

Electromagnetic Emission

F C C M E A S U R E M E N T R E P O R T

CERTIFICATION OF COMPLIANCE FCC Part 15 Certification Measurement

PRODUCT : PDP Monitor
MODEL/TYPE NO : EPM-4200A
FCC ID : OIOEPM-4200
APPLICANT : E-RAE Electronics Industry Co.,Ltd.
371-51, Kasan-Dong, Keumcheon-Ku, Seoul, 153-023, Korea
Attn. : Yun Seok, Yoo / M/M Div, Chief Engineer
FCC CLASSIFICATION : Class B personal computers and peripherals
FCC RULE PART(S) : FCC Part 15 Subpart B
FCC PROCEDURE : Certification
TRADE NAME : E-RAE
TEST REPORT No. : E03.0701.FCC.378N
DATES OF TEST : June 27~28, 2003
DATES OF ISSUE : July 01, 2003
TEST LABORATORY : ETL Inc (FCC Registration Number : 95422)
#584 Sangwhal-ri, Kanam-myon, Yoju-kun, Kyounggi-do,
469-885, Korea
Tel : (031) 885-0072 Fax : (031) 885-0074

This PDP Monitor, Model EPM-4200A has been tested in accordance with the measurement procedures specified in ANSI C63.4-1992 at the ETL/EMC Test Laboratory and has been shown to be complied with the electromagnetic radiated emission limits specified in FCC Rule Part15 Subpart B Class B personal computers and peripherals.

I attest to the accuracy of data. All measurements herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results of testing in this report apply to the product / system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Yo Han, Park / Chief Engineer

ETL Inc.

**#584 Sangwhal-ri, Kanam-myon, Yoju-kun,
Kyounggi-do, 469-885, Korea**

Table of Contents

FCC Measurement Report

- 1. Introduction**
- 2. Product Information**
- 3. Description of Tests**
- 4. Test Condition**
- 5. Test Results**
 - 5.1 Summary of Test Results**
 - 5.2 Conducted Emissions Measurement**
 - 5.3 Radiated Emissions Measurement**
- 6. Sample Calculations**
- 7. Test Equipment List**

Appendix A. FCC Label and Location

Appendix B. Test Setup Photographs

Appendix C. External Photographs

Appendix D. Internal Photographs

Appendix E. Block Diagram

Appendix F. User Manual

Appendix G. Schematics

FCC MEASUREMENT REPORT

Scope – *Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)*

General Information

Applicant Name : E-RAE Electronics Industry Co., Ltd.

Address : 371-51,Kasan-Dong,Keumcheon-Ku,Seoul,
153-023 Korea

Attention : Yun Seok, Yoo / M/M Div, Chief Engineer

- **EUT Type :** PDP Monitor
- **Model Number :** EPM-4200A
- **S/N :** N/A
- **Modulation :** N/A
- **FCC Rule Part(s) :** FCC Part 15 Subpart B
- **Test Procedure :** ANSI C63.4-1992
- **Dates of Tests :** June 27~28, 2003
- **Place of Tests :** ETL Inc
EMC Testing Lab (FCC Registration Number : 95422)
584, Sangwhal-Ri, Kanam-Myun, Yoju-Kun,
Kyounggi-Do, 469-885, Korea
Tel : (031) 885-0072 Fax : (031) 885-0074
- **Test Report No. :** E03.0701.FCC.378N

1. INTRODUCTION

The measurement test for radiated and conducted emission test were conducted at the open area test site of E-RAE Testing Laboratory Inc. facility located at 584, Sangwhal-ri, Ganam-myun, Youju-kun, Kyoungki-do, Korea. The site is constructed in conformance with the requirements of the ANSI C63.4-1992 and CISPR Publication 16. The ETL has site descriptions on file with the FCC for 3 and 10 meter site configurations. Detailed description of test facility was found to be in compliance with the requirements of Section 2.948 FCC Rules according to the ANSI C63.4-1992 and registered to the Federal Communications Commission(Registration Number : 95422).

