

Report on the FCC and IC Testing of the

BALTECH AG

Model: 10115-610

In accordance with FCC 47 CFR Part 15C (partly)
and Industry Canada RSS-247 (partly) and
Industry Canada RSS-GEN (partly)

Prepared for: BALTECH AG
Lilienthalstr.27
85399 Hallbergmoos
Germany

FCC ID: OKY10115610A02A
IC: 7657A-10115610

Product Service

Choose certainty.
Add value.

COMMERCIAL-IN-CONFIDENCE

Date: 2019-03-21

Document Number: TR-69583-55987-01 | Issue: 01

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Alex Fink	2019-03-21	
Authorised Signatory	Matthias Stumpe	2019-03-21	

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and Industry Canada RSS-247 and Industry Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Alex Fink	2019-03-21	

Laboratory Accreditation
DAkkS Reg. No. D-PL-11321-11-02 Laboratory recognition
Registration No. BNetzA-CAB-16/21-15 Industry Canada test site registration
3050A-2

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C (partly), Industry Canada RSS-247 (partly) and Industry Canada RSS-GEN:2016 and Issue 2 (2017-02) and Issue 4 (2014-11) (partly).

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2019 TÜV SÜD Product Service.

ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich

HRB 85742

VAT ID No. DE129484267

Information pursuant to Section 2(1)

DL-InfoV (Germany) at

www.tuev-sued.com/imprint

Managing Directors:

Dr. Peter Havel (CEO)
Dr. Jens Butenandt

Phone: +49 (0) 9421 55 22-0

Fax: +49 (0) 9421 55 22-99
www.tuev-sued.de

TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45
94315 Straubing
Germany

Contents

1	Report Summary	2
1.1	Report Modification Record.....	2
1.2	Introduction.....	2
1.3	Brief Summary of Results	3
1.4	Product Information	4
1.5	Deviations from the Standard.....	4
1.6	EUT Modification Record	4
1.7	Test Location.....	4
2	Test Details	5
2.1	Maximum Conducted Output Power	5
2.2	Power Spectral Density	9
3	Photographs	12
3.1	Equipment Under Test (EUT).....	12
4	Measurement Uncertainty	13

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2019-03-21

Table 1

1.2 Introduction

Applicant	BALTECH AG
Manufacturer	BALTECH AG
Model Number(s)	10115-610
Serial Number(s)	18032383
Hardware Version(s)	N/A
Software Version(s)	N/A
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15C, Industry Canada RSS-247 and Industry Canada RSS-GEN:2016 and Issue 2 (2017-02) and Issue 4 (2014-11)
Test Plan/Issue/Date	N/A
Order Number	N/A
Date	2019-03-20
Date of Receipt of EUT	2019-03-19
Start of Test	2019-03-20
Finish of Test	2019-03-20
Name of Engineer(s)	Alex Fink
Related Document(s)	--- ANSI C63.10 (2013) KDB 662911 D01 v02r02 ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003, FCC 47 CFR Part 15C and Industry Canada RSS-247 and Industry Canada RSS-GEN is shown below.

Section	Specification Clause	Test Description	Result	Comments/Base Standard
Configuration and Mode: Continuously transmitting - 5 V DC power supplied				
2.1	15.247 (b), 5.4 and 6.12	Maximum Conducted Output Power	Pass	ANSI C63.10 (2013) KDB 662911 D01 v02r02
2.2	15.247 (e), 5.2 and 6.12	Power Spectral Density	Pass	ANSI C63.10 (2013) KDB 662911 D01 v02r02

Table 2

1.4 Product Information

1.4.1 Technical Description

RFID Reader

1.5 Deviations from the Standard

none

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer SN: 18032383 (antenna replaced by provisional coax interface (SMA))	Not Applicable	Not Applicable

Table 3

1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)
Configuration and Mode: Continuously transmitting - 5 V DC power supplied	
Maximum Conducted Output Power	Alex Fink
Power Spectral Density	Alex Fink

Table 4

Office Address:

Äußere Frühlingstraße 45
94315 Straubing
Germany

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 15C, Industry Canada RSS-247 and Industry Canada RSS-GEN, Clause 15.247 (b), 5.4 and 6.12

