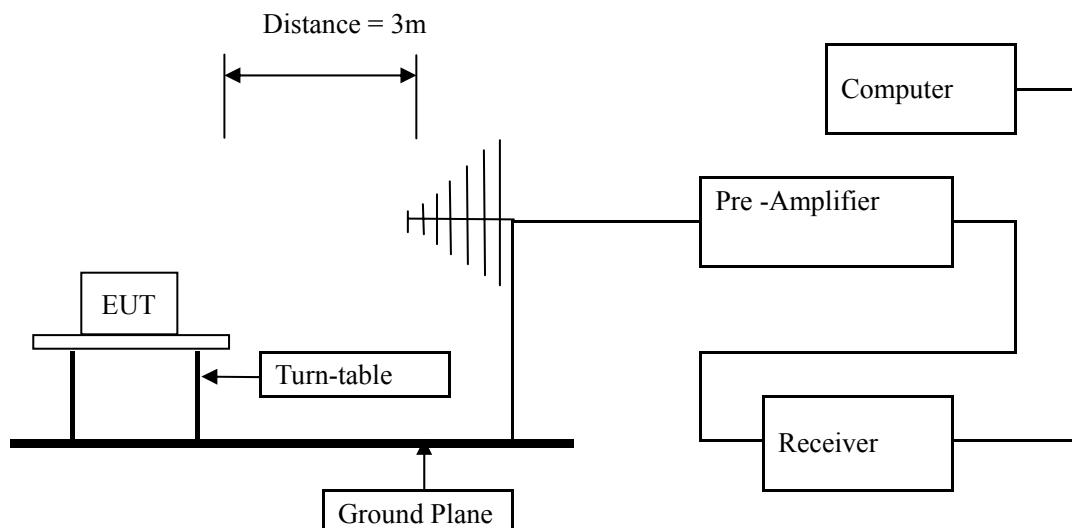
EUT operation mode: Keep hopping



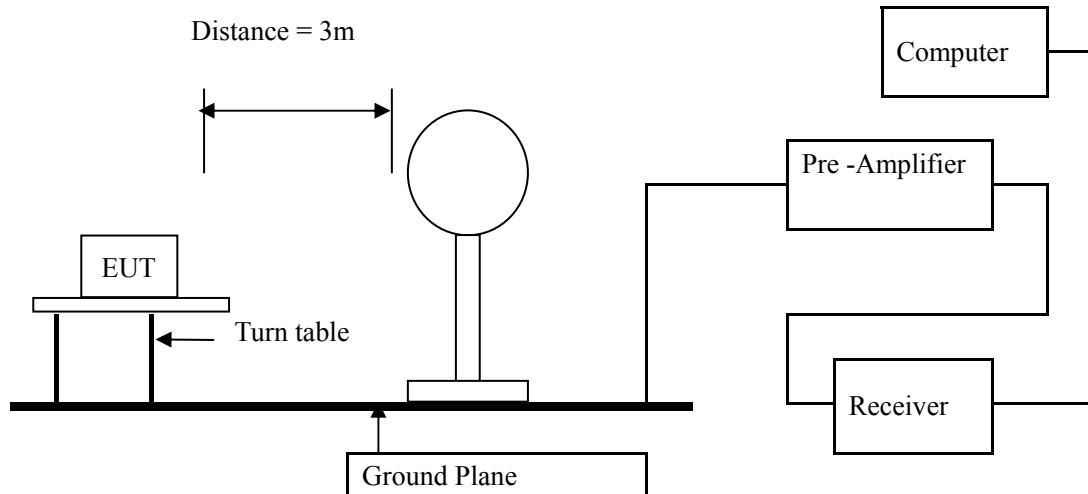
Remark: 1) The test plot above indicates that the maximum emission outside the operating band is below -20dB of the highest emission level of the operating band.

2) Emissions measurements which fall in the restricted band, as defined in 15.205(a), were conducted in radiated method, and the maximum emission was 53.01dB<sub>Bv</sub> at 2495.3 MHz, which is less than the Average limit. The AV test data is no required.