The measurement procedure described in American National Standard for Method of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C.63.4-1992) was used in determining radiated and conducted emissions from the E-RAE Electronics Industry Co., Ltd. , Model : EPM-4200A

2. PRODUCT INFORMATION

2.1 Equipment Description

The EUT is the PDP Monitor EPM-4200A of E-RAE Electronics Industry Co., Ltd.

EPM-4200A and EPM-4200B, EPM-4210A, EPM-4210B are exactly same models, only difference are

Model Name and Case design or color.

OEM Model PDP42BK are same models. Which trade mark is PLANAR and buyer name is PLANAR.

2.2 General Specification

● Chassis Type	: Metal & Plastic
● Chipset Brand & Part No	: GENESIS/FLI2310, ANALOG DEVICES/AD9888 KS-100
	MISRONAS/VRC 32300 C5, SILICON IMAGE/SIL160CT100
	PIXEL WERKS/PW1668-20T, SST MPE/38VF400A
	LG/LGPCMV1222, ATMEL/AT89C2051-12SC
● Aspect Ratio	: 16 : 9
● Screen Size(H * V)	: 920.1 x 518.4mm
● Resolution	: 852 x 480(Wide VGA)
● Cell pitch(H * V)	: 0.396(H) x 1.08(V)mm
● Displayable Colours	: 16.77M (256 * 256 * 256)
● Brightness	: 1000cd/m ² (w/o filter)
● Contrast	: 1200:1 (w/o filter)
● Color Temperature	: 9500. K
● Viewing Angle	: 160.
● Input Signal	: NTSC, PAL-M, PAL-N, PAL, SECAM, SD, : HD, VGA, SVGA, XGA, SXGA
● RGB Input	: DVI-I (Analog / Digital RGB)
● AC Input	: AC 100~240V, 50/60Hz, 4.0A
● Power Consumption	: 320W

3. DESCRIPTION OF TESTS

3.1 Conducted Emission Measurement

Conducted emissions measurements were made in accordance with § 12.2 in ANSI C63.4-1992 "Measurement of Information Technology Equipment ". The measurement were performed over the frequency range of 0.15MHz to 30MHz using a 50 /50uH LISN as the input transducer to a Spectrum Analyzer or a Field Intensity Meter. The measurements were made with the detector set for "Peak" amplitude within a bandwidth of 10KHz or for "quasi-peak" within a bandwidth of 9KHz.

- Procedure of Test

The line-conducted facility is located inside a shielded room 1m X 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 1.5m away from the side wall of the shielded room. Two EMCO 3825/2 LISN are bonded to the shielded room. The EUT is powered from the EMCO LISN and the support equipment is powered from the another EMCO LISN. Power to the LISNs are filtered by a noise cut power line filters. All electrical cables are shielded by braided tinned steel tubing with inner ϕ 1.2cm. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and these supply lines will be connected to the EMCO LISN. Non-inductive bundling to a 1m length shortened all interconnecting cables more than 1m. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the E7402A Spectrum Analyzer to determine the frequency producing the max. emission from the EUT. The frequency producing the max. level was reexamined using to set Quasi-Peak mode by manual, after scanned by automatic Peak mode from 0.15 to 30MHz. The bandwidth of the Spectrum Analyzer and Receiver was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission.

3. DESCRIPTION OF TESTS

3.2 Radiated Emission Measurement

Radiated emission measurements were in accordance with § 12.2 in ANSI C63.4-1992 "Measurement of Information Technology Equipment ". The measurements were performed over the frequency range of 30MHz to 1GHz using antenna as the input transducer to a Spectrum analyzer or a Field Intensity Meter. The measurements were made with the detector set for "Quasi-peak" within a bandwidth of 120KHz.