2.1.2 Equipment Under Test and Modification State

10115-610, S/N: 18032383- Modification State 0

2.1.3 Date of Test

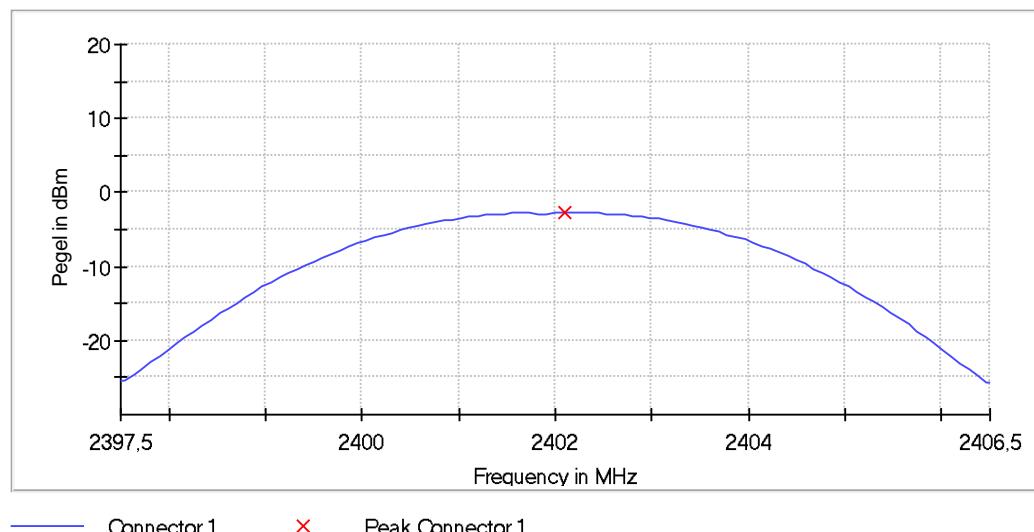
2019-03-20

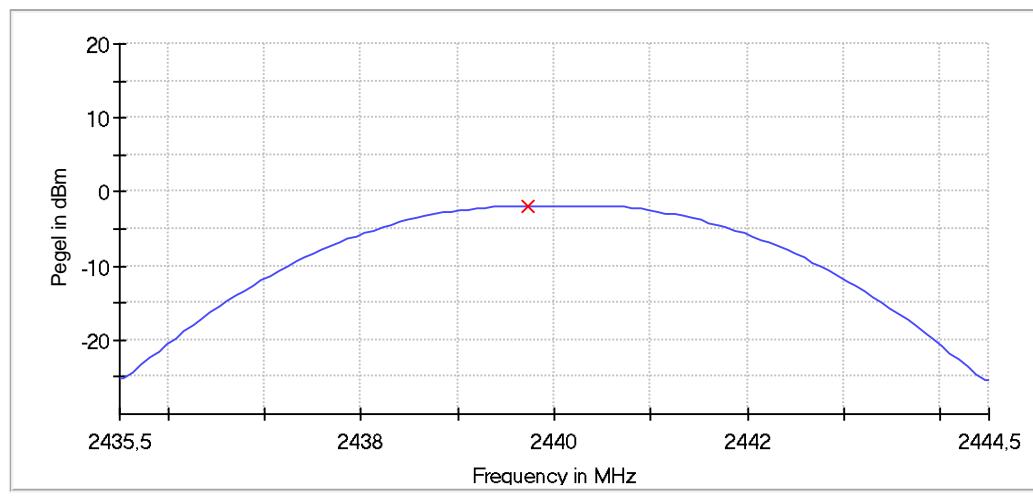
2.1.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.9.1.1.