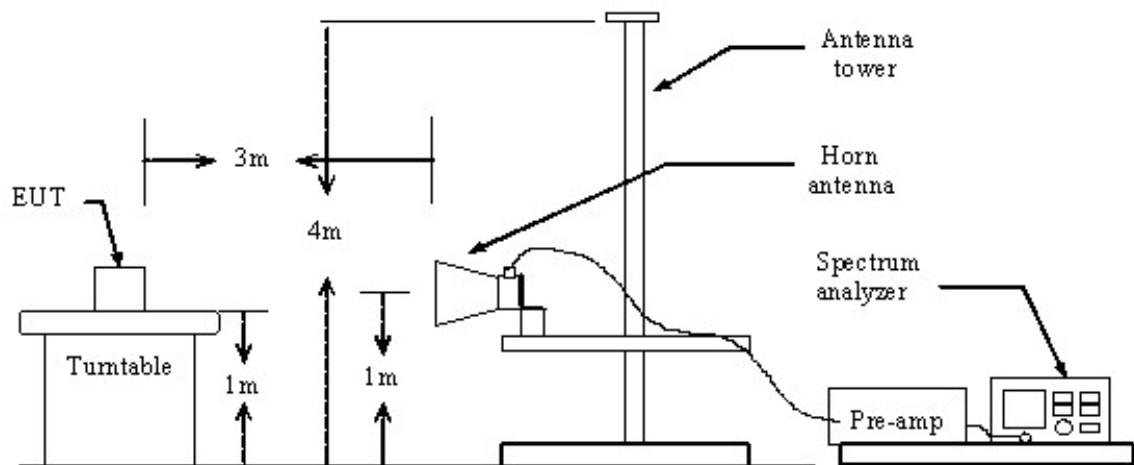
3) The radiated measurement was made in horizontal and vertical polarity.


## 13.0 Spurious Emission Test

### 13.1 Radiated emissions


#### 13.1.1 Test Method and test Procedure:

- 1) The EUT was tested according to ANSI C63.10 –2009.
- 2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2009.
- 3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz . Measurements were made at 3 meters.
- 4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- 5) The antenna polarization: Vertical polarization and Horizontal polarization.


#### 13.1.2 Block diagram of Test setup



Block diagram of Test setup for frequency below 30MHz



Block diagram of Test setup for frequency above 1GHz



## 13.1.3 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2009

## 13.1.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

**Frequencies in restricted band are complied to limit on Paragraph 15.209.**

| Frequency Range (MHz) | Distance (m) | Field strength (dB $\mu$ V/m) |
|-----------------------|--------------|-------------------------------|
| 0.009-0.490           | 3            | $20\log 2400/F$ (kHz) + 80    |
| 0.490-1.705           | 3            | $20\log 24000/F$ (kHz) + 40   |
| 1.705-30              | 3            | $20\log 30 + 40$              |
| 30-88                 | 3            | 40.0                          |
| 88-216                | 3            | 43.5                          |
| 216-960               | 3            | 46.0                          |
| Above 960             | 3            | 54.0                          |

Note: 1) RF Voltage (dBuV) = 20 log RF Voltage (uV)

2) In the Above Table, the tighter limit applies at the band edges.

3) Distance refers to the distance in meters between the measuring instrument antenna and the EUT

4) This is a handheld device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

5) All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz. As to 1G-25G, the final emission level got using PK and AV detector.

6) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula  $Ld1 = Ld2 * (d2/d1)$

## 13.1.5 Photo documentation of the test set-up

Please refer to the Section 16

## 13.1.6 Test Equipment:

Please refer to the Section 2

## 13.1.7 Test specification:

Environmental conditions: Temperature 23° C Humidity: 50% Atmospheric pressure: 103kPa

## 13.1.8 Test result

**A Radiated Emission (9 kHz----30 MHz)**

Note: 1) Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor  
2) The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Result: Pass