- Procedure of Test

Preliminary measurements were made at 3 meter using broadband antennas, and spectrum analyzer to determined the frequency producing the max. emission in shielded room. Appropriate precaution was taken to ensure that all emission from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth and height with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 1000MHz using SchwarzBeck Log-Bicon antenna. Above 1GHz, linearly polarized double ridge horn antennas were used. Final measurements were made open site at 10-meters. The test equipment was placed on a wooden turn-table. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined by manual. The detector function was set to CISPR Quasi-peak mode and the bandwidth of the receiver was set to 120kHz or 1MHz depending on the frequency of type of signal. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the max. emission for the frequency and were placed on top of a 0.8-meter high nonmetallic 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the max. emission. Each emission was maximized by: varying the mode of operation to the EUT and/or support equipment and changing the polarity of the antenna, whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Photographs of the worst-case emission test setup can be seen in Appendix B.

4. TEST CONDITION

4.1 Test Configuration

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the following conditions and configurations were used.

4.2 EUT operation

Operating Mode	The worst operating condition
Stand-by Mode	X
1024 X 768, 75Hz, Full "H" pattern display Mode	O
800 X 600, 75Hz, Full "H" pattern display Mode	X
640 X 480, 75Hz, Full "H" pattern display Mode	X

O : Worst case investigated during the Test

4.3 Support Equipment Used

Following peripheral devices and interface cables were connected during the measurement:

EUT – PDP Monitor

FCC ID	: OIOEPM-4200
Model Name	: EPM-4200A
Serial No.	: N/A
Manufacturer	: E-RAE Electronics Industry Co., Ltd.
Power Supply Type	: Switching
Power Cord	: Non-Shielded, Detachable, 2.8m
Data Port	: D-sub:1, S-VHS:1, RCA:3, PC Audio in:2, Audio in:4, Composite video:3 RS-232:1

Support Unit 1-Personal computer (DELL)

FCC ID : N/A (DoC)
Model Name : DHM
Serial No. : H9MB71S
Manufacturer : DELL
Power Supply Type : Switching
Power Cord : Non-shielded, Detachable: 1.2m
Data Port : RGB IN:1, Parallel:1, RS-232::2, PS/2: 2, USB: 2, RJ-45:1
 : Audio in:1, Audio out:1, MIC IN:1

Support Unit 2-Keyboard (COMPAQ)

FCC ID	: N/A (DoC)
Model Name	: KB-9963
Serial No.	: B26960GBUKO13F
Manufacturer	: COMPAQ
Power Supply Type	: N/A
Power Cord	: N/A
Data Cable	: Shielded, 1.5m

Support Unit 3-Mouse (LOGITECH)

FCC ID : DZL211029
Model Name : M-S34
Serial No. : LZC01002314
Manufacturer : LOGITECH
Power Supply Type : N/A
Power Cord : N/A
Data Cable : None-Shielded, 1.2m

Support Unit 7- Settop Box (LG)

FCC ID : N/A
Model Name : SK-011T
Serial No. : N/A
Manufacturer : LG
Power Supply Type : Switching
Power Cord : Non-shielded, Detachable: 1.2m
Data Port : RCA: 12, S-VHS:1, Optical:1, Coaxial:1, Remote:1, Audio out: 6
: Composite video: 6, Video:1, DC IN:1, RGB: 2, RS-232: 2, ANT: 2

Support Unit 7- Speaker 1 (N/A)

FCC ID : N/A
Model Name : N/A
Serial No. : N/A
Manufacturer : N/A
Power Supply Type : N/A
Power Cord : N/A
Data Cable : None-Shielded, 1.5m

Support Unit 7- Speaker 2 (N/A)

FCC ID : N/A
Model Name : N/A
Serial No. : N/A
Manufacturer : N/A
Power Supply Type : N/A
Power Cord : N/A
Data Cable : None-Shielded, 1.5m

5. TEST RESULTS

5.1 Summary of Test Results

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum emission of the EUT are reported.

The data collected shows that the **E-RAE Electronics Industry Co., Ltd. PDP Monitor, EPM-4200A** complies with technical requirements of above rules part 15.107 and 15.109 Class B Limits and CISPR Publication 22.