2.1.5 Environmental Conditions

Ambient Temperature 22 °C


Relative Humidity 34 %


2.1.6 Test Results

Continuously transmitting - 5 V DC power supplied

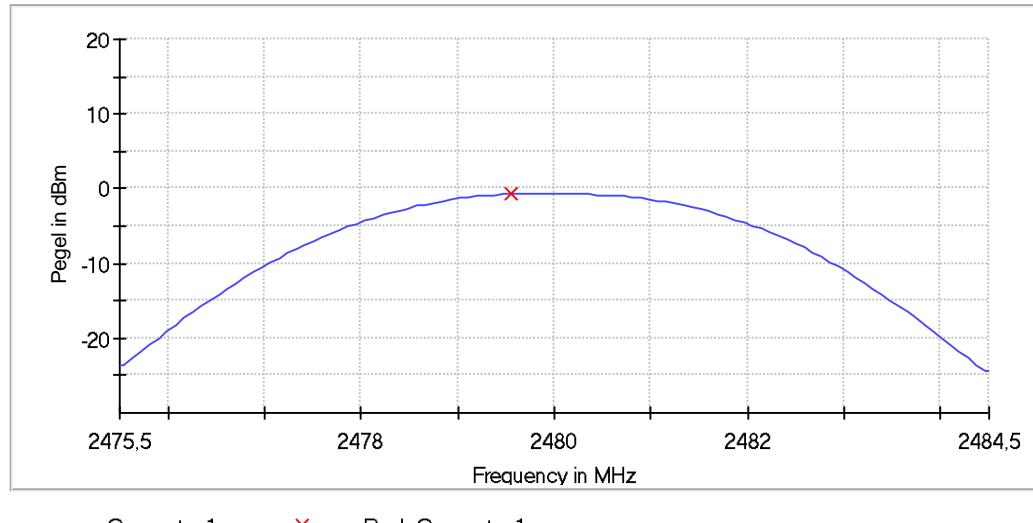

Frequency (MHz)	dBm	mW
2402	-2.8	0.525
2440	-1.8	0.661
2480	-0.7	0.851

Table 5

— Connector 1 ✕ Peak Connector 1

— Connector 1 ✕ Peak Connector 1

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Industry Canada RSS-247, Limit Clause 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902–928 MHz and 2400–2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of the specification.

2.1.7 Test Location and Test Equipment Used

This test was carried out in a non-shielded room.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Signal and Spectrum Analysator	Rohde&Schwarz	FSV40	20219	12	2020-01-31
Testsystem 2,4 & 5 GHz Band	Rohde&Schwarz	TS8997	20251	24	2020-01-31

Table 6

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

2.2 Power Spectral Density

2.2.1 Specification Reference

FCC 47 CFR Part 15C, Industry Canada RSS-247 and Industry Canada RSS-GEN, Clause 15.247 (e), 5.2 and 6.12