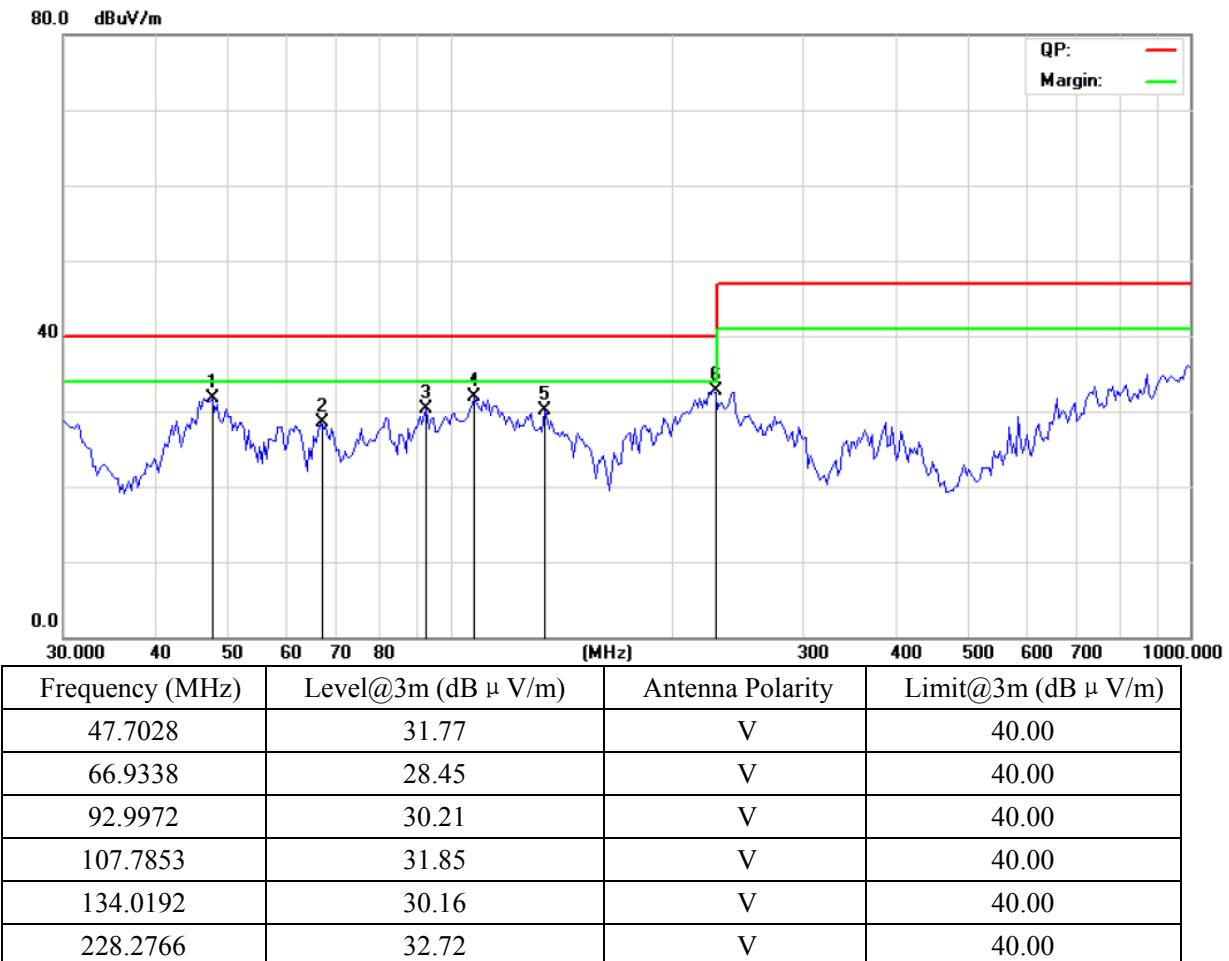
| Frequency (MHz) | Level@3m (dB $\mu$ V/m) | Antenna Polarity | Limit@3m (dB $\mu$ V/m) |
|-----------------|-------------------------|------------------|-------------------------|
| --              | --                      | V                | --                      |
| --              | --                      | H                | --                      |
| --              | --                      | V                | --                      |
| --              | --                      | H                | --                      |

## B General Radiated Emissions Data

### Radiated Emission In Horizontal (30MHz----1000MHz)

Please refer to following diagram for individual

High channel: 2480 MHz




| Frequency (MHz) | Level@3m (dB $\mu$ V/m) | Antenna Polarity | Limit@3m (dB $\mu$ V/m) |
|-----------------|-------------------------|------------------|-------------------------|
| 50.8171         | 25.78                   | H                | 40.00                   |
| 94.1483         | 28.90                   | H                | 40.00                   |
| 119.4188        | 26.14                   | H                | 40.00                   |
| 199.1182        | 25.61                   | H                | 40.00                   |
| 226.3326        | 31.42                   | H                | 40.00                   |
| 255.4910        | 34.20                   | H                | 47.00                   |

**Radiated Emission In Vertical (30MHz----1000MHz)**

Please refer to following diagram for individual

High channel: 2480 MHz



Note: Measurements were conducted in all three channels (high, middle, low), and the worst case (high channel) was submitted only.