Test Rule Parts	Measurement Required	Result
15.107	Conducted Emissions Measurement	Passed by -14.50dB
15.109	Radiated Emissions Measurement	Passed by -4.20dB

The equipment is not modified anything, mechanical or circuits to improve EMI status during a measurement. No EMI suppression device(s) was added and/or modified during testing.

5. TEST RESULTS

5.2 Conducted Emissions Measurement

EUT	PDP Monitor / EPM-4200A (SN:N/A)
Limit apply to	CISPR Pub.22 Class B
Test Date	June 27, 2003
Operating Condition	1024 * 768 75Hz, Full "H" Pattern display Mode
Environment Condition	Humidity Level : 52 %RH, Temperature : 22
Result	Passed by -14.50 dB

Conducted Emission Test Data

The following table shows the highest levels of conducted emissions on both polarization of live and neutral line.

Detector mode : CISPR Quasi-Peak mode (6dB Bandwidth : 9 KHz)

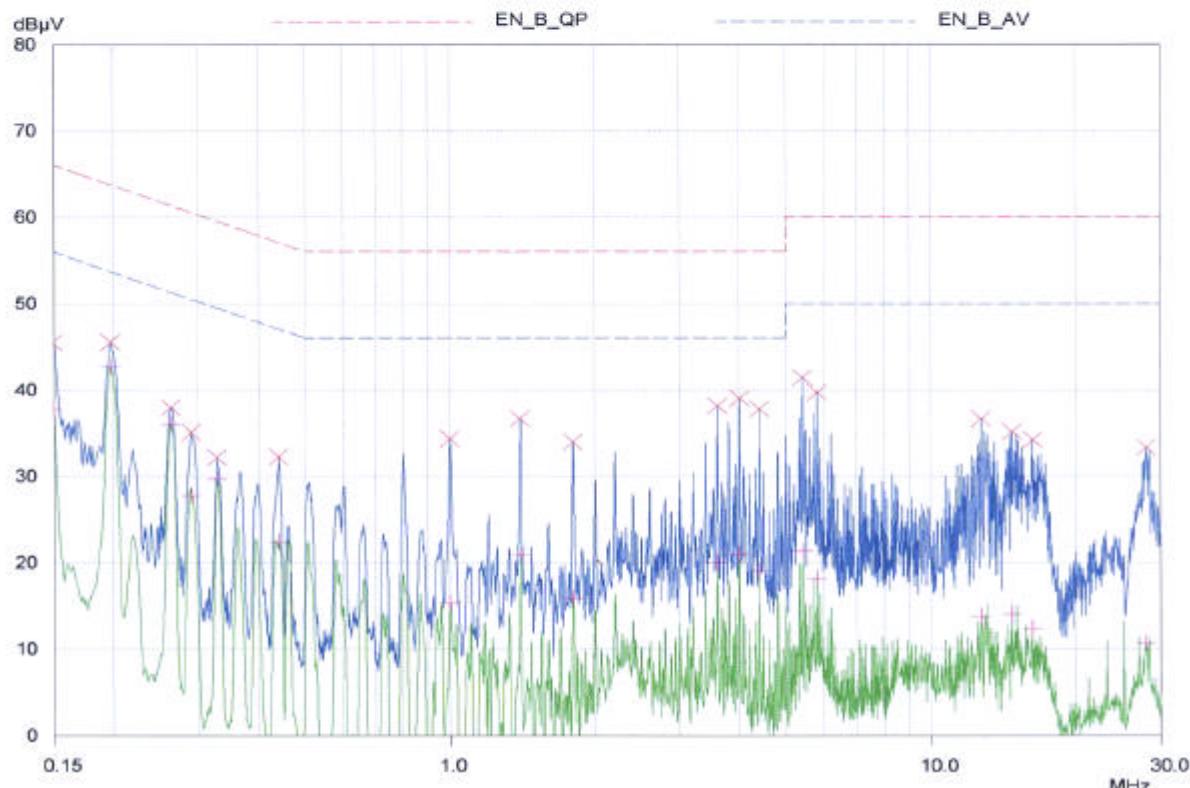
Frequency [MHz]	Reading [dB μ V]		Phase (*H/**N)	Limit [dB μ V]		Margin [dB]	
	Quasi-peak	Average		Quasi-peak	Average	Q.Pk	Average
0.150	47.0	-	N	66.0	56.0	19.00	-
0.197	45.5	-	H	63.7	53.7	18.20	-
0.263	38.0	-	N	61.3	51.3	23.00	-
0.290	36.6	-	H	60.5	50.5	23.90	-
0.365	32.8	-	N	58.6	48.6	25.80	-
1.399	36.7	-	H	56.0	46.0	19.30	-
3.999	39.0	-	H			17.00	-
5.400	41.5	-	H			14.50	-
16.84	40.7	-	N			15.30	-
17.24	40.7	-	N			15.30	-

