

toll-free: (866)311-3268 http://www.flomlabs.com info@flomlabs.com

Date: April 27, 2006

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Digital Wireless Corporation Equipment: DB-1000-4 Digital Station

FCC ID: OHN-B1000-4

FCC Rules: 22, 90 and Confidentiality

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

David E. Lee, FCC/IC Compliance Manager

enclosure(s) cc: Applicant DEL/del

Transmitter Certification

of

Model: DB-1000-4 Digital Station FCC ID: OHN-B1000-4

to

Federal Communications Commission

Rule Parts 22, 90 and Confidentiality

Date of report: April 27, 2006

On the Behalf of the Applicant:

Digital Wireless Corporation

At the Request of: P.O. 16262

> **Digital Wireless Corporation** 696 Moulton Ave, Unit E Los Angeles, CA 90031

Attention of: Brent Jaybush

323-276-5311

Email: bjay@digitalwireless.com

Supervised by: David E. Lee, FCC/IC Compliance Manager

List of Exhibits

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Digital Wireless Corporation

FCC ID: OHN-B1000-4

By Applicant:

1. Letter of Authorization

2. Confidentiality Request: 0.457 And 0.459

3. Part 90.203(e) & (g) Attestation

4. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 5. Photographs, 2.1033(c)(12)
- 6. Documentation: 2.1033(c)
 - (3) User Manual
 - (9) Tune Up Info
 - (10) Schematic Diagram
 - (10) Circuit Description

Block Diagram
Parts List

Active Devices

7. MPE Report

By M.F.A. Inc.:

A. Testimonial & Statement of Certification

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) Special Accessories.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table of Contents

Rule	Description	Page
2.1033(c)(14)	Rule Summary	2
	Standard Test Conditions and Engineering Practices	3
2.1033(c)	General Information Required	4
2.1046(a)	Carrier Output Power (Conducted)	7
2.1051	Unwanted Emissions (Transmitter Conducted)	9
2.1053(a)	Field Strength of Spurious Radiation	12
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	16
90.214	Transient Frequency Behavior	24
2.1055(a)(1)	Frequency Stability (Temperature Variation)	28
2.1055(b)(1)	Frequency Stability (Voltage Variation)	30
2.202(g)	Necessary Bandwidth and Emission Bandwidth	32

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0630032

d) Client: Digital Wireless Corporation

696 Moulton Ave, Unit E Los Angeles, CA 90031

e) Identification: DB-1000-4 Digital Station

FCC ID: OHN-B1000-4

EUT Description: A narrowband repeater specifically designed for DV/IP format digital

transmissions used on the i2way network.

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: April 27, 2006 EUT Received: March 1, 2006

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

David E. Lee, FCC/IC Compliance Manager

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission

from this laboratory.

Page 2 of 32

FCC ID: OHN-B1000-4

MFA p0630002, d0630032

Sub-part

2.1033(c)(14):

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

	21 – Domestic Public Fixed Radio Services
X	22 – Public Mobile Services
	22 Subpart H - Cellular Radiotelephone Service
	22.901(d) - Alternative technologies and auxiliary services
	23 – International Fixed Public Radiocommunication services
	_ 24 – Personal Communications Services
	_ 74 Subpart H - Low Power Auxiliary Stations
	_ 80 – Stations in the Maritime Services
	_ 80 Subpart E - General Technical Standards
	80 Subpart F - Equipment Authorization for Compulsory Ships
	_ 80 Subpart K - Private Coast Stations and Marine Utility Stations
	80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
	80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
	80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
	_ 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
	_ 80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
	_ 80 Subpart X - Voluntary Radio Installations
	87 – Aviation Services 90 – Private Land Mobile Radio Services
X	_ 90 – Private Land Mobile Radio Services
	94 – Private Operational-Fixed Microwave Service
	_ 95 Subpart A - General Mobile Radio Service (GMRS)
	95 Subpart C - Radio Control (R/C) Radio Service
	95 Subpart D - Citizens Band (CB) Radio Service
	_ 95 Subpart E - Family Radio Service
	_ 95 Subpart F - Interactive Video and Data Service (IVDS)
	_ 97 - Amateur Radio Service
	101 – Fixed Microwave Services