**C Fundamental & Harmonics Radiated Emission Data (1000MHz-25000MHz)**

Modulation Type: GFSK

| <b>Low channel: 2402 MHz</b> |                  |                           |                         |                              |                  |                |                        |                      |                |
|------------------------------|------------------|---------------------------|-------------------------|------------------------------|------------------|----------------|------------------------|----------------------|----------------|
| Freq.<br>(MHz)               | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBuV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB) | Emission Level   |                | Peak limit<br>(dBuV/m) | AV limit<br>(dBuV/m) | Margin<br>(dB) |
|                              |                  |                           |                         |                              | Peak<br>(dBuV/m) | AV<br>(dBuV/m) |                        |                      |                |
| 1321.00                      | H                | 50.45                     | ---                     | -4.17                        | 46.28            | ---            | 74.00                  | 54.00                | -7.72          |
| 4825.30                      | H                | 52.31                     | ---                     | -3.90                        | 48.41            | ---            | 74.00                  | 54.00                | -5.59          |
| 5617.00                      | H                | 49.49                     | ---                     | -2.81                        | 46.68            | ---            | 74.00                  | 54.00                | -7.32          |
| 7229.00                      | H                | 47.01                     | ---                     | 0.55                         | 47.56            | ---            | 74.00                  | 54.00                | -6.44          |
| 16825.17                     | H                | 41.39                     | ---                     | 6.76                         | 48.15            | ---            | 74.00                  | 54.00                | -5.85          |
| 24020.00                     | H                | 39.58                     | ---                     | 8.11                         | 47.69            | ---            | 74.00                  | 54.00                | -6.31          |
| <hr/>                        |                  |                           |                         |                              |                  |                |                        |                      |                |
| 1318.30                      | V                | 51.68                     | ---                     | -4.19                        | 47.49            | ---            | 74.00                  | 54.00                | -6.51          |
| 4825.00                      | V                | 51.25                     | ---                     | -3.94                        | 47.31            | ---            | 74.00                  | 54.00                | -6.69          |
| 5614.00                      | V                | 49.31                     | ---                     | -2.86                        | 46.45            | ---            | 74.00                  | 54.00                | -7.55          |
| 7229.00                      | V                | 44.29                     | ---                     | 0.52                         | 44.81            | ---            | 74.00                  | 54.00                | -9.19          |
| 16825.17                     | V                | 39.32                     | ---                     | 6.73                         | 46.05            | ---            | 74.00                  | 54.00                | -7.95          |
| 24020.00                     | V                | 41.78                     | ---                     | 8.11                         | 49.89            | ---            | 74.00                  | 54.00                | -4.11          |

Notes: 1) Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average (AV) detector.

3) Average test would be performed if the peak readings were greater than the average limit.

4) Data of measurement shown “---” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5) Emission Level=Peak (AV) Reading + Correction Factor;  
Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

