

Nomadic Communications**A.C.N. 056 637 453**

Unit 6, 27 - 33 Thornton Crescent

Mitcham, Victoria, Australia 3132.

Box 506 Eastern MC

Victoria, Australia 3110.

Ph: 03 9873 7988 (Intl. +61 39873 7988)

Fax: 03 9873 8911 (Intl. +61 39873 8911)

DCC# **COPY#** **FILE** **NMX910 Technical Notes
OEM Interface Guide****Issue:** 1.9**Last Update:** 15th October 1999**Author:** Barry Hay

**REVISION CONTROLLED DOCUMENT
NO UNAUTHORISED COPYING****Copyright © 2001 Nomadic Communications ACN 056 637 453**

All rights reserved. No part of this document may be reproduced or copied in any form by any means (graphic, electronic or mechanical, including photocopying or recording by any other information retrieval system) without the prior written permission of Nomadic Communications. The information contained in this document is commercial-in-confidence to Nomadic Communications and is subject to non-disclosure to any other party. Distribution of part or all of this document to parties other than only authorised recipients by Nomadic Communications is strictly prohibited.

Approvals

Issue	Technical Approval	Project Approval
1.4	Mike Hamilton	Noel Diviney

Record of Issue(s)

Issue	Issued by	Date	Nature of Amendment(s)
1.0	AH	19.05.98	Draft release
1.1	AH	3.07.98	Revised for BBR605 / RF400302
1.2	AH	10.07.98	<input type="checkbox"/> Signal naming convention changed to improve meaning <input type="checkbox"/> Document rearranged to improve readability <input type="checkbox"/> LED pins described <input type="checkbox"/> Design notes updated
1.3	AH	29.07.98	Added section – Special Notes
1.4	BH	18.11.98	Revised for related Mobitex document references RF Power vs Vrad issues
1.5	BH	12.01.99	Revised For NMX900 Preliminary Issue
1.6	BH	03.05.1999	Marketing Name Change to identify Production Release Added power requirements template Added discussion of Human Exposure to Radiofrequency Electromagnetic Fields
1.7	BH	30.06.1999	Added New Section "Notes For Application Developers"
1.8	BH	10.09.1999	Revisions added per notes from BellSouth. Added discussion on regulatory issues.
1.9	BH	15.10.1999	Revised Chapter 7. Regulatory Issues

Contents

Approvals	ii
Record of Issue(s)	ii
Contents	iii
1 Introduction	4
1.1 Scope	4
2 Special Notes	5
3 External Interface	6
3.1 LED Configuration.....	7
4 Modes of Operation	7
4.1 Application of power.....	8
4.2 Network Contact.....	8
4.3 Mode Change.....	8
4.4 Shutdown	9
4.5 Removal of power	9
5 NMX910 Recommended Power Supply Requirements	10
6 Notes For Application Developers	12
7 Regulatory Issues.	13
7.1 Class of Operation.....	13
7.2 Antenna.....	13
7.3 Exposure Limits.....	14
7.4 Maximum Permissible Exposure (MPE)	Error! Bookmark not defined.
7.5 References	14
8 Housing Dimensions	15
9 Technical Specifications	16
Disclaimer.....	16
Overview.....	16
Key Features	16
Approvals	16

1 Introduction

The NMX910 Radio Packet Modem provides access to MOBITEX networks using a standard serial communications interface and is designed for integration into OEM type products (the **OEM Device**).

OEM designers are primarily interested in the electrical and functional characteristics of the NMX from a “black-box” frame of reference. To this end, the NMX can be considered as a device with two ports; the **External Interface** and the **Antenna Port**.

The **Antenna Port** provides the RF interface between the NMX radio and an external antenna. The **External Interface** provides all external control signals, data communications and power supply lines to the NMX through a predefined connector at the **OEM Device** (see section 3 below).