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2003, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited M. Flom Associates, Inc. Chandler, AZ for technical competence in the field of Electrical Testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 – 1999 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Certificate Number: 2152-01

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2, 22, 90 and Confidentiality

		Digital Wireless Corporation 696 Moulton Ave, Unit E Los Angeles, CA 90031	
	Manufacturer:		
		Digital Wireless Corporation 696 Moulton Ave, Unit E Los Angeles, CA 90031	
(c)(2):	FCC ID:		OHN-B1000-4
	Model Number	:	DB-1000-4 Digital Station
(c)(3):	Instruction Manual(s):		
	Please	see attached exhibits	
(c)(4):	Type of Emission:		10K7F1E, 10K7F1D, 11K2F3E
(c)(5):	Frequency Range, MHz	z :	406 - 470
(c)(6):	Power Rating, Watts: Switchable	e Variable	25 X N/A
(c)(7):	Maximum Power Ratin	g, Watts:	300
	DUT Results:		Passes X Fails

Sub-part 2.1033

(c)(1): Name and Address of Applicant:

Information for Push-To-Talk Devices

Type and number of antenna to be used for this device:

One Transmit

Maximum antenna gain for antenna indicated above:

See MPE Report

Can this device sustain continuous operation with respect to its hardware capabilities and allowable operating functions?

Yes

Other hardware or operating restrictions that could limit a person's RF Exposure:

No

Source-based time-averaging (see 2.1093 of rules) applicable to reduce the average output power:

No

If device has headset and belt-clip accessories that would allow body-worn operations, what is the minimum separation distance between the antenna and the user's body in this operating configuration?

N/A

Can device access wire-line services to make phone calls, either directly or through an operator?

N/A

Can specific operating instructions be given to users to eliminate any potential RF Exposure concerns for both front-of-the-face and body-worn operating configurations?

N/A

Other applicable information the applicant may provide that can serve as effective means for ensuring RF Exposure compliance:

Installation Instructions

Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, including final transistor or solid-state device:

Collector Current, A = per manual Collector Voltage, Vdc = per manual

Supply Voltage = 85 – 264Vac, 47 – 63Hz / 13.8Vdc

(c)(9): Tune-Up Procedure:

Please see attached exhibits

(c)(10): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): Label Information:

Please see attached exhibits

(c)(12): Photographs:

Please see attached exhibits

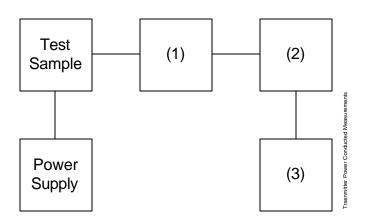
(c)(13): Digital Modulation Description:

___ Attached Exhibits _x N/A

(c)(14): Test and Measurement Data:

Follows

Name of Test: Carrier Output Power (Conducted)


Specification: 47 CFR 2.1046(a)

Guide: ANSI/TIA/EIA-603-C (2004)

Measurement Procedure

- A) The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an RF Power Meter.
- B) Measurement accuracy is ±3%.

Transmitter Test Set-Up: RF Power Output

	Asset	Description	s/n	Cycle	Last Cal
(1)		Attenuator	224 or 222	NCD	
Х	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
	i00122/3	NARDA 766 (10 dB)	7802 or 7802A	NCR	
(2)	Power	Meters			
X	i00020	HP 8901A Power Mode	2105A01087	12 mo.	Apr-06
(3)	Freque	ncy Counter			
X	i00020	HP 8901A Frequency Mode	2105A01087	12 mo.	Apr-06

Name of Test: Carrier Output Power (Conducted)

Measurement Results

(Worst case)

Frequency of Carrier, MHz Ambient Temperature = 406.0125, 438.0125, 469.8975

= 23°C ± 3°C

Power Setting RF Power, dBm RF Power, Watts

High 44.0 25,0

Performed by:

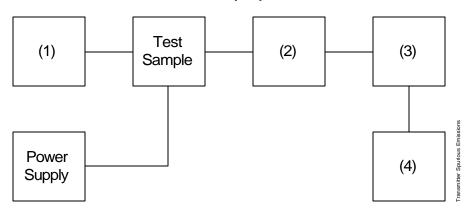
David E. Lee, Compliance Test Manager

Page 9 of 32

FCC ID: OHN-B1000-4

MFA p0630002, d0630032

Name of Test: Unwanted Emissions (Transmitter Conducted)