NOTES :

1. * H : HOT Line , **N : Neutral Line
2. Margin value = Limit – Reading
3. Measurement were performed at the HOST AC Power Inlet in the frequency band of 150kHz ~ 30MHz according to the CISPR 22 Class B
4. If the Reading Quasi-Peak value is bellowed the Average Limit, Do not test Average Mode.

Chon Sik, Kim
EMC Project Engineer

5. TEST RESULTS


Line: HOT Line

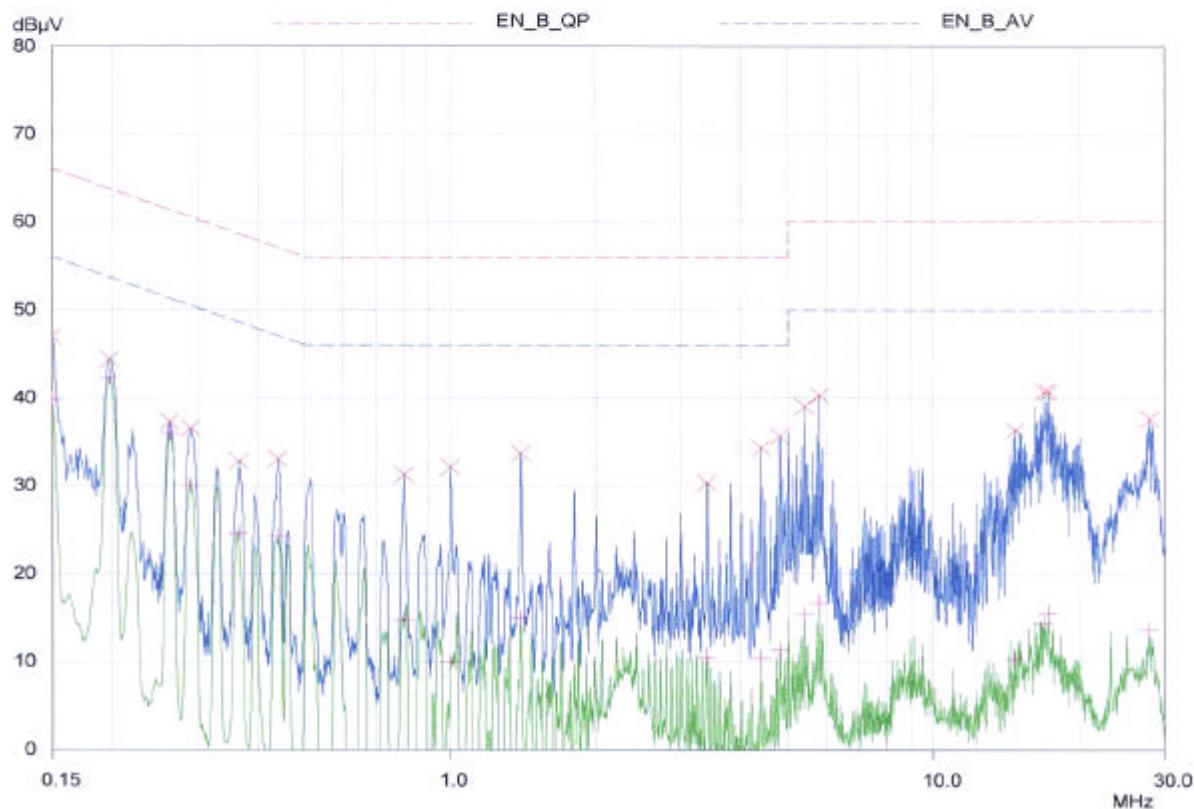
ETL EMC Laboratory

Conducted Emission Test Result

EUT: EPM-4200A
 Manuf:
 Op Cond: Full "H" Pattern Display
 Operator:
 Test Spec:
 Comment: Hot
 Result File: erae1.dat : EPM-420A HOT

Scan Settings		(3 Ranges)			Receiver Settings					
		Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
Start		Stop								
150kHz		5MHz		1000Hz	10kHz	PK+AV	10msec	Auto	OFF	60dB
5MHz		10MHz		5kHz	10kHz	PK+AV	10msec	Auto	OFF	60dB
10MHz		30MHz		10kHz	10kHz	PK+AV	10msec	Auto	OFF	60dB
Transducer	No.	Start	Stop			Name				
	1		9kHz		30MHz	Factor				
Prescan Measurement:		Detectors:	X	PK / + AV						
		Meas Time:		see scan settings						
		Peaks:		16						
		Acc Margin:		10 dB						

5. TEST RESULTS


Line: Neutral Line

ETL EMC Laboratory

Conducted Emission Test Result

EUT: EPM-4200A
Manuf:
Op Cond: Full "H" Pattern Display
Operator:
Test Spec:
Comment: Neutral
Result File: erae2.dat : EPM-420A NEUTRAL

Scan Settings		(3 Ranges)			Receiver Settings					
		Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