When considering the integration of the NMX910 into an OEM design the designer should provide for the following:

- EIA-232 serial communications port 7bit, Even Parity, 1 Stop bit (ie. **TXD**, **RXD**, **DTR** etc.) for the MASC interface.
- Logic power supply (**VLOG**, **VLOG**)
- Radio power supply (**VRAD**, +6.5V to +7.5V)
- (*Optional*) Power control (**PWR**)
- (*Optional*) Mode control (**MODE**)

The Molex connector provides the only access to all the above circuits, as well as the indicator signals.

This technical brief documents the behaviour and control of the **External Interface** to enable OEM designers to correctly and efficiently interface with the NMX.

The content of this document is valid for Nomadic Communications NMX910 MOBITEX Radio Modem model BBR606/RF900304, firmware versions greater than 1.54

1.1 Scope

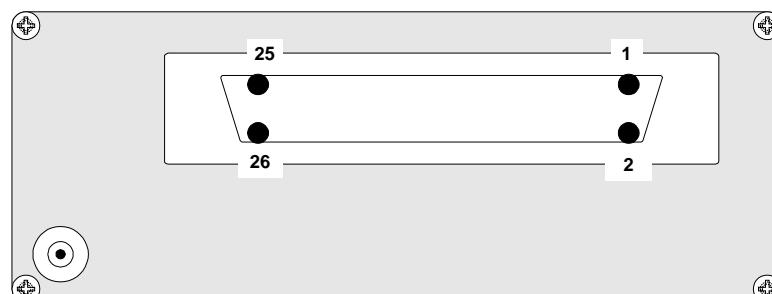
- Certification issues, compliance with certain standards etc, are beyond the scope of this document.
- All data in this document was derived from experimental results using a randomly selected NMX910 modem from certified production stock.
- Characteristics should be applied assuming natural variance of product.
- No consideration is given to the operation of the MASC interface with respect to the command language.

2 Special Notes

- ❑ Permanent damage can occur to the NMX910 if operated without a properly connected 50-ohm antenna and cable (eg. RG-58). Care should be taken to ensure that the antenna and cable are correctly matched to the NMX910.
- ❑ NMX910 must be properly subscribed with the approved MOBITEX Network Operator in the country of intended operation before use. Care should be taken not to operate an unregistered NMX910.
- ❑ When power is applied to the NMX910 power pins it will enter **POWER-OFF MODE** (see section 4 below) waiting to sense a “power on request” via the correct assertion of either the **MAN-ON** or **DTR** pins (see section 3 below).
- ❑ When operated for the first time, via the correct assertion of either the **MAN-ON** or **DTR** pin (see section 3 below), the NMX910 may take several minutes as it attempts to become BORN on its' registered MOBITEX Network. Once BORN, the NMX910 will enter its default mode, Battery Save or Express, as programmed at time of manufacture. The Mode may be changed by the relevant MASC commands, or via the external interface input line described in Section 3.
- ❑ NMX910 should always be operated as described in this document, special attention should be given to power handling detailed in section 4.1

3 External Interface

The following table outlines the electrical configuration of the NMX910 (Model BBR606-RF900303) at the **External Interface** connector.


Connector is a 26 pin Molex 52629-2611 to mate with Molex 52660-2611

Pin#	Name	Req'd	Type	Description
1-3	VRAD	Yes ¹	Power	Radio power supply ³
4-7,18	GND	Yes ¹	Power	Common return ³
8	VLOG	Yes ¹	Power	Logic power supply
9	MODE	-	Input	Mode change request. The NMX toggles between EXPRESS and BATTERY mode when this pin is held logic high for a minimum of 1000ms
10	MAN-ON	-	Input	Power on/off request. The NMX toggles between POWER-ON and POWER-OFF modes when this pin is held logic high for a minimum of 1500ms.
11-14	NC	-	Output	LED status (LED3 – LED0)
15-17	NC	-	-	Do not connect
19	RI	-	Output	Not internally used ²
20	DTR	Yes ¹	Input	Power on request. The NMX will enter power-on mode when this pin is driven from low to high (positive edge) in power-off mode.
21	CTS	-	-	Not internally used, follows RTS ²
22	RXD	Yes ¹	Output	Serial data from NMX
23	RTS	-	-	Not internally used, follows CTS ²
24	TXD	Yes ¹	Input	Serial data to NMX
25	DSR	-	Output	Not internally used, follows DTR ²
26	DCD	-	Output	Not internally used, follows DTR ²

¹ Required to successfully interface to NMX

² These signals are provided for EIA-232 compatibility only, the minimum requirement for a serial interface with the NMX is TXD, RXD, DTR and GND.