| Middle channel: 2441 MHz |                  |                           |                         |                              |                  |                |                        |                      |                |
|--------------------------|------------------|---------------------------|-------------------------|------------------------------|------------------|----------------|------------------------|----------------------|----------------|
| Freq.<br>(MHz)           | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBuV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB) | Emission Level   |                | Peak limit<br>(dBuV/m) | AV limit<br>(dBuV/m) | Margin<br>(dB) |
|                          |                  |                           |                         |                              | Peak<br>(dBuV/m) | AV<br>(dBuV/m) |                        |                      |                |
| 1300.00                  | H                | 50.13                     | ---                     | -4.20                        | 45.93            | ---            | 74.00                  | 54.00                | -8.07          |
| 4885.10                  | H                | 50.43                     | ---                     | -3.97                        | 46.46            | ---            | 74.00                  | 54.00                | -7.54          |
| 5600.00                  | H                | 50.25                     | ---                     | -2.83                        | 47.42            | ---            | 74.00                  | 54.00                | -6.58          |
| 7324.23                  | H                | 46.71                     | ---                     | 0.57                         | 47.28            | ---            | 74.00                  | 54.00                | -6.72          |
| 17085.00                 | H                | 42.97                     | ---                     | 6.79                         | 49.76            | ---            | 74.00                  | 54.00                | -4.24          |
| 24410.00                 | H                | 41.11                     | ---                     | 8.16                         | 49.27            | ---            | 74.00                  | 54.00                | -4.73          |
| <hr/>                    |                  |                           |                         |                              |                  |                |                        |                      |                |
| 1308.00                  | V                | 50.53                     | ---                     | -4.25                        | 46.28            | ---            | 74.00                  | 54.00                | -7.72          |
| 4804.50                  | V                | 51.62                     | ---                     | -3.98                        | 47.64            | ---            | 74.00                  | 54.00                | -6.36          |
| 5620.20                  | V                | 49.57                     | ---                     | -2.86                        | 46.71            | ---            | 74.00                  | 54.00                | -7.29          |
| 7206.00                  | V                | 47.01                     | ---                     | 0.57                         | 47.58            | ---            | 74.00                  | 54.00                | -6.42          |
| 17087.00                 | V                | 40.51                     | ---                     | 6.79                         | 47.3             | ---            | 74.00                  | 54.00                | -6.7           |
| 24410.00                 | V                | 39.96                     | ---                     | 8.16                         | 48.12            | ---            | 74.00                  | 54.00                | -5.88          |

Notes: 1) Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average

(AV) detector.

3) Average test would be performed if the peak result were greater than the average limit.

4) Data of measurement shown “---” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5) Emission Level=Peak (AV) Reading + Correction Factor;

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

| <b>High channel: 2480 MHz</b> |                  |                           |                         |                              |                  |                |                        |                      |                |
|-------------------------------|------------------|---------------------------|-------------------------|------------------------------|------------------|----------------|------------------------|----------------------|----------------|
| Freq.<br>(MHz)                | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBuV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB) | Emission Level   |                | Peak limit<br>(dBuV/m) | AV limit<br>(dBuV/m) | Margin<br>(dB) |
|                               |                  |                           |                         |                              | Peak<br>(dBuV/m) | AV<br>(dBuV/m) |                        |                      |                |
| 1302.20                       | H                | 49.69                     | ---                     | -4.20                        | 45.49            | ---            | 74.00                  | 54.00                | -8.51          |
| 4960.00                       | H                | 50.05                     | ---                     | -3.98                        | 46.07            | ---            | 74.00                  | 54.00                | -7.93          |
| 5601.39                       | H                | 50.58                     | ---                     | -2.83                        | 47.75            | ---            | 74.00                  | 54.00                | -6.25          |
| 7444.10                       | H                | 47.09                     | ---                     | 0.55                         | 47.64            | ---            | 74.00                  | 54.00                | -6.36          |
| 17365.00                      | H                | 41.25                     | ---                     | 6.77                         | 48.02            | ---            | 74.00                  | 54.00                | -5.98          |
| 24800.00                      | H                | 40.01                     | ---                     | 8.16                         | 48.17            | ---            | 74.00                  | 54.00                | -5.83          |
| <hr/>                         |                  |                           |                         |                              |                  |                |                        |                      |                |
| 1308.13                       | V                | 49.91                     | ---                     | -4.25                        | 45.66            | ---            | 74.00                  | 54.00                | -8.34          |
| 4804.00                       | V                | 49.45                     | ---                     | -3.98                        | 45.47            | ---            | 74.00                  | 54.00                | -8.53          |
| 5624.55                       | V                | 48.21                     | ---                     | -2.87                        | 45.34            | ---            | 74.00                  | 54.00                | -8.66          |
| 7444.10                       | V                | 48.02                     | ---                     | 0.55                         | 48.57            | ---            | 74.00                  | 54.00                | -5.43          |
| 17365.00                      | V                | 40.35                     | ---                     | 6.77                         | 47.12            | ---            | 74.00                  | 54.00                | -6.88          |
| 24800.00                      | V                | 39.12                     | ---                     | 8.16                         | 47.28            | ---            | 74.00                  | 54.00                | -6.72          |

Notes: 1) Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

2) Radiated emissions measured in frequencies above 1GHz were made with peak detector and Average

(AV) detector.

