

DATE: 07 September 2016

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

for

Corning Optical Communication Wireless

Equipment under test:

ONE- Optical Network Evolution Wireless Platform

MRU (Mid Power Remote Unit)

(PCS Section)

Tested:

M. Zohar

Approved by:

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Corning Optical Communication Wireless ONE- Optical Network Evolution Wireless Platform (PCS SECTION)

FCC ID: OJF1MRU19CR

This report concerns: Original Grant: X

Class II change: Class I change:

Equipment type: B21 – Part 20 Industrial Booster (CMRS)

Limits used: 47CFR Parts 2, 24

Measurement procedure used is KDB 971168 D03 v01 and KDB 935210 D05 v01r01

Substitution Method used as in ANSI/TIA-603-D: 2010

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

R. Pinchuck Habib Riazi

ITL (Product Testing) Ltd. Corning Optical Communication Wireless 1 Bat Sheva St. 13221 Woodland Park Rd., Suite #400

Lod 7120101 Herndon, VA. 20171

Israel U.S.A.

e-mail rpinchuck@itl.co.il Tel: +1-541-758-2880

Fax: +1-703-848-0260 e-mail: RiaziH@corning.com

TABLE OF CONTENTS

	OFNED AL	. INFORMATION	_
1.			
	1.1	Administrative Information	
	1.2	List of Accreditations	
	1.3	Product Description	
	1.4	Test Methodology	
	1.5	Test Facility	
	1.6	Measurement Uncertainty	
2.	SYSTEM 7	TEST CONFIGURATION	8
	2.1	Justification	8
	2.2	EUT Exercise Software	8
	2.3	Special Accessories	8
	2.4	Equipment Modifications	
	2.5	Configuration of Tested System	
3.	TEST SET	-UP PHOTOS	11
Э.			
4.	PEAK OU	TPUT POWER PCS	
	4.1	Test Specification	
	4.2	Test Procedure	
	4.3	Test Limit	
	4.4	Test Results	
	4.5	Test Equipment Used; Peak Output Power PCS	21
5.	OCCUPIE	D BANDWIDTH (PCS)	22
•.	5.1	Test Specification	22
	5.2	Test Procedure	
	5.3	Test Limit	
	5.4	Test Results	
	5.5	Test Equipment Used; Occupied Bandwidth PCS	
_			
6.		S EMISSIONS AT ANTENNA TERMINALS (PCS)	33
	6.1	Test Specification	
	6.2	Test Procedure	
	6.3 6.4	Test Limit Test Results	
	6.4 6.5	Test Equipment Used; Out of Band Emission at Antenna Terminals	ss
	6.5	PCS	27
7.	BAND ED	GE SPECTRUM (PCS)	
	7.1	Test Specification	
	7.2	Test Procedure	
	7.3	Test Limit	
	7.4	Test Results	
	7.5	Test Equipment Used; Band Edge Spectrum PCS	42
8.	SPURIOU	S EMISSIONS (RADIATED) PCS	43
	8.1	Test Specification	43
	8.2	Test Procedure	
	8.3	Test Limit	
	8.4	Test Results	44
	8.5	Test Instrumentation Used, Radiated Measurements	45
9.	INTERMO	DULATION CONDUCTED	16
9.	9.1	Test Procedure	
	9.1	Test Results	
	9.2	Test Equipment Used; Intermodulation Conducted	
		• •	
10.		DULATION RADIATED	
	10.1	Test Procedure	
	10.2	Test Limit	
	10.3	Test Results	
	10.4	Test Instrumentation Used; Radiated Measurements Intermodulation	51

11.	OUT-OF-E	BAND REJECTION (PCS)	52
	11.1	Test Specification	52
		Test Procedure	
		Test Limit	
	11.4	Test Results	52
	11.5	Test Equipment Used; Out-of-Band Rejection	53
12.	APPENDI	X A - CORRECTION FACTORS	54
	12.1	Correction factors for CABLE	54
	12.2	Correction factors for RF cable for Semi Anechoic Chamber	55
		Correction factors for Horn ANTENNA	
	12.4	Correction factors for Horn ANTENNA	57
	12.5	Correction factors for ACTIVE LOOP ANTENNA	58
	12.6	Correction factors for Biconical Antenna	59
	12 7	Correction factors for Log Periodic Antenna	60

1. General Information

1.1 Administrative Information

Manufacturer: Corning Optical Communication

Wireless

Manufacturer's Address: 13221 Woodland Park Rd., Suite

#400

Herndon, VA. 20171

U.S.A.

Tel: +1-541-758-2880 Fax: +1-703-848-0260

Manufacturer's Representative: Habib Riazi

Equipment Under Test (E.U.T): ONE- Optical Network Evolution

Wireless Platform

Equipment Model No.: MRU (Mid Power Remote Unit)

Equipment Serial No.: 051549901D3

Date of Receipt of E.U.T: July 3, 2016

Start of Test: July 3, 2016, September 6, 2016*

End of Test: August 4, 2016, September 6, 2016*

Test Laboratory Location: I.T.L (Product Testing) Ltd.

1 Batsheva St,

Lod,

Israel 7116002

Test Specifications: FCC Parts 2, 24

^{*}Out of Band Rejection test performed on September 6, 2016

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by/registered with the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation Number IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-3006, R-2729, T-1877, G-245.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

Modular 7 band Enabled Mid Power Neutral Host Solution –

Supported modular frequency bands

700, ESMR+CELL, PCS, AWS, WCS

Integrated 2.5 GHz expansion ready

Composite Output Power

AWS: 34dBm PCS, WCS: 33dBm

700, ESMR & CELL: 30dBm

Specifications

100% Modularity

NEBS Class 2 Compliant

Small Footprint – 6 Rack Units

Highlights:

Extended ONE platform design Diversity

100% modular component design

Composite output power: 2W

Small Compact Form Factor (6U)

Non-Service Impacting Upgrades

Lower initial deployment costs

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in KDB 971168 D03 v01, KDB 935210 D05 v01r01 and ANSI/TIA-603-D: 2010. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Both conducted and radiated emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 - 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.44 dB

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 4.98 dB$

2. System Test Configuration

2.1 Justification

The test setup was configured to closely resemble the standard installation. The EUT consists of the MRU (Mid-Power Remote Module) which is connected with the head-end ONE equipment using fiber optic cable.

The RF source signals are represented in the setup by appropriate signal generators.