Specification: 47 CFR 2.1051

Guide: ANSI/TIA/EIA-603-C (2004)

Measurement Procedure

- A) The emissions were measured for the worst case as follows:
 - 1). within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - 2). from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- B) The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

Transmitter Test Set-Up: Spurious Emission

Asset Description s/n

- (1) Audio Oscillator/Generator (Not required)
- (2) Coaxial Attenuator

Χ	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR
	i0012/3	NARDA 766 (10 dB)	7802 or 7802A	NCR

(3) Filters; Notch, HP, LP, BP

None required

(4) Spectrum Analyzer

Χ	i00048	HP 8566B Spectrum Analyzer	2511A01467	12 mo.	Oct-05
	i00029	HP 8563E Spectrum Analyzer	3213A00104	12 mo.	Jan-06

Name of Test: Unwanted Emissions (Transmitter Conducted)

Measurement Results

(Worst Case)

Summary:

Frequency of carrier, MHz = 406.0125, 438.0125, 469.8975

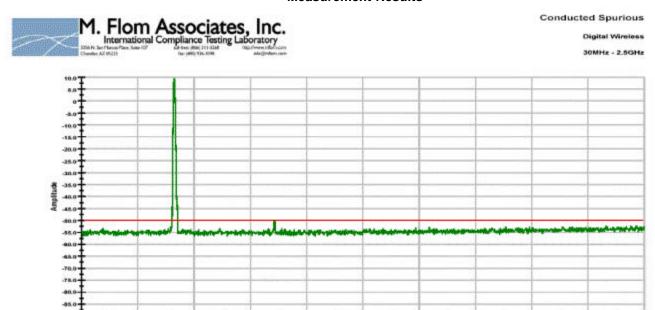
Spectrum Searched, GHz = $0 \text{ to } 10 \text{ x } F_C$

Maximum Response, Hz = N/A

All Other Emissions = = 20 dB Below Limit

Limit(s), dBc = -64.00

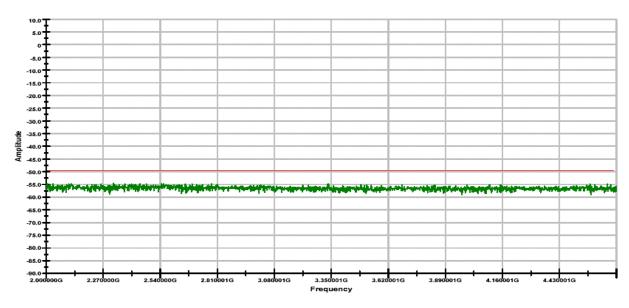
Measurement Results follow:


Performed by:

David E. Lee, FCC/IC Compliance Manager

Name of Test: Carrier Output Power (Conducted)

Measurement Results



M. Flom Associates, Inc. International Compliance Testing Laboratory State (2872) Charafee, AZ 85225 Charafee, AZ 85225

Conducted Spurious

Digital Wireless

2.0GHz - 4.7GHz

12:48:56 PM, Friday, April 28, 2006

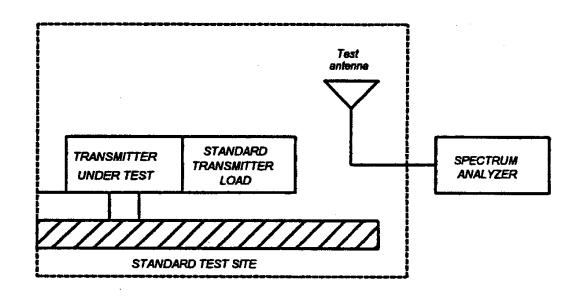
Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (480) 926-3100 phone, (480) 926-3598 fax

Page 11 of 32 FCC ID: OHN-B1000-4 MFA p0630002, d0630032

Name of Test: Field Strength of Spurious Radiation

Specification: 47 CFR 2.1053(a)