Start	Stop	150kHz	5MHz	1000Hz	10kHz	PK+AV	10msec	Auto	OFF	60dB
5MHz	10MHz		10MHz	5kHz	10kHz	PK+AV	10msec	Auto	OFF	60dB
10MHz	30MHz		30MHz	10kHz	10kHz	PK+AV	10msec	Auto	OFF	60dB
Transducer	No.	Start	Stop			Name				
	1	9kHz	30MHz			Factor				
Prescan Measurement:		Detectors:	X	PK / + AV						
		Meas Time:	see scan settings							
		Peaks:	16							
		Acc Margin:	10 dB							

5. TEST RESULTS

5.3 Radiated Emissions Measurement

EUT	PDP Monitor / EPM-4200A (SN:N/A)
Limit apply to	CISPR Pub.22 Class B
Test Date	June 27, 2003
Operating Condition	1024 * 768 75Hz, Full "H" Pattern display Mode
Environment Condition	Humidity Level : 52 %RH, Temperature : 22
Result	Passed by -4.20 dB

Radiated Emission Test Data

The following table shows the highest levels of radiated emissions on both polarization of horizontal and vertical.

Detector mode : CISPR Quasi-Peak mode (6dB Bandwidth : 120 kHz)

Frequency [MHz]	Reading [dB μ V]	Polarization (*H/**V)	Ant. Factor [dB]	Cable Loss [dB]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
30.02	12.26	V	11.91	1.40	25.57	30.00	4.43
152.17	8.41	H	12.76	3.00	24.17	30.00	5.83
189.06	10.61	H	10.81	3.70	25.12	30.00	4.88
207.93	13.08	H	8.82	3.90	25.80	30.00	4.20
214.10	11.64	H	9.37	4.00	25.01	30.00	4.99
264.64	10.70	H	11.34	4.30	26.34	37.00	10.66
283.54	11.03	H	12.19	4.50	27.72	37.00	9.28
378.05	9.01	H	14.32	5.30	28.63	37.00	8.37
467.68	4.63	H	16.88	5.70	27.21	37.00	9.79
649.74	2.82	H	19.45	6.90	29.17	37.00	7.83

NOTES :