An "Exercise" SW on the computer was used to enable / disable transmission of the EUT, while the EUT output was connected to the spectrum analyzer. The system was tested under maximum gain conditions while input power level to the RIM is 0 dBm and output antenna port of MRU is 33dBm for PCS and WCS, 34dBm for AWS and 30dBm for low frequency bands. Testing was performed on the following configurations:

Frequency Range (MHz)						
Service/Band	Downlink (DL)	Technology				
700 MHz	728-757	LTE				
ESMR 800	862- 869	WCDMA, LTE, GSM				
CELL 850	869-894	WCDMA, LTE, GSM				
PCS + G 1900	1930-1995	WCDMA, LTE, GSM				
AWS 2100	2110-2155	WCDMA, LTE, GSM				
WCS	2350-2360	WCDMA, LTE, GSM				

2.2 EUT Exercise Software

The Element Management System ver. 2.0 used for commands delivery. These commands are used to enable/disable the EUT transmission. EUT Embedded SW versions is mru_da64_20_02.bin.

2.3 Special Accessories

No special accessories were needed in order to achieve compliance.

2.4 Equipment Modifications

No modifications were needed in order to achieve compliance.

2.5 Configuration of Tested System

Product Name	ONE Wireless Platform
Model Name	MRU (Mid Power Remote Unit)
Working voltage	115.0VAC/48.0VDC
Mode of operation	Industrial Booster for PCS band
Modulations	WCDMA, LTE(64QAM), GSM
Assigned Frequency Range	1930.0MHz-1995.0MHz
Transmit power	~33.0 dBm
Antenna Gain	12.5 dBi
DATA rate	N/A
Modulation BW	0.5MHz(GSM), 10MHz(LTE), 5MHz(WCDMA)

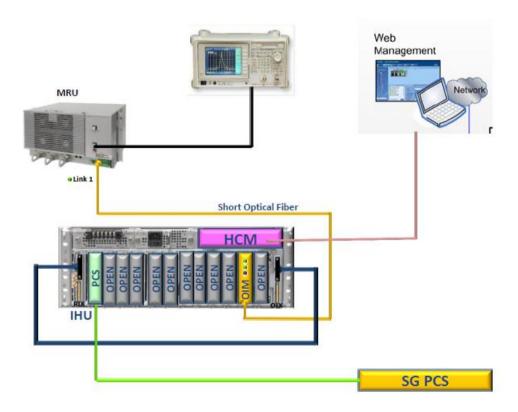


Figure 1. Test Set-Up Conducted

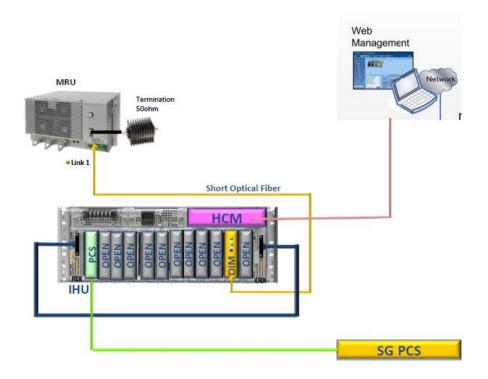


Figure 2. Test Set-Up Radiated

3. Test Set-up Photos

Figure 3. Conducted Emission From Antenna Port Tests

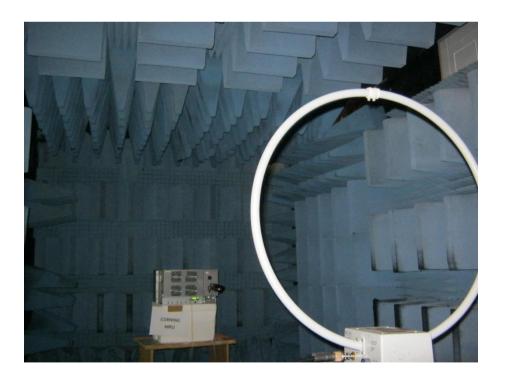


Figure 4. Radiated Emission Test

Figure 5. Radiated Emission Test

Figure 6. Radiated Emission Test

Figure 7. Radiated Emission Test

Figure 8. Radiated Emission Test

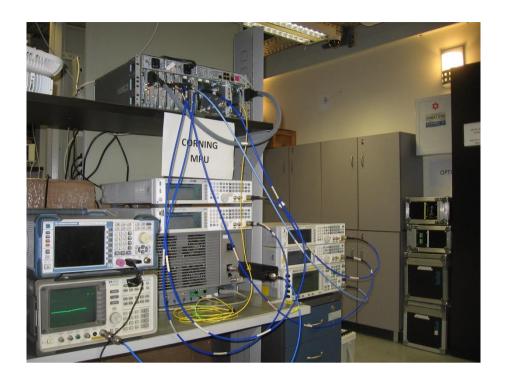


Figure 9. Intermodulation Conducted Emission Test

4.1 Test Specification

FCC Part 24, Subpart E

4.2 Test Procedure

(Temperature (22°C)/ Humidity (39%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss = 41.3 dB). The E.U.T. RF output was modulated with W-CDMA, GSM and LTE 64QAM. Special attention was taken to prevent Spectrum Analyzer RF input overload.

4.3 Test Limit

Peak Power Output must not exceed 100 Watts (50dBm).

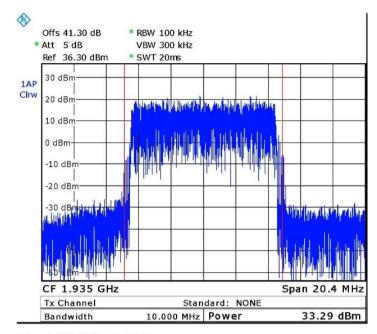
4.4 Test Results

Modulation	Operation	Reading	Antenna	EIRP	Limit	Margin
	Frequency		Gain			
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
	1935.0	33.3	12.5	45.8	50.0	-4.2
LTE 64QAM	1962.5	33.9	12.5	46.4	50.0	-3.6
	1990.0	33.7	12.5	46.2	50.0	-3.8
	1931.2	33.1	12.5	45.6	50.0	-4.4
GSM	1960.0	33.6	12.5	46.1	50.0	-3.9
	1993.8	34.3	12.5	46.8	50.0	-3.2
	1932.5	33.1	12.5	45.6	50.0	-4.4
W-CDMA	1960.0	34.3	12.5	46.8	50.0	-3.2
	1992.5	34.1	12.5	46.6	50.0	-3.4

Figure 10 Peak Output Power PCS

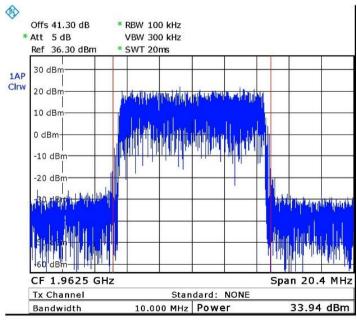
JUDGEMENT: Passed by 3.2 dB

See additional information in Figure 11 to Figure 19.