Guide: ANSI/TIA/EIA-603-C (2004), 47 CFR 22.917

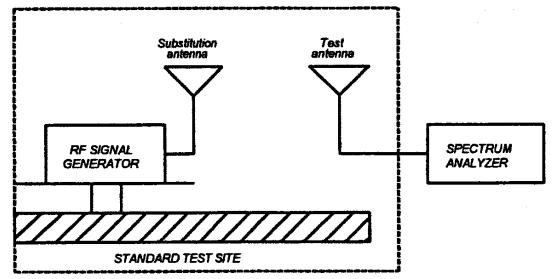

Measurement Procedure

Definition:

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies, which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

Method of Measurement:

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth = 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
 - C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.



Name of Test:

Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

Page 14 of 32 FCC ID: OHN-B1000-4

MFA p0630002, d0630032

Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

$10\log_{10}(TX \text{ power in watts/0.001})$ – the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Equipment

	Asset	Description		s/n	Cycle	Last Cal
Trai	nsducer					
	i00088	EMCO 3109-B 25MHz-30	0MHz	2336	24 mo.	Sep-04
Χ	i00089	Aprel 2001 200MHz-1GHz	<u>, </u>	001500	24 mo.	Sep-04
Χ	i00103	EMCO 3115 1GHz-18GHz	Z	9208-3925	24 mo.	Jan-05
Am	plifier					
Χ	i00028	HP 8449A		2749A00121	12 mo.	May-05
Spe	ctrum Analy	yzer				
Χ	i00029	HP 8563E		3213A00104	12 mo.	May-05
Χ	i00033	HP 85462A		3625A00357	12 mo.	Sep-05
Sub	stitution Ge	nerator				
Χ	i00067	HP 8920A Communication	n TS	3345U01242	12 mo.	Jun-05
	i00207	HP 8753D Network Analy	zer	3410A08514	12 mo.	Jul-05
Mic	rophone. Ar	ntenna Port, and Cabling				
	Microphone	· · · · · · · · · · · · · · · · · · ·		ole Length - Me	eters	
	•	ort Terminated	Yes Loa	d Yes	Antenna Gain	-
	All Ports Te	rminated by Load	Yes Pe	ripheral No		

Name of Test: Field Strength of Spurious Radiation

Measurement Results

g0630030: 2006-Mar-14 Tue 10:09:00 STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

Frequency Tuned, MHz	Frequency Emission, MHz	ERP, dBm	ERP, dBc
406.012500	812.040000	-53.00	-97.00
438.015000	876.030000	-32.70	-76.70
469.995000	939.990000	-74.40	-118.40
406.012500	1218.038000	-36.20	-80.20
438.015000	1314.045000	-46.30	-90.30
469.995000	1409.985000	-42.10	-86.10
406.012500	1624.050000	-31.70	-75.70
438.015000	1752.060000	-46.40	-90.40
469.995000	1879.980000	-45.60	-89.60
406.012500	2030.063000	-32.70	-76.70
438.015000	2190.055000	-50.20	-94.20
469.995000	2349.975000	-25.60	-69.60
406.012500	2436.075000	-28.70	-72.70
438.015000	2628.033000	-36.30	-80.30
469.995000	2819.970000	-28.50	-72.50
406.012500	2842.088000	-25.00	-69.00
438.015000	3066.105000	-24.00	-68.00
406.012500	3248.100000	-23.40	-67.40
469.995000	3289.965000	-26.70	-70.70
438.015000	3504.120000	-27.30	-71.30
406.012500	3654.113000	-21.90	-65.90
469.995000	3759.960000	-22.00	-66.00
438.015000	3942.135000	-28.60	-72.60
406.012500	4060.125000	-20.50	-64.50
469.995000	4229.935000	-22.70	-66.70
438.015000	4380.150000	-24.50	-68.50
469.995000	4699.930000	-24.30	-68.30