³ All pins in these groups should be connected to provide the required current handling capability.

External Interface Connector Pin Outs

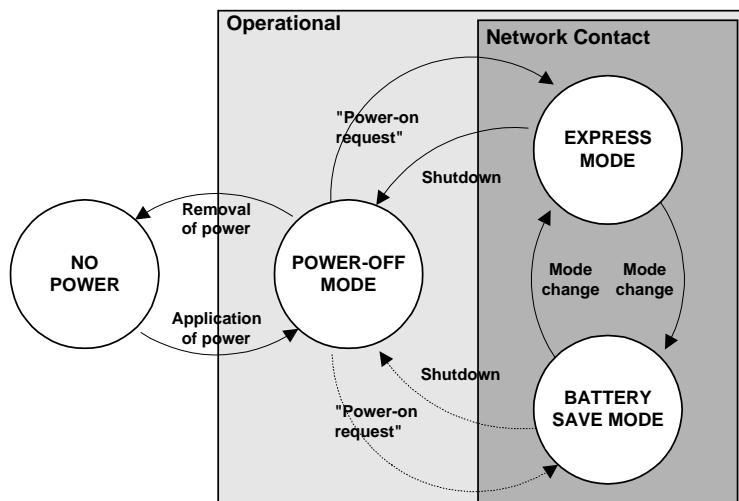
Antenna Connector, MCX Female

3.1 LED Configuration

LED signals are driven from TTL compatible output with series 2K resistor. LED driver circuitry must be used if external LED's are required.

Pin#	Name	Description
14	LED0	POWER-ON MODE indicator
13	LED1	Network contact indicator
12	LED2	Transmit indicator
11	LED3	EXPRESS MODE indicator

4 Modes of Operation


The NMX910 is a microprocessor controlled, hybrid electronic device with special requirements for power quality and application. The NMX is designed to operate with power applied to the **External Interface** at all times, and provides the ability to power itself on and off under software and hardware control. Because of the nature of radio transmissions, and the MOBITEX network, the NMX needs to be able to control its own powering down to ensure that certain time-critical processes are completed and the system is left in a known state. If possible, OEM designers should provide for this behaviour by powering the NMX from a constant power source, or the same source as the OEM equipment.

IMPORTANT!

Care should be taken not to remove power from the External Interface without properly shutting down the NMX910 via the MASC FO command or asserting the MAN-ON pin. For further information see section "Power Sequencing"

If power is removed from the **External Interface**, without correctly shutting down the NMX, the MOBITEX network will become unaware of the modem's Active/Inactive state. This situation is recoverable, however the sudden loss of power could result in loss of buffered messages. This section outlines the procedures necessary to properly power and control the NMX910.

The following diagram outlines the relationship between the three power modes and the mechanisms for changing between them.

The NMX operates in one of three distinct power modes while power is applied to the **External Interface**; **POWER-OFF MODE**, **BATTERY SAVE MODE** and **EXPRESS MODE**. To provide control over the operational state, and power consumption of the NMX, the OEM can change between these modes by issuing certain MASC commands and/or electrically activating one of three input pins; **MODE**, **MAN-ON** and **DTR** on the **External Interface**.