2.2.2 Equipment Under Test and Modification State

10115-610, S/N: 18032383- Modification State 0

2.2.3 Date of Test

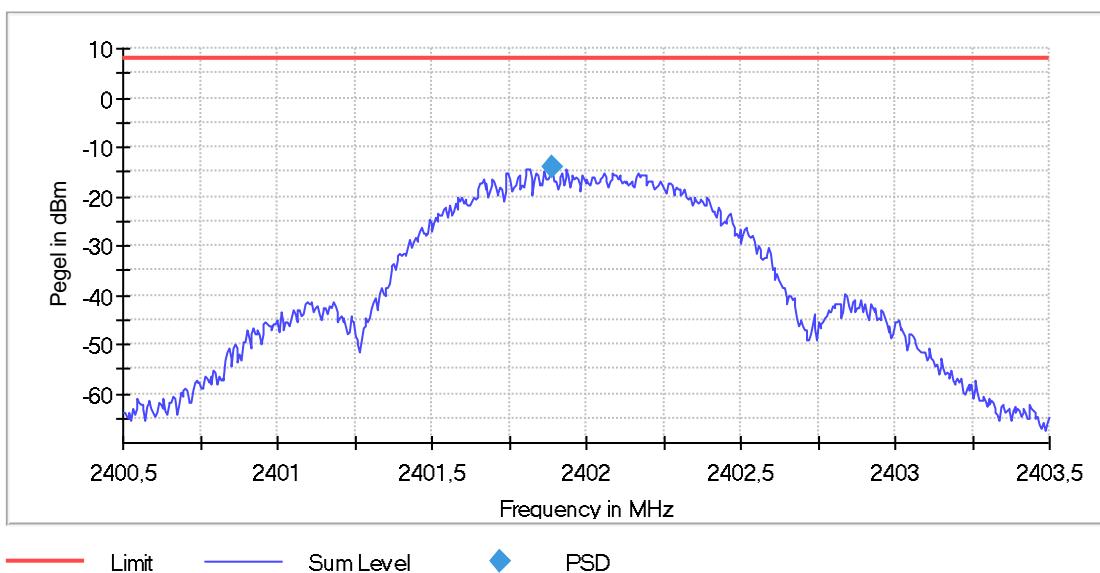
2019-03-20

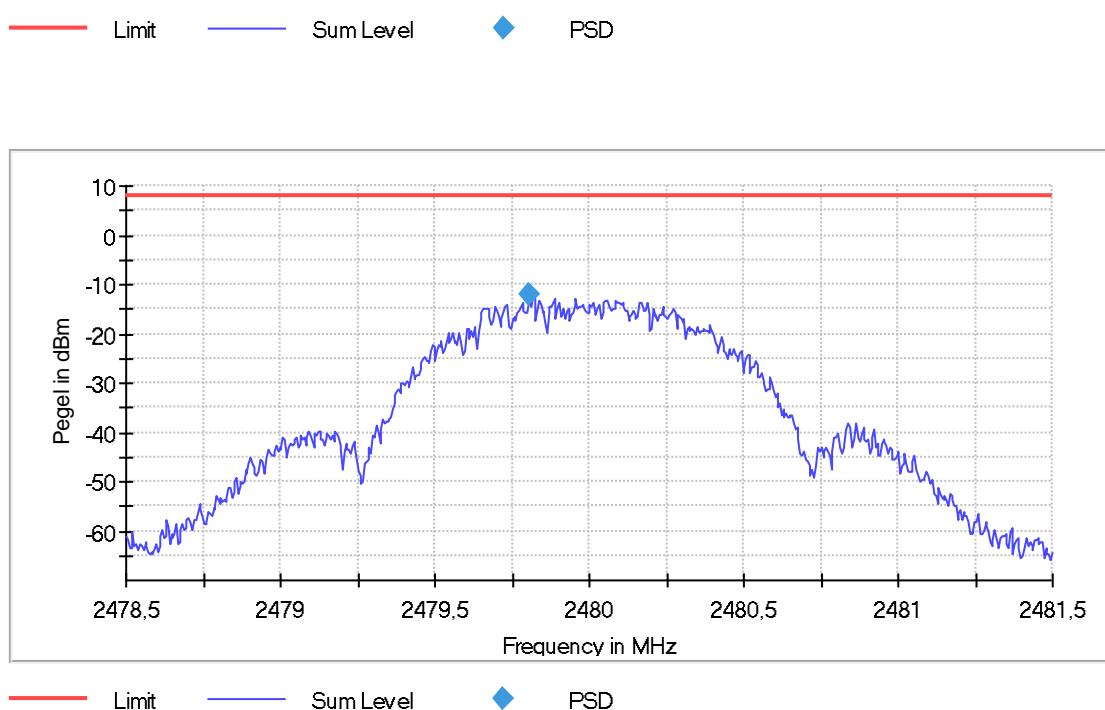
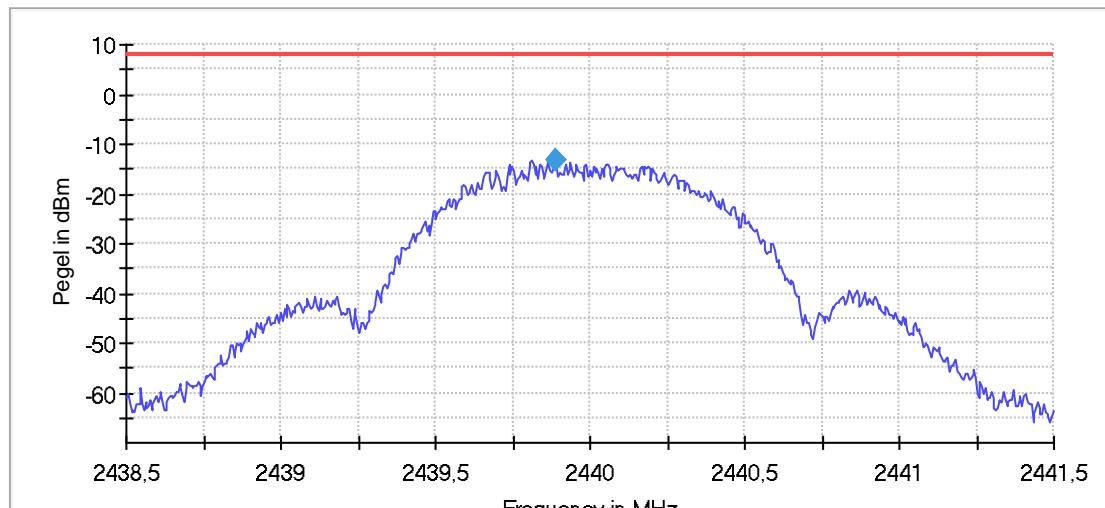
2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.2.