3) Average test would be performed if the peak result were greater than the average limit.

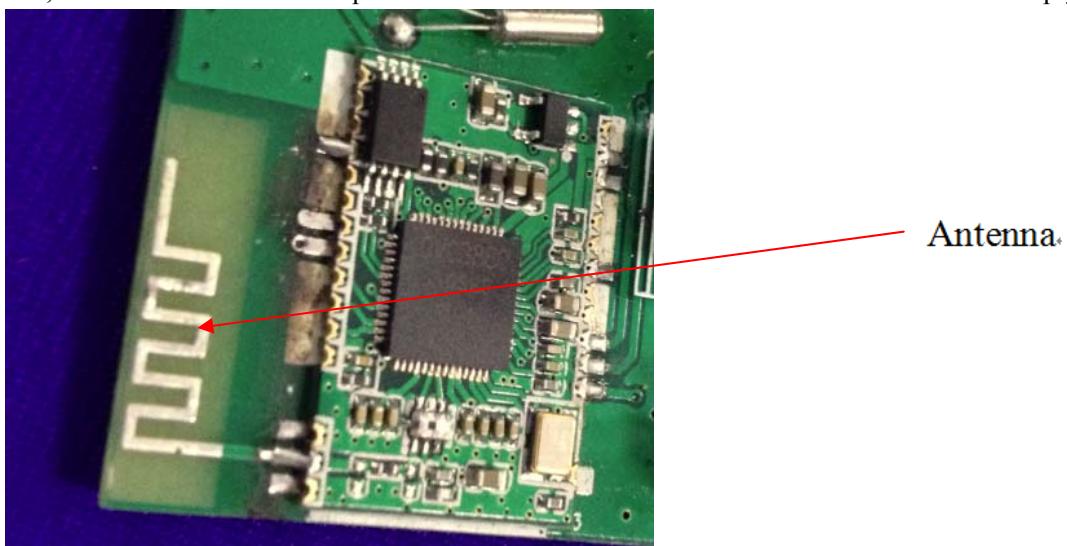
4) Data of measurement shown “---” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5) Emission Level=Peak (AV) Reading + Correction Factor;

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

6) Margin (dB) = Emission Level (Peak) (dBuV/m)-Average limit (dBuV/m)

## 14.0 Antenna Requirement


### 14.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

### 14.2 Antenna Specification

According to the manufacturer declared, the EUT has a PCB printed antenna; the directional gain of antenna is 0 dBi, and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.



## 15.0 Maximum Permissible Exposure

### Applicable Standard

According to §1.1307(b)(5), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline. This is a Portable device.

Remark: 1) The maximum output power is 4.32 dBm (2.704mW) at 2402MHz, (with 1 numeric antenna gain.)

- 2) DXX device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3) For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20cm, even if the calculation indicate that the MPE distance would be lesser.

### Calculation

$$\text{Given } E = \sqrt{\frac{30 \times P \times G}{d}} \quad \& \quad S = \frac{E^2}{3770}$$

Where  $E$  = Field Strength in Volts / meter

$P$  = Power in Watts

$G$  = Numeric antenna gain

$d$  = Distance in meters

$S$  = Power Density in milliwatts / square centimeter

### Maximum Permissible Exposure

EUT output power=2.704mW

Numeric Antenna gain=1

Substituting the MPE safe distance using  $d=20\text{cm}$  into above equation.

Yields:

$$S=0.000199*P*G$$

Where  $P$  = Power in mW

$G$  = Numeric antenna gain

$S$  = Power density in  $\text{mW}/\text{cm}^2$

$$\rightarrow \text{Power density}=0.000538\text{mW}/\text{cm}^2$$

(For mobile or fixed location transmitters, the maximum power density is  $1.0 \text{ mW}/\text{cm}^2$  even if the calculation indicates that the power density would be larger.)