- **POWER-OFF MODE** – this mode is selected when the NMX is not required to communicate with the MOBITEX network to send and/or receive messages, or the NMX is to have its power disconnected. Power consumption is reduced to a minimum in this mode by switching off most internal devices, including the microprocessor and MASC interface. The NMX is waiting to sense a “power on request” via the correct assertion of either the **MODE** or **DTR** pin (see section 3 above). Either of these two events will cause the NMX to enter its last known operational state (ie. either **EXPRESS** or **BATTERY SAVE MODE**, whichever mode was active when **POWER-OFF MODE** was entered.)
- **EXPRESS MODE** – in this mode the NMX the radio is always powered. Radio conditions permitting, the NMX will logon and register with the MOBITEX network and is able to send and/or receive messages. The NMX will enter **BATTERY SAVE MODE** when either the **MODE** pin is correctly asserted (see section 3 above) or the MASC FY command for MODE MPA K is issued. Alternatively, the NMX will return to **POWER-OFF MODE** by correctly asserting the **MAN-ON** pin or issuing the MASC FO command. This is the factory default operational mode for the NMX910.
- **BATTERY SAVE MODE** - this mode is functionally similar to **EXPRESS MODE** except that the Radio Module runs on a 10% duty cycle to reduce the average power consumption.

4.1 Application of power

Electrical power must be applied to the NMX via the **VRAD** and **VLOG** pins of the **External Interface**. The NMX will power-up, run internal diagnostics and then enter **POWER-OFF MODE**. The designer should allow at least 2 seconds between the application of power and the first attempt to communicate with the NMX to change out of **POWER-OFF MODE**.

4.2 Network Contact

Once power has been applied according to Section 3.1 the NMX can be brought into Network Contact (ie. either **EXPRESS** or **BATTERY MODE**) using one of the following “power on request” mechanisms:

1. **MAN-ON** pin is asserted for at least 1500ms **OR**
2. **DTR** pin is toggled from low to high

The NMX will issue a MASC B frame to initialise the MASC interface, and begin MOBITEX network roaming and logon. From this point on the MASC interface is active and controls the behaviour of the NMX.

NOTE: Application of MAN-ON for duration less than 1000ms will initiate internal diagnostics and return to POWER-OFF MODE.

4.3 Mode Change

The NMX can toggle between **EXPRESS MODE** and **BATTERY SAVE MODE** while in network contact using one of the following mechanisms:

1. **MODE** pin is asserted for at least 1000ms *OR*
2. MASC FY command is issued.
3. MODE MPAK issued at MASC interface.

The NMX will contact the network to toggle modes, this operation involves packet transmission and can take up to two seconds.

4.4 Shutdown

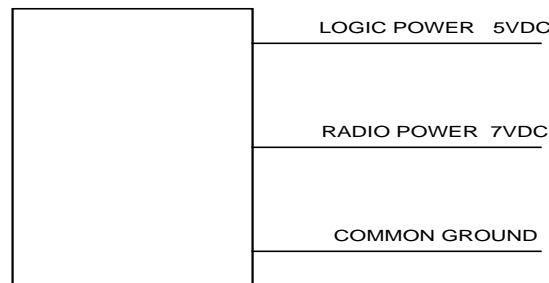
The NMX can be placed back into **POWER-OFF MODE** using one of the following “power off request” mechanisms:

1. **MAN-ON** pin is asserted for at least 1500ms *OR*
2. MASC FO command is issued.

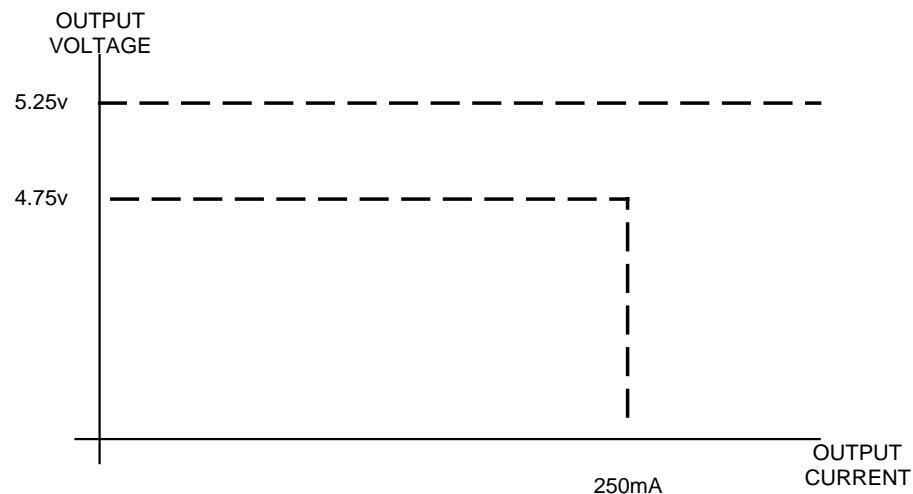
The NMX will terminate MOBITEX network activities, send an INACTIVE to the network, issue the MASC FO reply and shut down power to internal devices to enter **POWER-OFF MODE**. It is important that the correct shutdown procedure be used each time the modem is shutdown to prevent lose of buffered messages, and to keep the network informed of the modem's status.