KDB 558074 D01 DTS Meas Guidance v05 F

2.2.5 Environmental Conditions


Ambient Temperature 22 °C
Relative Humidity 34 %



2.2.6 Test Results

Continuously transmitting - 5 V DC power supplied

Frequency (MHz)	Power Spectral Density (dBm)
2402	-14.11
2440	-13.33
2480	-12.15

Table 7

FCC 47 CFR Part 15, Limit Clause 15.247 (e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Industry Canada RSS-247, Limit Clause 5.2(b)

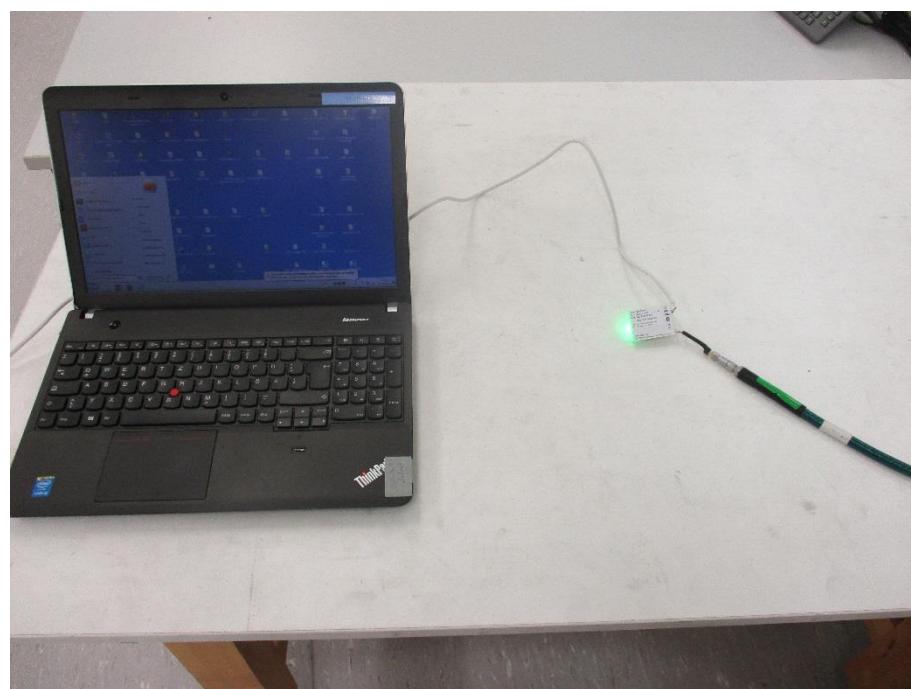
The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.2.7 Test Location and Test Equipment Used

This test was carried out in a non-shielded room

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Signal and Spectrum Analysator	Rohde&Schwarz	FSV40	20219	12	2020-01-31
Testsystem 2,4 & 5 GHz Band	Rohde&Schwarz	TS8997	20251	24	2020-01-31