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

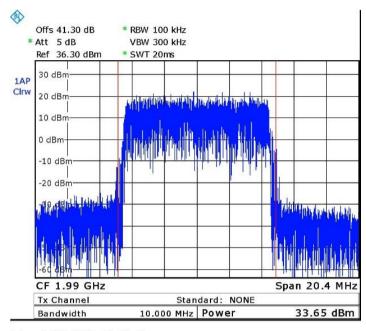
Serial Number: 051549901D3

Date: 3.JUL.2016 11:50:05

Figure 11. — LTE 64QAM 1935.00 MHz

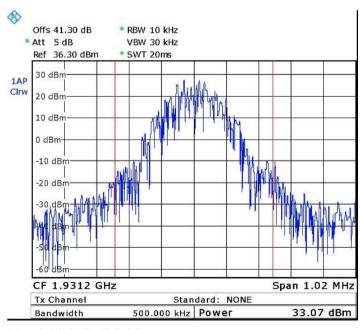
Date: 3.JUL.2016 11:53:35

Figure 12. — LTE 64QAM 1962.50 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

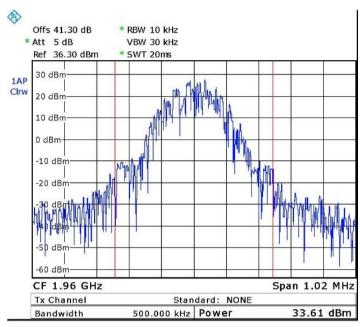
Serial Number: 051549901D3

Date: 3.JUL.2016 12:48:48

Figure 13. — LTE 64QAM 1990.00 MHz

Date: 3.JUL.2016 12:34:15

Figure 14. — GSM - 1931.20 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

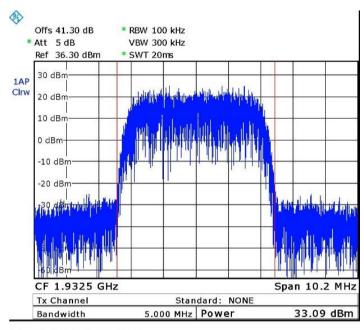
Serial Number: 051549901D3

Date: 3.JUL.2016 12:09:35

Figure 15. — GSM -1960.00 MHz

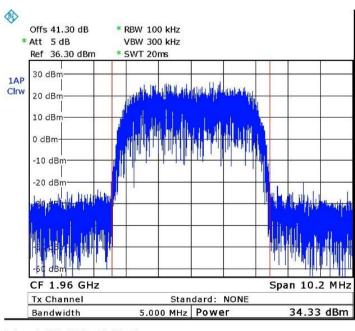
Date: 3.JUL.2016 12:10:54

Figure 16. — GSM -1993.80 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

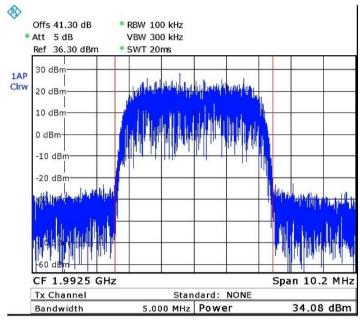
Serial Number: 051549901D3

Date: 3.JUL.2016 12:35:43

Figure 17. — W-CDMA - 1932.50 MHz

Date: 3.JUL.2016 12:36:52

Figure 18. — W-CDMA - 1960.00 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

Date: 3.JUL.2016 12:37:31

Figure 19. — W-CDMA - 1992.50 MHz

4.5 Test Equipment Used; Peak Output Power PCS

	Manufacturer	Model		Calibration	
Instrument			Serial Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	April 3, 2016	April 3, 2017

Figure 20 Test Equipment Used

5.1 Test Specification

FCC Part 2, Section 1049

5.2 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (loss=41.3 dB). The spectrum analyzer was set to proper resolution B.W.

OBW function (99%) was employed for these evaluation

Occupied bandwidth measured was repeated in the input terminal of the E.U.T.

5.3 Test Limit

N/A

5.4 Test Results

Modulation	Port	Operating	Reading
		Frequency	
	(Input/ Output)	(MHz)	(MHz)
	Input	1935.0	9.0
	Output	1935.0	9.0
LTE 64QAM	Input	1962.5	9.0
	Output	1962.5	9.0
	Input	1990.0	9.0
	Output	1990.0	9.0
	Input	1931.2	0.2
	Output	1931.2	0.2
GSM	Input	1960.0	0.2
	Output	1960.0	0.2
	Input	1993.8	0.2
	Output	1993.8	0.2
	Input	1932.5	4.2
	Output	1932.5	4.2
W-CDMA	Input	1960.0	4.2
	Output	1960.0	4.2
	Input	1992.5	4.2
	Output	1992.5	4.2

Figure 21 Occupied Bandwidth PCS

JUDGEMENT: Passed

See additional information in Figure 22 to Figure 39.

E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

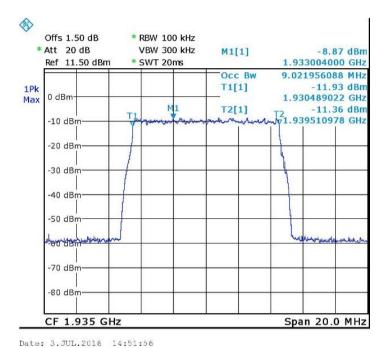


Figure 22. — LTE 64QAM Input 1935.0 MHz

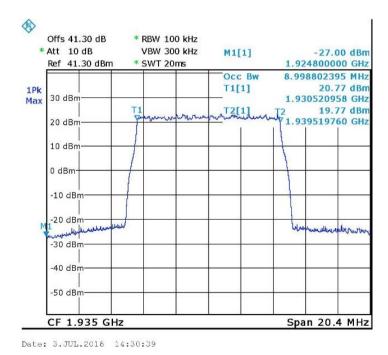
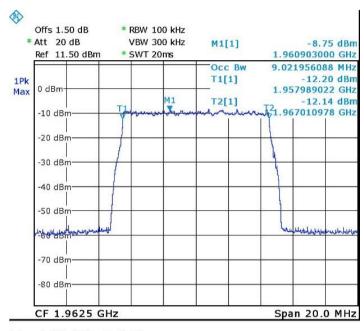
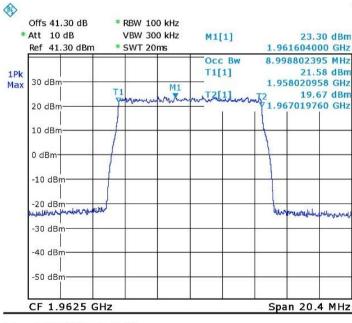


Figure 23. — LTE 64QAM Output 1935.0 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