The NMX can toggle between **EXPRESS/BATTERY SAVE MODE** and **POWER-OFF MODE** by repeating sections 4.2 and 4.3.

4.5 Removal of power

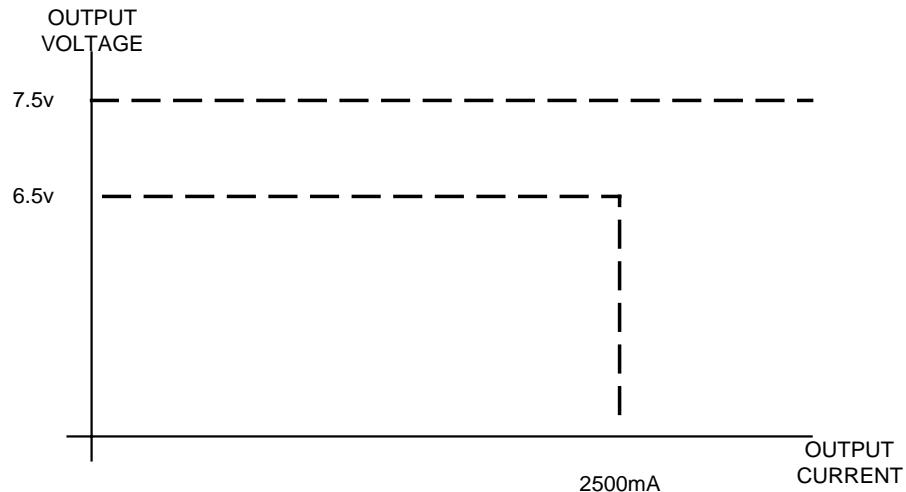

The NMX controls the internal distribution of power from the VRAD and VLOG pins using digitally controllable switches and regulators. While there is no mechanism for completely disconnecting power from the NMX without externally removing the power source from the interface, the NMX can enter a very low power state (**POWER-OFF MODE**) under direct control. It is preferable to use this low power mode rather than disconnecting power from the **External Interface**.

If power must be removed from the **External Interface** the following procedure should be followed to ensure data integrity and network compatibility:


1. Shut down NMX via the MASC FO command or by asserting the **MAN-ON** pin for at least 1500ms according to section 4.4
2. Wait for MASC FO response from the NMX to indicate that it has shut down.
3. Remove electrical power from the interface

Following this procedure will ensure that the network is properly notified and no buffered messages are lost.

5 NMX910 Recommended Power Supply Requirements



The logic power supply should meet the following output requirements:-

The output voltage must stay within these limits for any transient load change greater than 10uS.

The radio power supply should meet the following requirements

The output voltage must stay within these limits for any transient load change greater than 10uS.

6 Notes For Application Developers

Reference Document "NMX Series MIS Compliance Statement" from Nomadic Communications

Application developers should be aware of the following hardware firmware and operational issues prior to commencement of integration of the NMX910. These issues impact hardware design, application software and application certification by the network operator.