Table 8


TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

3 Photographs

3.1 Equipment Under Test (EUT)

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Testing			
Test Name	kp	Expanded Uncertainty	Note
Occupied Bandwidth	2.0	$\pm 1.14 \%$	2
RF-Frequency error	1.96	$\pm 1 \cdot 10^{-7}$	7
RF-Power, conducted carrier	2	$\pm 0.079 \text{ dB}$	2
RF-Power uncertainty for given BER	1.96	$+0.94 \text{ dB} / -1.05$	7
RF power, conducted, spurious emissions	1.96	$+1.4 \text{ dB} / -1.6 \text{ dB}$	7
RF power, radiated			
25 MHz – 4 GHz	1.96	$+3.6 \text{ dB} / -5.2 \text{ dB}$	8
1 GHz – 18 GHz	1.96	$+3.8 \text{ dB} / -5.6 \text{ dB}$	8
18 GHz – 26.5 GHz	1.96	$+3.4 \text{ dB} / -4.5 \text{ dB}$	8
40 GHz – 170 GHz	1.96	$+4.2 \text{ dB} / -7.1 \text{ dB}$	8
Spectral Power Density, conducted	2.0	$\pm 0.53 \text{ dB}$	2
Maximum frequency deviation			
300 Hz – 6 kHz	2	$\pm 2.89 \%$	2
6 kHz – 25 kHz	2	$\pm 0.2 \text{ dB}$	2
Maximum frequency deviation for FM	2	$\pm 2.89 \%$	2
Adjacent channel power 25 MHz – 1 GHz	2	$\pm 2.31 \%$	2
Temperature	2	$\pm 0.39 \text{ K}$	4
(Relative) Humidity	2	$\pm 2.28 \%$	2
DC- and low frequency AC voltage			
DC voltage	2	$\pm 0.01 \%$	2
AC voltage up to 1 kHz	2	$\pm 1.2 \%$	2
Time	2	$\pm 0.6 \%$	2

Table 9

Radio Interference Emission Testing			
Test Name	kp	Expanded Uncertainty	Note
Conducted Voltage Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
100 kHz to 200 MHz (50Ω/5µH AMN)	2	± 3.6 dB	1
Discontinuous Conducted Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
Conducted Current Emission			
9 kHz to 200 MHz	2	± 3.5 dB	1
Magnetic Fieldstrength			
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1
Radiated Emission			
Test distance 1 m (ALSE)			
9 kHz to 150 kHz	2	± 4.6 dB	1
150 kHz to 30 MHz	2	± 4.1 dB	1
30 MHz to 200 MHz	2	± 5.2 dB	1
200 MHz to 2 GHz	2	± 4.4 dB	1
2 GHz to 3 GHz	2	± 4.6 dB	1
Test distance 3 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 5.0 dB	1
1 GHz to 6 GHz	2	± 4.6 dB	1
Test distance 10 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 4.9 dB	1
Radio Interference Power			
30 MHz to 300 MHz	2	± 3.5 dB	1
Harmonic Current Emissions			4
Voltage Changes, Voltage Fluctuations and Flicker			4

Table 10

Immunity Testing			
Test Name	kp	Expanded Uncertainty	Note
Electrostatic Discharges			4
Radiated RF-Field			
Pre-calibrated field level	2	+32.2 / -24.3 %	5
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3
Electrical Fast Transients (EFT) / Bursts			4
Surges			4
Conducted Disturbances, induced by RF-Fields			
via CDN	2	+15.1 / -13.1 %	6
via EM clamp	2	+42.6 / -29.9 %	6
via current clamp	2	+43.9 / -30.5 %	6
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2
Pulse Magnetic Field			4
Voltage Dips, Short Interruptions and Voltage Variations			4
Oscillatory Waves			4
Conducted Low Frequency Disturbances			
Voltage setting	2	± 0.9 %	2
Frequency setting	2	± 0.1 %	2
Electrical Transient Transmission in Road Vehicles			4

Table 11

Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of $kp = 2.05$, providing a level of confidence of $p = 95.45\%$

Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of $kp = 1.96$, providing a level of confidence of $p = 95.45\%$

Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of $kp = 1.96$, providing a level of confidence of $p = 95.45\%$