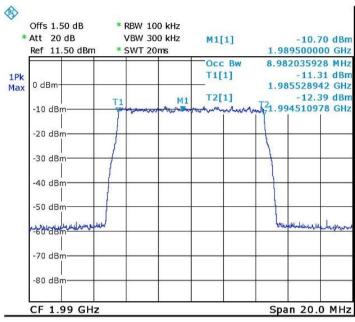
Serial Number: 051549901D3

Date: 3.JUL.2016 14:51:16

Figure 24. — LTE 64QAM Input 1962.5 MHz

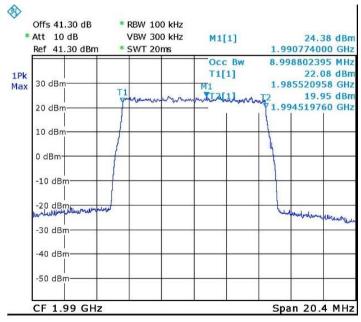
Date: 3.JUL.2016 14:31:29

Figure 25. — LTE 64QAM Output 1962.5 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

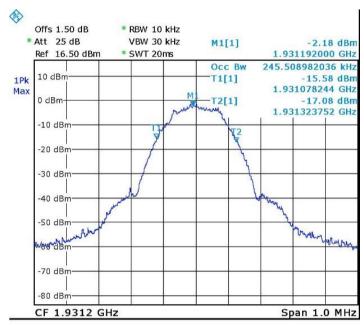
Serial Number: 051549901D3

Date: 3.JUL.2016 14:50:30

Figure 26. — LTE 64QAM Input 1990.0 MHz

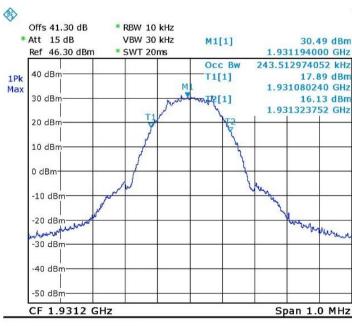
Date: 3.JUL.2016 14:32:17

Figure 27. — LTE 64QAM Output 1990.0 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

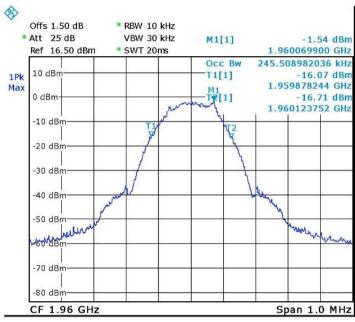
Serial Number: 051549901D3

Date: 3.JUL.2016 14:49:08

Figure 28. — GSM - Input 1931.2 MHz

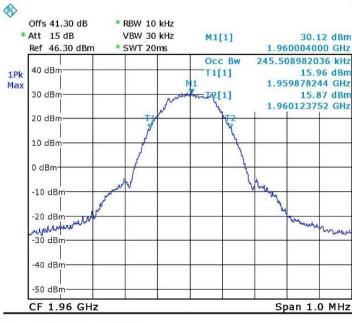
Date: 3.JUL.2016 14:34:41

Figure 29. — GSM - Output 1931.2 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

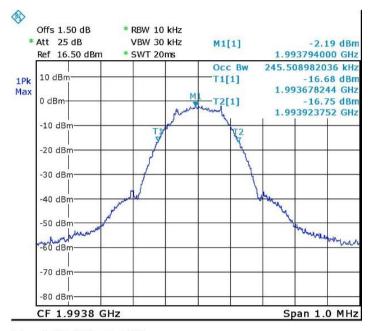
Serial Number: 051549901D3

Date: 3.JUL.2016 14:48:24

Figure 30. — GSM - Input 1960.0 MHz

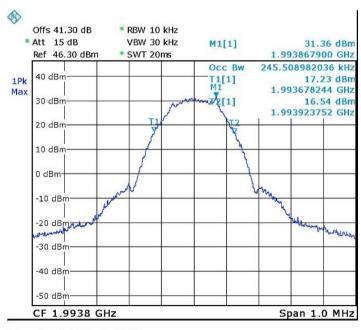
Date: 3.JUL.2016 14:35:25

Figure 31. — GSM - Output 1960.0 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

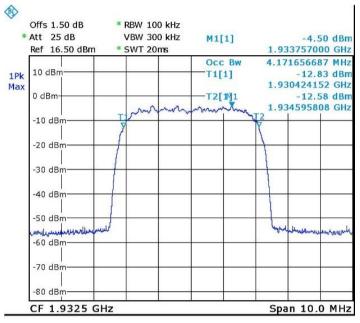
Serial Number: 051549901D3

Date: 3.JUL.2016 14:47:29

Figure 32. — GSM - Input 1993.8 MHz

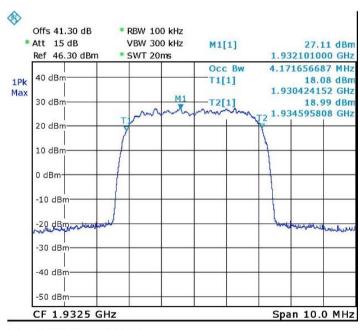
Date: 3.JUL.2016 14:36:28

Figure 33. — GSM - Output 1993.8 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

Date: 3.JUL.2016 14:46:12

Figure 34. — W-CDMA - Input 1932.5 MHz

Date: 3.JUL.2016 14:38:21

Figure 35. — W-CDMA - Output 1932.5 MHz

E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

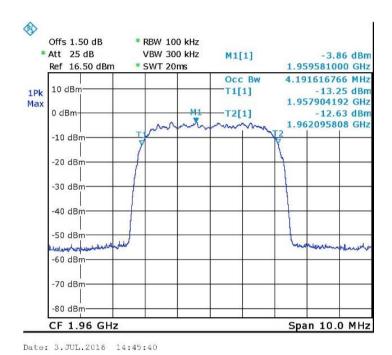


Figure 36. — W-CDMA - Input 1960.0 MHz

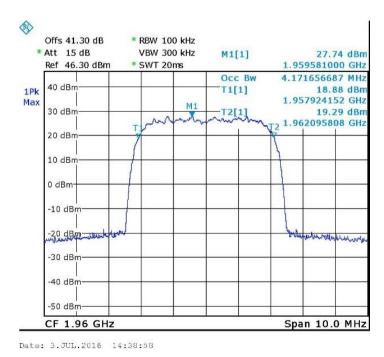
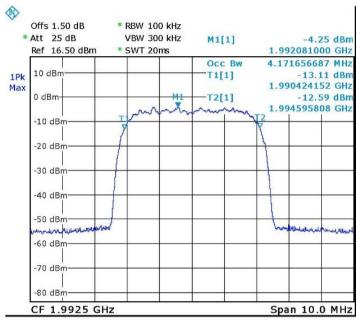


Figure 37. — W-CDMA - Output 1960.0 MHz



E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

Date: 3.JUL.2016 14:45:03

Figure 38. — W-CDMA - Input 1992.5 MHz

Date: 3.JUL.2016 14:40:01

Figure 39. — W-CDMA - Output 1992.5 MHz

5.5 Test Equipment Used; Occupied Bandwidth PCS

			Serial	Calibration	
Instrument	Instrument Manufacturer Model		Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	April 3, 2016	April 3, 2017

Figure 40 Test Equipment Used

6. Spurious Emissions at Antenna Terminals (PCS)

6.1 Test Specification

FCC Part 24, Subpart E, Section 238; FCC Part 2.1051

6.2 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss 34.0 dB). The spectrum analyzer was set to 1 kHz resolution BW for the frequency range 9.0-150.0 kHz, 10 kHz for the frequency range 150 kHz–1.0 MHz, 100 kHz for the frequency range 1.0 MHz – 30 MHz, and 1MHz for the frequency range 30 MHz - 20.0 GHz.