- In the case of abrupt power outage, the modem does not save buffered messages. It does, however, preserve all system parameters allowing the modem to return to the network contact once power has been restored
- The modem does not monitor or report voltages on either V_{LOG} or V_{RAD} power supplies. The NMX910 is intended to be used as an embedded modem, and it is the responsibility of the application to monitor and manage power feed to the NMX910. It is also the responsibility of the application software to ensure that analysis and reporting of Network contact status is made subject to evaluation of available power supply to the modem.
- The NMX910 fully complies with the BellSouth Wireless Data requirements for network delivered Lethal Injection. On receipt of a Lethal Injection, the modem will be rendered inoperable, requiring reactivation at a service centre or factory.
- MASC frames exceeding 1150 bytes are ignored by the modem

7 Regulatory Issues.

The NMX910 is an OEM component providing system designers and integrators access to the 900 MHz Mobitex networks. The NMX910 has been certified to FCC Part 15 and Part 90, as an OEM component. However it is the responsibility of the system designer or integrator to ensure that the entire system must meet FCC Part 15 and Part 90.

The FCC Part 15 requirements can be verified by testing the entire system for unintended emissions.

The NMX910 meets the requirements of FCC Part 90, and these characteristics are generally transferable to a system using the NMX910. However, before a system using the NMX910 can achieve Part 90 certification, the system designer or integrator must provide evidence of evaluation of the level of radiofrequency radiation exposure that will be generated by the complete system. The system designer will need to consider the following items when evaluating the levels of radiofrequency exposure generated by the complete system.

7.1 Class of Operation

The NMX910 is designed for use in either fixed location systems, or mobile systems.

FCC section 2.1091 defines a mobile system as a device 'designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between the transmitter's radiating structure and the body of the user'.

Fixed location systems are classed systems that are "physically secured at one location and are not easily moved to another location".

Systems that are designed to be used by consumers or workers that can be easily re-located, such as wireless terminals, are considered to be mobile devices if they meet the 20 centimetre separation requirement.

Systems that are classed as 'fixed' or 'mobile' may use the Maximum Permissible Exposure (MPE) methodology for the evaluation of radiofrequency radiation exposure levels.

If the NMX910 is designed into portable or body worn systems, or if a 20 cm separation between radiating surface and body cannot be maintained by obstruction or warning, then specific absorption rate (SAR) is the appropriate mechanism for determination of the levels of radiofrequency radiation exposure (FCC section 2.1093). In this case, SAR measurements will need to be performed by a suitably equipped testing facility.

7.2 Antenna

When the system designer is performing MPE calculations, care must be paid to the antenna characteristics.

The NMX910 was tested and certified using a unity gain (dipole), ground independent antenna. The antenna used was manufactured by ZCG Scalar has the following characteristics, but these characteristics are common to both ground independent and ground referenced antennas from a number of manufacturers.

Frequency	890 – 960 MHz
Gain	Unity, (0 dBd)
Mounting	Straight Connection TNC
Power	5 Watts
Impedance (Nom.)	50 Ohm
Polarisation	Vertical polarisation
Construction	Delrin, brass and steel
Tuning	Factory