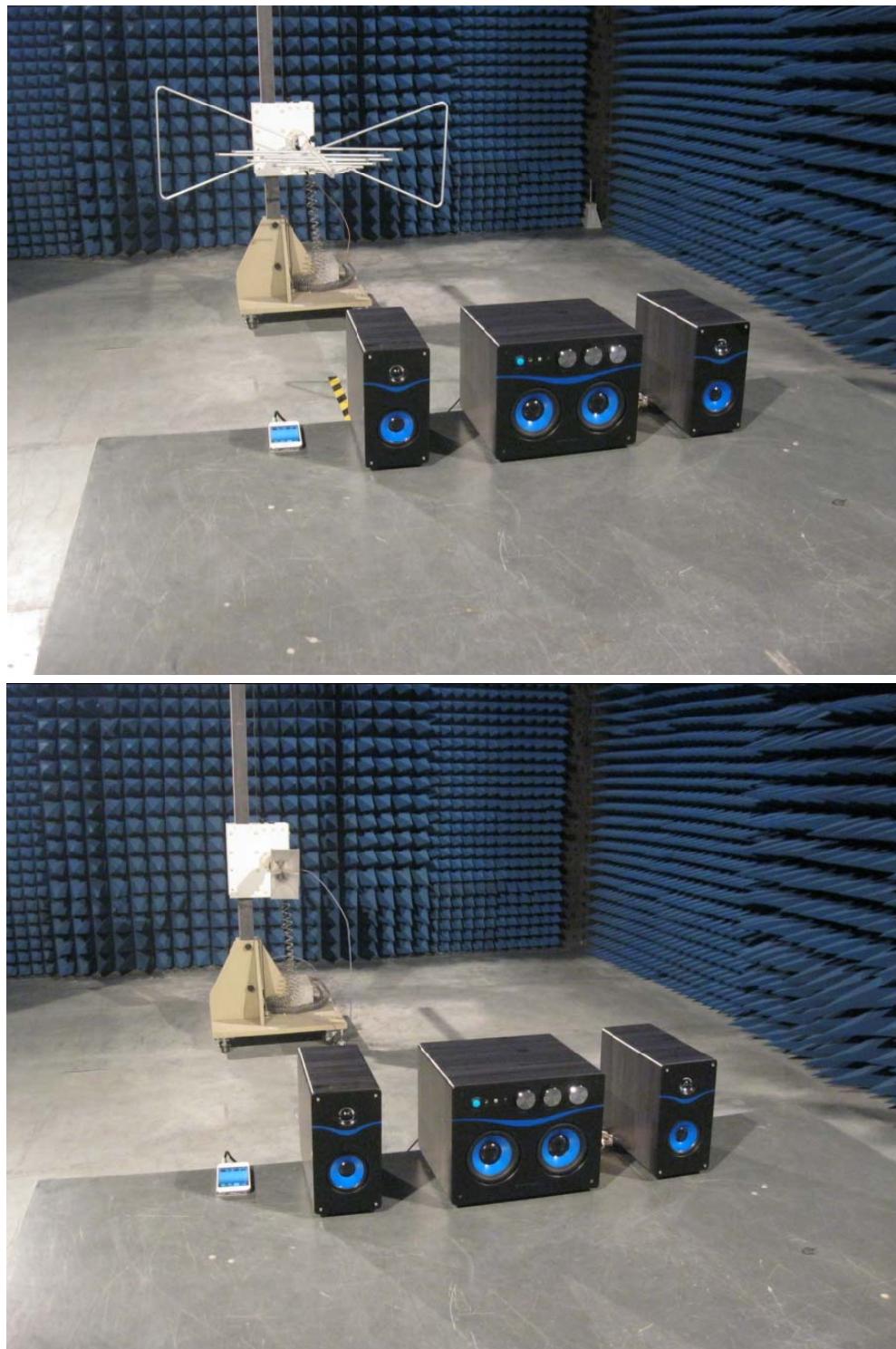
## 16.0 FCC ID Label

### FCC ID: OMABLUET40

**This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.**

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

#### Mark Location:




**17.0** Photos of testing

17.1 Conducted test View



17.2 Radiated emission test view





Shenzhen TCT Testing Technology Co., Ltd.

#### **18.0 Photos for the EUT**

Please refer to the document External photo and Internal photo.

**--End of the report--**