6.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges(1930-1990 MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

6.4 Test Results

JUDGEMENT: Passed

See additional information in Figure 41 to Figure 49.

Note – The peaks appearing in the plots in the above mentioned figures relate to the transmission frequency.

Spurious Emissions at Antenna Terminals (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

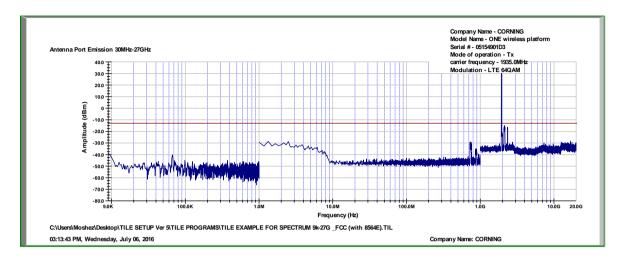


Figure 41. — LTE 64QAM - 1935.0 MHz

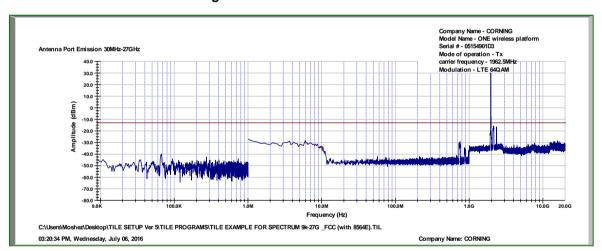


Figure 42. — LTE 64QAM - 1962.5 MHz

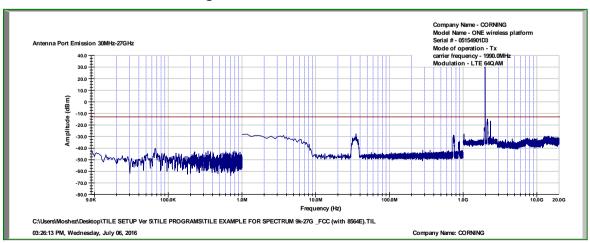


Figure 43. — LTE 64QAM - 1990.0 MHz

Spurious Emissions at Antenna Terminals (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

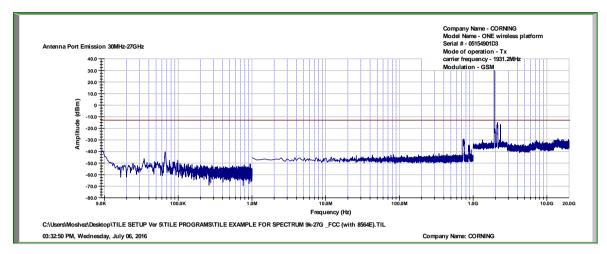


Figure 44. — GSM - 1931.2 MHz

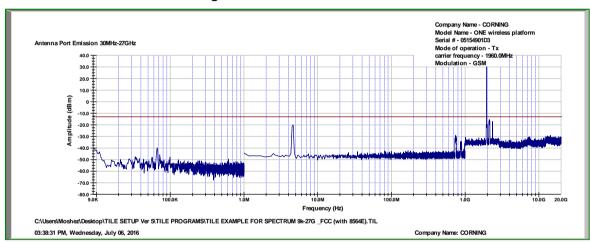


Figure 45. — GSM - 1960.0 MHz

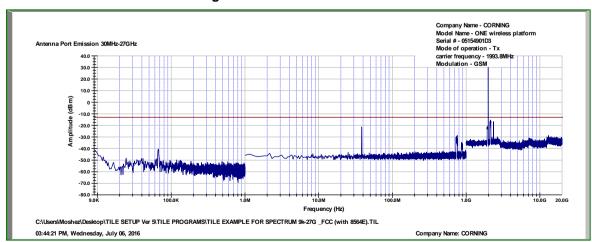


Figure 46. — GSM - 1993.8 MHz

Spurious Emissions at Antenna Terminals (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform

Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

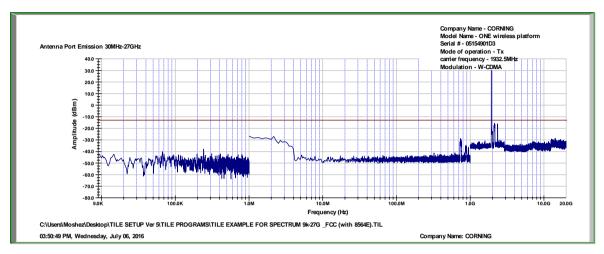


Figure 47. — W-CDMA - 1932.5 MHz

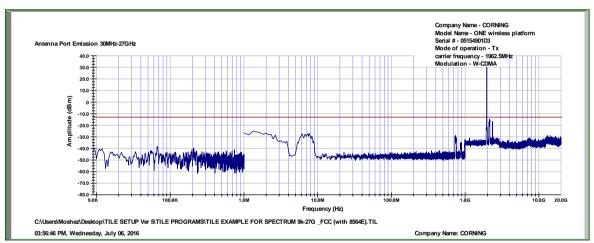


Figure 48. — W-CDMA - 1962.5 MHz

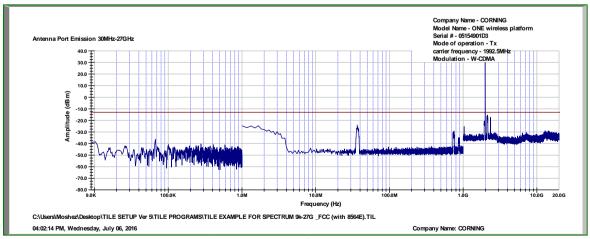


Figure 49. — W-CDMA - 1992.5 MHz

6.5 Test Equipment Used; Out of Band Emission at Antenna Terminals PCS

			Serial	Calib	ration
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	НР	8564E	3442A00275	March 10, 2016	March 10, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
30 dB Attenuator	MCL	BW-S30W5	533	July 5, 2016	July 5, 2017

Figure 50 Test Equipment Used

7. Band Edge Spectrum (PCS)

7.1 Test Specification

FCC Part 24, Subpart E, Section 238; FCC Part 2.1051

7.2 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (41.3 dB). The spectrum analyzer was set to 100 kHz R.B.W.