7.3 Exposure Limits

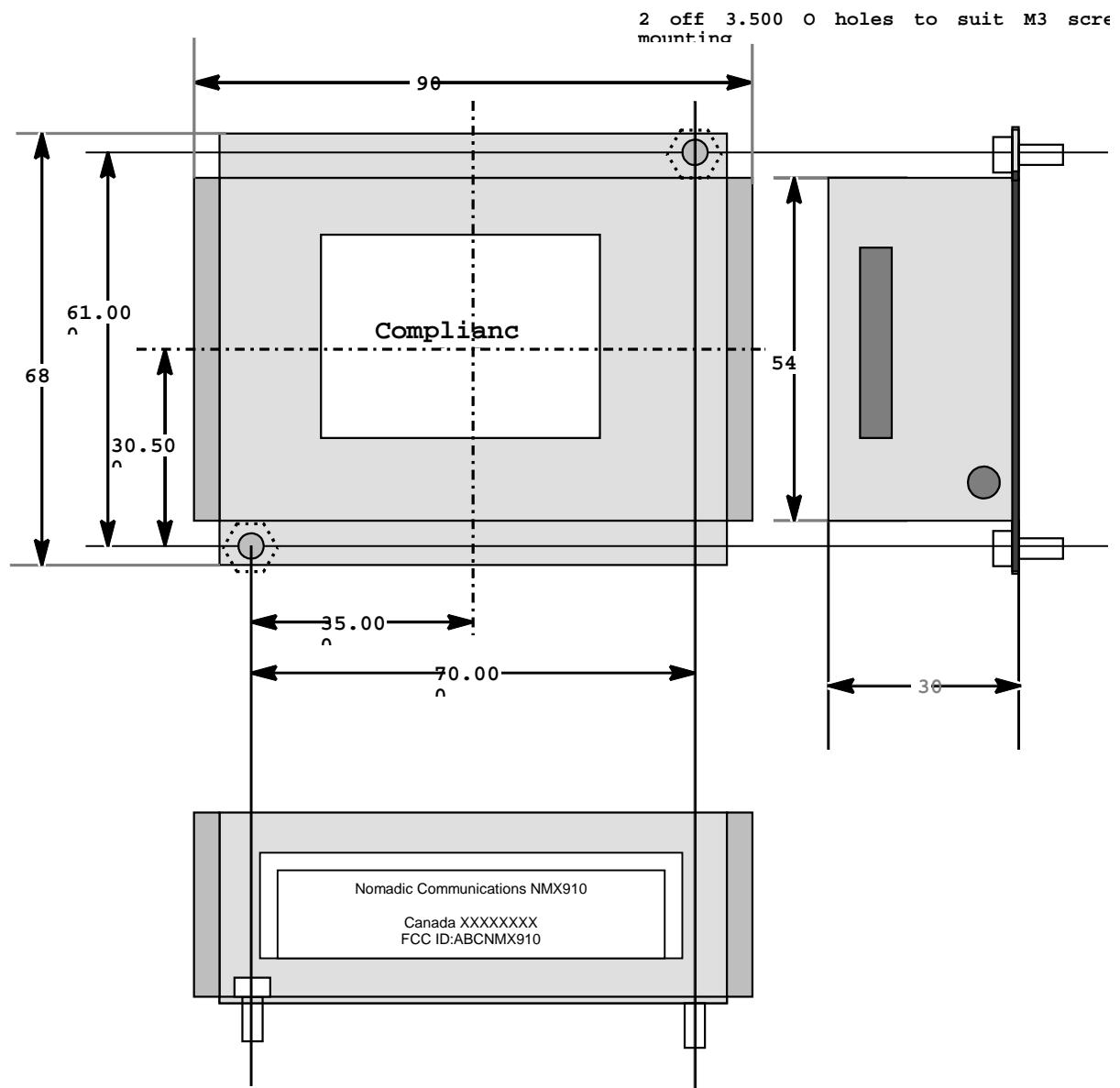
The NMX910 control firmware limits the absolute maximum duty cycle of the transmitter to 50%. This parameter is a compiler time option, and is not changeable by the user, or any test software.

The maximum Effective Radiated Power (ERP) from a half wave dipole, quarter wave vertical or antenna with unity gain to dipole (0 dBd) is $2.24 \text{ W} \times 50\% = 1.12 \text{ W}$. At this power level, a 900 MHz Transmitter in a mobile or fixed location application (minimum antenna separation of 20 cm) is not subject to routine evaluation for RF exposure prior to system authorisation. (Reference 47cfr2 2.1091, section (c)).

If the system designer plans to use a higher gain antenna system, or cannot maintain a 20 cm separation from the antenna, then the total system will be subject to evaluation of RF exposure.

7.4 References

- FCC Part 1 (47cfr1.pdf)
- FCC Part 2 (47cfr2.pdf)
- FCC Part 15 (47cfr15.pdf)
- FCC Part 90 (47cfr90.pdf)
- OET Bulletin 65 and supplements.


These documents are available from the FCC www site <http://www.fcc.gov/oet> .

8 Housing Dimensions

The OEM designer should ensure that:

1. There is sufficient space around the case to achieve required ventilation.
2. Adequate space is allowed for the fitting and removal of external connectors.