1. * H : Horizontal polarization , ** V : Vertical polarization
2. Emission Level = Reading + Antenna factor + Cable loss
3. Margin value = Limit - Emission Level
4. The measurement was performed for the frequency range 30MHz ~ 1000MHz according to the CISPR 22 Class B

Chon Sik, Kim
EMC Project Engineer

6. SAMPLE CALCULATION

Sample Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor.
The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

$$dB(\mu V/m) = 20 \log_{10} (\mu V /m) : \text{Equation 1}$$

$$dB\mu V = dBm + 107 : \text{Equation 2}$$

Example 1 : @ 5.40MHz

$$\text{Class A Limit} = 630.95 \mu V = 56.00 \text{dB } \mu V$$

$$\text{Reading} = 41.50 \text{dB } \mu V$$

$$\text{Convert to } \mu V = 118.85 \mu V$$

$$\text{Margin} = 41.50 - 56.0 = -14.50 \text{ dB } \mu V$$

$$= -14.50 \text{ dB } \mu V \text{ below Limit}$$

Example 2 : @ 207.93MHz

$$\text{Class A Limit} = 31.62 \mu V = 30.00 \text{ dB } \mu V$$

$$\text{Reading} = 13.08 \text{ dB } \mu V$$

$$\text{Antenna Factor + Cable Loss} = 8.82 + 3.90 = 12.72 \text{dB } \mu V$$

$$\text{Total} = 25.80 \text{dB } \mu V$$

$$\text{Margin} = 25.80 - 30.00 = -4.20 \text{ dB } \mu V$$

$$= -4.20 \text{ dB } \mu V \text{ below Limit}$$

7. TEST EQUIPMENT LIST

List of Test Equipments Used for Measurements

Test Equipment		Model	Mfg.	Serial No.	Cal. Date
<input checked="" type="checkbox"/>	Spectrum Analyzer	R3261A	Advantest	21720033	02-10-21
<input checked="" type="checkbox"/>	Receiver	ESVS 10	R & S	835165/001	03-03-21
<input checked="" type="checkbox"/>	Receiver	ESHS30	R & S	84190/002	03-01-24
<input checked="" type="checkbox"/>	Spectrum Analyzer	E7402A	HP	US39110107	03-05-21
<input checked="" type="checkbox"/>	LISN	3825/2	EMCO	9208-1995	02-12-27
<input checked="" type="checkbox"/>	LISN	3825/2	EMCO	9006-1669	03-01-10
<input checked="" type="checkbox"/>	Preamplifier	HP8447D	HP	2944A07626	03-01-10
<input type="checkbox"/>	Preamplifier	HP 8347A	HP	2834A00544	03-05-23
<input checked="" type="checkbox"/>	Log Bicon Antenna	VULB9160	Schwarz Beck	3082	02-07-03
<input type="checkbox"/>	Log Bicon Antenna	VULB9165	Schwarz Beck	2023	02-06-21
<input checked="" type="checkbox"/>	Dipole Antenna	VHAP	Schwarz Beck	964	03-05-09
<input type="checkbox"/>	Dipole Antenna	VHAP	Schwarz Beck	965	02-07-03
<input checked="" type="checkbox"/>	Dipole Antenna	UHAP	Schwarz Beck	949	03-05-09
<input type="checkbox"/>	Dipole Antenna	UHAP	Schwarz Beck	950	02-07-03
<input type="checkbox"/>	Broad-band Horn Antenna	BBHA 9120D	Schwarz Beck	227	03-03-11
<input checked="" type="checkbox"/>	Turn-Table	DETT-03	Daeil EMC	-	N/A
<input checked="" type="checkbox"/>	Antenna Master	DEAM-03	Daeil EMC	-	N/A
<input checked="" type="checkbox"/>	Plotter	7440A	H.P	2725A 75722	N/A
<input checked="" type="checkbox"/>	Chamber	DTEC01	DAETONG	-	N/A
<input checked="" type="checkbox"/>	Thermo Hygrograph	3-3122	ISUZU	3312201	03-01-10
<input checked="" type="checkbox"/>	BaroMeter	-	Regulus	-	-