7.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges (1930.0-1995.0 MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

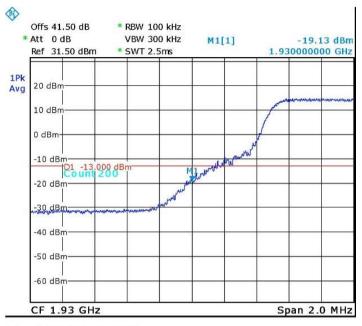
7.4 Test Results

Modulation	Operation	Band Edge	Reading	Limit	Margin
	Frequency	Frequency			
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
LTE CAO ANA	1935.0	1930.0	-19.1	-13.0	-6.1
LTE 64QAM	1990.0	1995.0	-18.2	-13.0	-5.2
CCM	1931.2	1930.0	-25.1	-13.0	-12.1
GSM	1993.8	1995.0	-24.2	-13.0	-11.2
W CDM	1932.5	1930.0	-20.1	-13.0	-7.1
W-CDMA	1992.5	1995.0	-20.1	-13.0	-7.1

Figure 51 Band Edge Spectrum Results PCS

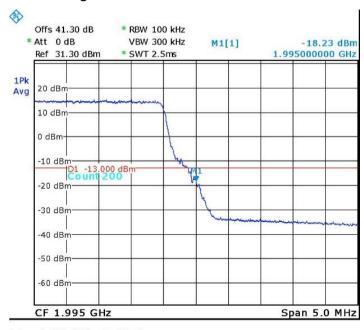
JUDGEMENT: Passed by 5.2 dB

See additional information in Figure 52 to Figure 57.


Band Edge Spectrum (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

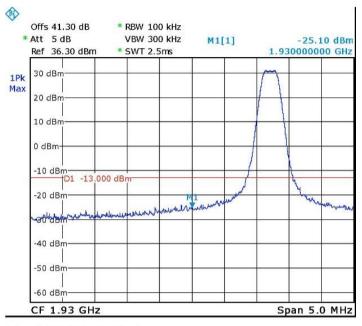
Serial Number: 051549901D3

Date: 3.JUL.2016 15:42:19

Figure 52. — LTE 64QAM 1935.0 MHz

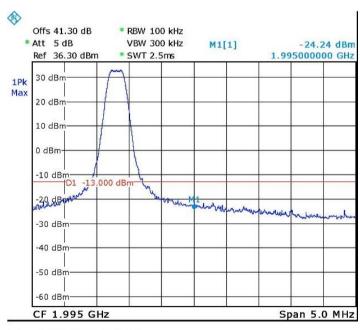
Date: 3.JUL.2016 15:58:01

Figure 53. — LTE 64QAM 1990.0 MHz


Band Edge Spectrum (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

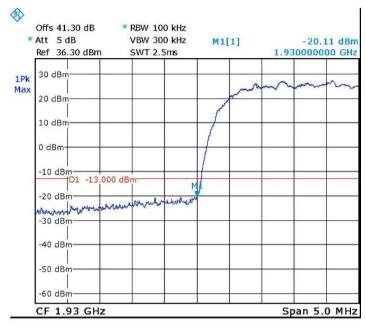
Serial Number: 051549901D3

Date: 3.JUL.2016 15:52:06

Figure 54. — GSM - 1931.2 MHz

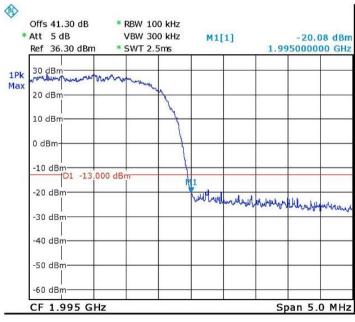
Date: 3.JUL.2016 15:53:19

Figure 55. — GSM - 1993.8 MHz


Band Edge Spectrum (PCS)

E.U.T Description ONE- Optical Network Evolution

Wireless Platform


Type MRU (Mid Power Remote Unit)

Serial Number: 051549901D3

Date: 7.JUL.2016 12:47:32

Figure 56. — W-CDMA - 1932.5 MHz

Date: 3.JUL.2016 15:54:19

Figure 57. — W-CDMA - 1992.5 MHz

7.5 Test Equipment Used; Band Edge Spectrum PCS

				Calibr	ation
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Date
Spectrum Analyzer	R&S	FSL6	100194	February 29, 2016	March 1, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	April 3, 2016	April 3, 2017

Figure 58 Test Equipment Used

8. Spurious Emissions (Radiated) PCS

8.1 Test Specification

FCC, Part 24, Subpart E Section 238, FCC Part 2.1053

8.2 Test Procedure

(Temperature (23°C)/ Humidity (57%RH))

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30.0MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-20.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -20.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dBd)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

A Peak detector was used for this test.

The test was performed in 3 operational frequencies: low, mid and high and each at 3 modulations: GSM, WCDMA and LTE 64QAM.

Testing was performed when the RF port was connected to 50 Ω termination.

The test results table below describe only results with the highest emission.

8.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges (MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB, yielding -13dBm.

8.4 Test Results

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Limit	Margin
(MHz)	(MHz)	(V/H)	(dBµV/m)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
1931.2	3862.4	V	56.8	-42.3	0.5	7.4	-35.4	-13.0	-22.4
1931.2	3862.4	Н	56.9	-41.7	0.5	7.4	-34.8	-13.0	-21.8
1962.5	3925.0	V	56.9	-42.3	0.5	7.4	-35.4	-13.0	-22.4
1902.3	3925.0	Н	57.1	-41.5	0.5	7.4	-34.6	-13.0	-21.6
1993.8	3987.6	V	56.9	-42.3	0.5	7.4	-35.4	-13.0	-22.4
1993.6	3987.6	Н	57.0	-41.7	0.5	7.4	-34.8	-13.0	-21.8

Figure 59 Spurious Emission (Radiated) PCS (Highest Emission)

JUDGEMENT: Passed by 21.6 dB

The E.U.T met the requirements of the FCC, Part 24, Subpart E, Section 238; FCC Part 2.1053 specifications.