Performed By: Fred Chastain, Test Technician

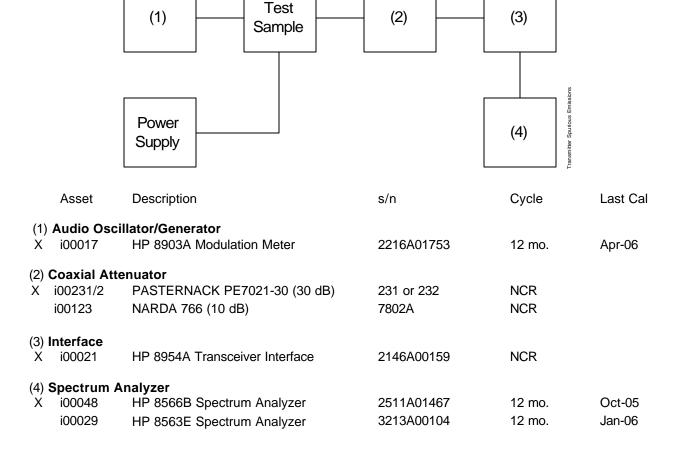
Fied Tasto

Page 16 of 32

FCC ID: OHN-B1000-4

MFA p0630002, d0630032

Name of Test: Emission Masks (Occupied Bandwidth)

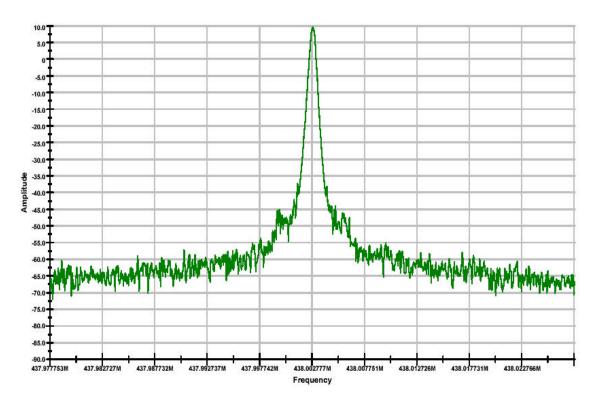

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

Measurement Procedure

- A) The EUT and test equipment were set up as shown below
- B) For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5/±1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- C) For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- D) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Transmitter Test Set-Up: Occupied Bandwidth