All Dimensions in Millimetres

9 Technical Specifications

Disclaimer

Any and all specifications are subject to change by Nomadic Communications Pty Ltd without notice except to the appropriate spectrum management authorities. The information in this specification is deemed reliable at the time of printing. Nomadic Communications does not assume responsibility for any errors that may appear in this specification nor any omissions that may have occurred at the time of printing. Interested parties must therefore rely on their own enquiries. Nomadic Communications does not assume liability arising from the application or use of any information contained in this document or the product referred to by this document. Mobitex® is a registered trademark of Telia AB, Sweden.

Overview

The NMX910 is a 900MHz Mobitex® Radio Packet Modem designed for integration into third party OEM equipment. The NMX910 consists of two small PCB's connected via a flexible printed circuit and housed in an EMI shielded enclosure with MCX antenna connector and single power and data connector. Integration of the NMX910 into existing and new designs is simplified by the use of a single 26-pin Molex® connector for data, control and power.

Key Features

- Compatible with 900MHz Mobitex® networks in USA, Canada and South Korea.
- Low power consumption for prolonged battery life.
- Flexible packaging configurations with optional connector styles and casing options.
- Certified MIS conformance (excluding voice features)
- Rugged design suited to handheld, mobile and fixed base installations.
- 2W nominal power transmitter for effective indoor and fringe area use.
- Four-level automatic attenuation for matched transmission performance in strong signal strength conditions.
- Ability to sustain maximum transmission power output over the useable supply voltage range and operating temperature range.
- High tolerance to EMI produced by close proximity electronics, or coupled through signalling interface.
- Special composite plastic components with better than 90dB EMI shielding.

Approvals

Mobitex® compliant to MOA corrigendum issue 4

Radio Transceiver Specification

General	Dual conversion receiver, directly modulated transmitter utilising common antenna and solid state transmit/receive RF switch.
Modulation Technique	NRZ GMSK (BT=0.3)
Transmitter Frequency Range	895 – 905 MHz (800 channels) (Only 200 enabled for use on BSWD and Cantel networks)
Receive Frequency Range	931 – 941 MHz (800 channels) (Only 200 enabled for use on BSWD and Cantel networks)
Channel Spacing	12.5 kHz
Frequency Accuracy	±1.2 kHz over full operating temperature range
Receiver Sensitivity	-115 dBm
Transmitter Power (minimum at max output)	2 W @ 6.5 – 7.5 VDC into matched 50Ω antenna load at 20°C
Transmitter Power Control	4 level automatic transmit power control (0, -6dB, -12dB and -15dB)
Antenna Cable Connector	MCX Female

Environmental Specification

Operating Temperature	-30°C to +70°C
Storage Temperature	-40°C to +80°C
Cooling Method	Convection and thermal conduction of an enclosed environment
Operating Humidity	5% to 95% non-condensing relative humidity at +50°C for at least 8 hours

Physical Specification

Overall dimensions	89mm x 68mm x 29.5mm (standard enclosure)
Weight	138g including standard enclosure
Mounting Method	Fastened though holes (M3 at 2 positions)
Housing	Conductive "Alodyne" aluminium body with metal impregnated end-caps
Grounding	Continuous-edge direct coupling with standard enclosure

Logic Power Requirements

Supply Voltage	Regulated 5VDC ±5%
Supply Ripple	Less than 50mV rms
Express and Battery Mode	410mW (typical) @ 5.0VDC
Power-off Mode	225mW (typical) @ 5.0VDC

Radio Power Requirements

Supply Voltage	7.0 VDC (6.5 – 7.5 VDC typical)
Supply Ripple	Less than 35mV rms
All modes – Transmitting high power	7800 mW (typical) @ 7.0 VDC into matched 50Ω antenna at 20°C
Express Mode – Receiving	510 mW (typical) @ 7.0 VDC into matched 50Ω antenna at 20°C
Battery Saving Mode – Receiving	260 mW (typical) @ 7.0 VDC into matched 50Ω antenna at 20°C

Device Interface

Connector (Combined power and signal interface)	26 pin Molex 52629-2611 to mate with Molex 52660-2611
Data link protocol	Mobitex® Asynchronous Communications Protocol (MASC1)
Data port	RS-232 9-wire interface
Data rate	1200 – 9600bps, 7Bits Even Parity, 1 Stop Bit