8.5 Test Instrumentation Used, Radiated Measurements

			Serial	Calib	pration
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Due
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017
RF Filter Section	НР	85420E	3705A00248	March 3, 2016	March 3, 2017
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018
Antenna Log Periodic	EMCO	3146	9505-4081	April 23, 2016	April 23, 2017
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018
40dB Attenuator	Weinschel Engineering	WA 39-40-33	A1323	April 3, 2016	April 3, 2017
MXG Vector Signal generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A
Antenna Mast	ETS	2070-2	-	N/A	N/A
Turntable	ETS	2087	-	N/A	N/A
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A

Figure 60 Test Equipment Used

9. Intermodulation Conducted

9.1 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max loss = 44.0 dB). The spectrum analyzer was set to 1 kHz resolution BW for the frequency range 9.0-150.0 kHz, 10 kHz for the frequency range 150 kHz–1.0 MHz, 100 kHz for the frequency range 1.0 MHz – 30 MHz, and 1MHz for the frequency range 30 MHz - 24GHz.

5 input signals were sent simultaneously to the E.U.T. as follows:

LTE band: 742.0 MHz, 0 dBm

CELL & ESMR band: 878.0 MHz, 0 dBm

PCS band: 1962.5 MHz, 0 dBm AWS band: 2132.5 MHz, 0 dBm WCS band: 2355.0MHz, 0 dBm

The frequency range of 9 kHz – 24.0 GHz was scanned for unwanted signals.

9.2 Test Results

JUDGEMENT: Passed

See additional information in *Figure 61*.

Note – The peaks appearing in the below plot relate to the transmission frequency.

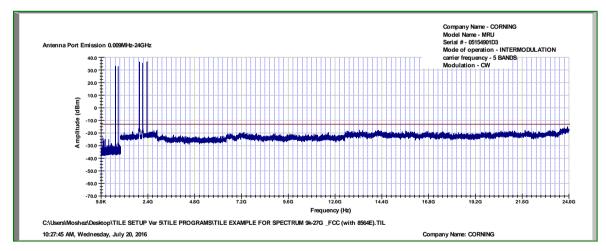


Figure 61 Intermodulation Conducted

9.3 Test Equipment Used; Intermodulation Conducted

				Calib	ration
Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	НР	8564E	3442A00275	March 10, 2016	March 10, 2017
EXG Vector Signal Generator	Agilent	N5172B	TE4384	July 1, 2016	July 1, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY513500584	July 1, 2016	July 1, 2017
MXG Vector Signal Generator	Agilent	N5182A	MY48180244	July 1, 2016	July 1, 2017
MXG Vector Signal Generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017
Signal Generator	НР	E4432B	GB40050998	July 1, 2016	July 1, 2017
40 dB Attenuator	Weinschel Engineering	WA 39-40-33	A1323	April 3, 2016	April 3, 2017

Figure 62 Test Equipment Used

10. Intermodulation Radiated

10.1 Test Procedure

The test method was based on ANSI/TIA-603-D: 2010, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

For measurements between 0.009MHz-30.0MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-24.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -24.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:

 $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dBd)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

5 input signals were sent simultaneously to the E.U.T. as follows:

LTE band: 742.0 MHz, 0 dBm

CELL & ESMR band: 878.0 MHz, 0 dBm

PCS band: 1962.5 MHz, 0 dBm AWS band: 2132.5 MHz, 0 dBm WCS band: 2355.0MHz, 0 dBm

A Peak detector was used for this test.

Testing was performed when the RF port was connected to 50 Ω termination.

The test results table below describe only results with the highest radiation.

10.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges (MHz) must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$, yielding -13dBm.

10.3 Test Results

JUDGEMENT: Passed

For additional information see Figure 63.

Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Limit	Margin
(MHz)	(V/H)	(dBµV/m)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)
1565.0	V	55.0	-45.7	0.5	7.0	-39.2	-13.0	-26.2
1565.0	Н	54.5	-45.5	0.5	7.0	-39.0	-13.0	-26.0
3039.0	V	51.3	-53.9	0.5	10.0	-44.4	-13.0	-31.4
3039.0	Н	51.5	-53.0	0.5	10.0	-43.5	-13.0	-30.5
3434.0	V	51.9	-53.5	0.5	10.0	-44.0	-13.0	-31.0
3434.0	Н	52.0	-52.0	0.5	10.0	-42.5	-13.0	-29.5
4118.0	V	51.7	-47.1	0.5	9.5	-38.1	-13.0	-25.1
4118.0	Н	51.9	-50.0	0.5	10.8	-39.7	-13.0	-26.7
4688.0	V	59.3	-43.2	0.5	10.8	-32.9	-13.0	-19.9
4688.0	Н	57.2	-45.0	0.5	10.8	-34.7	-13.0	-21.7
3523.0	V	53.1	-51.9	0.5	10.0	-42.4	-13.0	-29.4
3523.0	Н	53.5	-50.5	0.5	10.0	-41.0	-13.0	-28.0
2249.0	V	51.8	-48.7	0.5	7.0	-42.2	-13.0	-29.2
2249.0	Н	50.6	-49.4	0.5	7.0	-42.9	-13.0	-29.9
1915.0	V	59.6	-40.7	0.5	7.0	-34.2	-13.0	-21.2
1915.0	Н	50.8	-49.0	0.5	7.0	-42.5	-13.0	-29.5
5571.0	V	57.6	-46.2	0.5	10.8	-35.9	-13.0	-22.9
5571.0	Н	57.7	-42.9	1.0	9.7	-34.2	-13.0	-21.2
3303.0	V	52.2	-52.9	0.5	10.0	-43.4	-13.0	-30.4
3303.0	Н	52.5	-52.5	0.5	10.0	-43.0	-13.0	-30.0

Figure 63 Intermodulation Radiated Results

10.4 Test Instrumentation Used; Radiated Measurements Intermodulation

			Serial	Calibration		
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Due	
EMI Receiver	НР	85422E	3906A00276	March 3, 2016	March 3, 2017	
RF Filter Section	НР	85420E	3705A00248	March 3, 2016	March 3, 2017	
EMI Receiver	R&S	ESCI7	100724	February 29, 2016	March 1, 2017	
Spectrum Analyzer	НР	8593EM	3536A00120ADI	March 10, 2016	March 10, 2017	
Active Loop Antenna	EMCO	6502	9506-2950	November 5, 2015	November 30, 2016	
Antenna Biconical	EMCO	3110B	9912-3337	March 24, 2016	March 24, 2018	
Antenna Log Periodic	EMCO	3146	9505-4081	April 23, 2016	April 23, 2017	
Horn Antenna 1G-18G	ETS	3115	29845	May 19, 2015	May 19, 2018	
Horn Antenna 18G-26G	ARA	SWH-28	1007	March 30, 2016	March 30, 2018	
Low Noise Amplifier	Narda	LNA-DBS- 0411N313	013	May 25, 2016	May 25, 2017	
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	March 1, 2016	March 1, 2017	
Signal Generator	Marconi	2022D	119196015	March 1, 2016	March 1, 2017	
Signal Generator	НР	8648C	3623A04126	February 29, 2016	March 1, 2017	
Signal Generator	НР	ESG- 4000A/E4422A	US36220118	February 29, 2016	March 1, 2017	
MXG Vector Signal generator	Agilent	N5182A	MY49060440	July 1, 2016	July 1, 2017	
ESG Vector Signal generator	Agilent	E4438C	MY45094064	July 1, 2016	July 1, 2017	
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	N/A	N/A	
Antenna Mast	ETS	2070-2	-	N/A	N/A	
Turntable	ETS	2087	-	N/A	N/A	
Mast & Table Controller	ETS/EMCO	2090	9608-1456	N/A	N/A	

Figure 64 Test Equipment Used

11. Out-of-Band Rejection (PCS)

11.1 Test Specification

KDB 935210 D05 v01r01, Section 3.3

11.2 Test Procedure

(Temperature (22°C)/ Humidity (37%RH))

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (max Loss= 41.5 dB).

The signal and spectrum analyzer frequency range was set to $\pm 250\%$ of the passband, Dwell time set to approximately 10msec

RBW was set between 1% to 5% of the E.U.T passband and VBW set to ≥3*RBW.

11.3 Test Limit

N/A

11.4 Test Results

JUDGEMENT: Passed

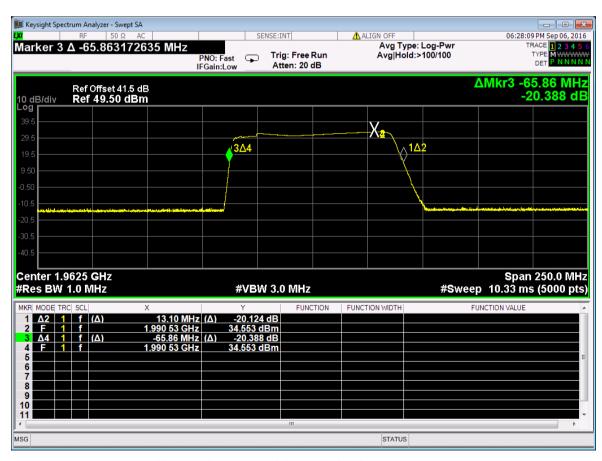


Figure 65. — Out-of-Band Rejection Plot

11.5 Test Equipment Used; Out-of-Band Rejection

			Serial	Calibra	tion
Instrument	Manufacturer	Model	Number	Last Calibration Date	Next Calibration Date
EXA Spectrum Analyzer	Agilent	N9010A	MY49061070	July 21, 2016	July 21, 2017
EXG Vector Signal Generator	Agilent	N5172B	MY51350584	July 1, 2016	July 1, 2017
40 dB Attenuator	Weinschel	WA 39-40-33	A1323	April 3, 2016	April 3, 2017

Figure 66 Test Equipment Used

12. APPENDIX A - CORRECTION FACTORS

12.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

Cable Loss
(dB)
0.4
0.2
0.2
0.3
0.3
0.3
0.2
0.2
0.3
0.4
0.4
0.5
0.5
0.6
0.8
0.9
0.8

Frequency	Cable Loss
(MHz)	(dB)
50.00	1.2
100.00	0.7
150.00	2.1
200.00	2.3
300.00	2.9
500.00	3.8
750.00	4.8
1000.00	5.4
1500.00	6.7
2000.00	9.0
2500.00	9.4
3000.00	9.9
3500.00	10.2
4000.00	11.2
4500.00	12.1
5000.00	13.1
5500.00	13.5
6000.00	14.5

NOTES:

- 1. The cable type is SPUMA400 RF-11N(X2) and 39m long
- 2. The cable is manufactured by Huber + Suhner

12.2 Correction factors for Chamber

RF cable for Semi Anechoic

FREQ LOSS (MHz) (dB) 1000.0 1.5 2000.0 2.1 3000.0 2.7 4000.0 3.1 5000.0 3.5 6000.0 4.1 7000.0 4.6	(MHz) 1000.0 2000.0 3000.0 4000.0	(dB) 1.5 2.1 2.7 3.1
1000.0 1.5 2000.0 2.1 3000.0 2.7 4000.0 3.1 5000.0 3.5 6000.0 4.1	1000.0 2000.0 3000.0 4000.0	1.5 2.1 2.7 3.1
2000.0 2.1 3000.0 2.7 4000.0 3.1 5000.0 3.5 6000.0 4.1	2000.0 3000.0 4000.0	2.1 2.7 3.1
3000.0 2.7 4000.0 3.1 5000.0 3.5 6000.0 4.1	3000.0	2.7
4000.0 3.1 5000.0 3.5 6000.0 4.1	4000.0	3.1
5000.0 3.5 6000.0 4.1		
6000.0 4.1	5000.0	3.5
		3.5
7000.0 4.6	6000.0	4.1
	7000.0	4.6
8000.0 4.9	8000.0	4.9
9000.0 5.7	9000.0	5.7
10000.0 5.7	10000.0	5.7
11000.0 6.1	11000.0	6.1
12000.0 6.1	12000.0	6.1
13000.0 6.2	13000.0	6.2
14000.0 6.7	14000.0	
15000.0 7.4	15000.0	,
16000.0 7.5		
17000.0 7.9		
18000.0 8.1		
19000.0 8.8		
20000.0 9.1	20000	0 1

12.3 Correction factors for Horn ANTENNA

Model: 3115

Antenna serial number: 29845
10 meter range

FREQUENCY	AFE	FREQUENCY	AFE
(MHz)	(dB/m)	(MHz)	(dB/m)
1000	22.4	10000	36.1
2000	25.2	11000	37.0
3000	31.1	12000	41.3
4000	30.2	13000	38.1
5000	34.2	14000	41.7
6000	31.6	15000	39.0
7000	34.7	16000	38.8
8000	34.8	17000	43.2
9000	36.2	18000	43.7

12.4 Correction factors for

Horn ANTENNA

Model: SWH-28

Antenna serial number: 1007

1 meter range

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dBi)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

12.5 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dBs/m)	(dB/m)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	-42.3	9.2

12.6 Correction factors for Biconical Antenna EMCO Model 3110B serial 9912-3337

	AF
Frequency [MHz]	[dB/m]
30.0	14.18
35.0	13.95
40.0	12.84
45.0	11.23
50.0	11.10
60.0	10.39
70.0	9.34
80.0	9.02
90.0	9.31
100.0	8.95
120.0	11.53
140.0	12.20
160.0	12.56
180.0	13.49
200.0	15.27

12.7 Correction factors forLog Periodic Antenna EMCO Model 3146 serial 9505-4081

	AF
Frequency [MHz]	[dB/m]
200.0	11.47
250.0	12.06
300.0	14.77
400.0	15.77
500.0	18.01
600.0	18.84
700.0	20.93
800.0	21.27
900.0	22.44
1000.0	24.10