Measurement Results

Occupied Bandwidth

Digital Wireless

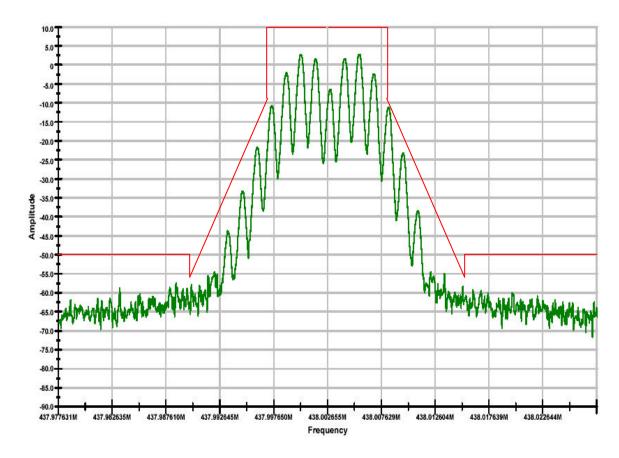
Reference Power

02:28:44 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician

Fred Charle


Measurement Results

Occupied Bandwidth

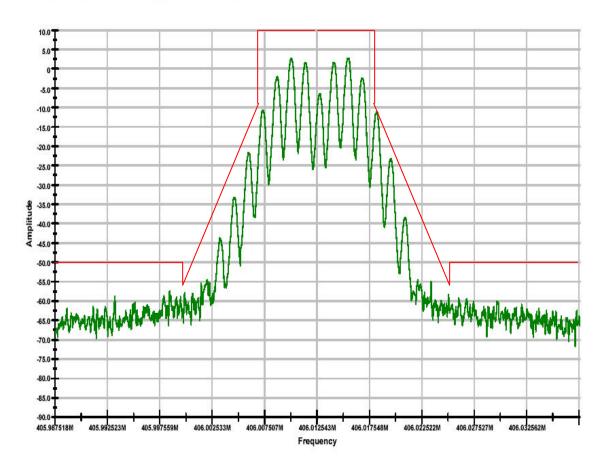
Digital Wireless

Sine Wave, Mid Channel

02:17:12 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician


Measurement Results

Occupied Bandwidth

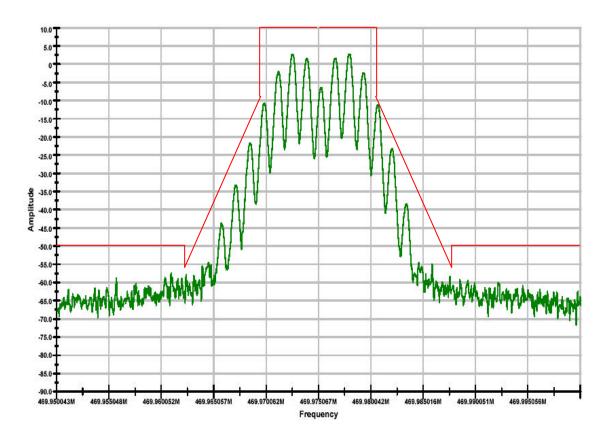
Digital Wireless

Sine Wave, Low Channel

02:26:20 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician


Measurement Results

Occupied Bandwidth

Digital Wireless

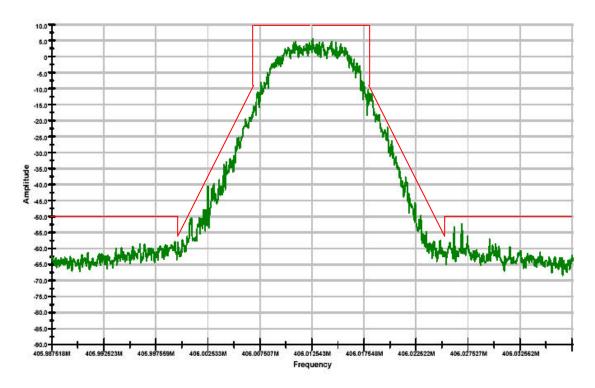
Sine Wave, High Channel

02:23:57 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician

Fied Charle


Measurement Results

Occupied Bandwidth

Digital Wireless

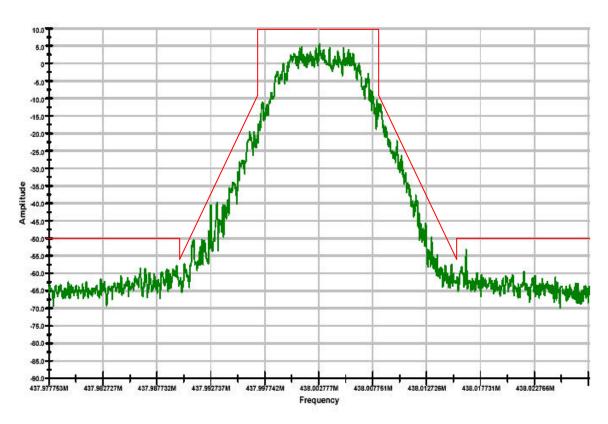
Digital Modulation, Low Channel

03:53:35 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician

Fied Charle


Measurement Results

Occupied Bandwidth

Digital Wireless

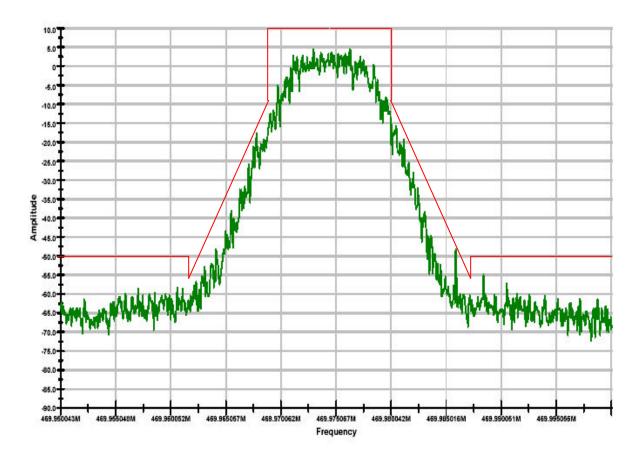
Digital Modulation, Mid Channel

03:51:07 PM, Thursday, April 27, 2006

Performed By:

Fred Chastain, Test Technician

Fred (Taste-


Measurement Results

Occupied Bandwidth

Digital Wireless

Digital Modulation, High Channel

03:54:57 PM, Thursday, April 27, 2006

Performed By: Fred Chastain, Test Technician

Fied Charle

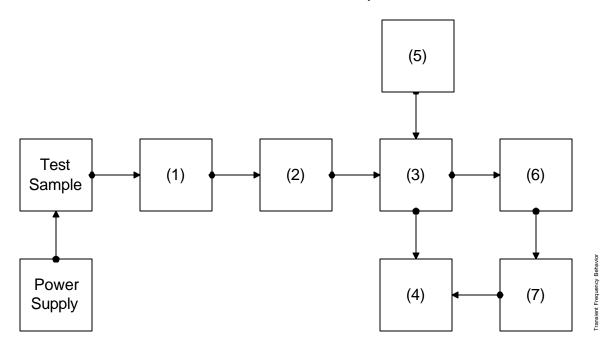
Name of Test: Transient Frequency Behavior

Specification: 47 CFR 90.214

Guide: ANSI/TIA/EIA-603-C, EIA-102-CAAA

Measurement Procedure

- A) The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a *guide*.
- B) The transmitter was turned on.
- C) Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded.
- D) The transmitter was turned off.
- E) An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step C) above, measured at the output of the combiner. This level was then fixed for the remainder of the test.
- F) The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- G) The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded.
- H) The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

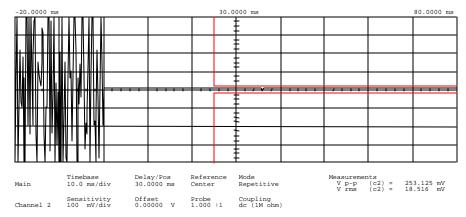

Performed by:

David E. Lee, FCC/IC Compliance Manager

Name of Test: Transient Frequency Behavior

Transmitter Set-Up

	Asset	Description	s/n	Cycle	Last Cal
(1) <i>X</i>	Attenuator (F i00231/2	Removed after 1st step) PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
(2) X	Attenuator i00231/2 i00122/3	PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(3) X	Combiner i00154	4 x 25 Ω Combiner	154	NCR	
(4) X	Crystal Deco i00159	oder HP 8470B Crystal Detector	1822A10054	NCR	
(5) X	RF Signal Go i00067	enerator HP 8920A Communication TS	3345U01242	12 mo.	Jun-05
(6) X	Modulation A	Analyzer HP 8901A Modulation Meter	2105A01087	12 mo.	Apr-06
(7) X	Oscilloscope i00030	HP 54502A Digital Oscilloscope	2927A00209	12 mo.	Jan-06

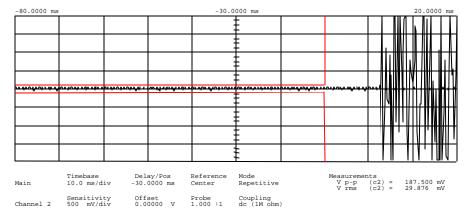

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (480) 926-3100 phone, (480) 926-3598 fax

Page 25 of 32 FCC ID: OHN-B1000-4 MFA p0630002, d0630032

Name of Test: Transient Frequency Behavior

State: Ambient Temperature: 23°C ± 3°C

Trigger mode : Edge On Negative Edge Of Ext1 Trigger Level Ext1 = -125.000 mV (noise reject OFF) Holdoff = 60.000 ns


Power: High Description: Carrier ON

Performed by: David E. Lee, FCC/IC Compliance Manager

Name of Test: Transient Frequency Behavior

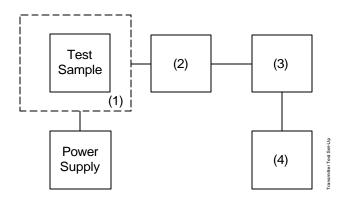
State: Ambient Temperature: 23°C ± 3°C

Trigger mode : Edge On Positive Edge Of Ext1 Trigger Level Ext1 = -125.000 mV (noise reject OFF) Holdoff = 60.000 ns

Power: High Carrier OFF Description:

Performed by: David E. Lee, FCC/IC Compliance Manager

Name of Test: Frequency Stability (Temperature Variation)

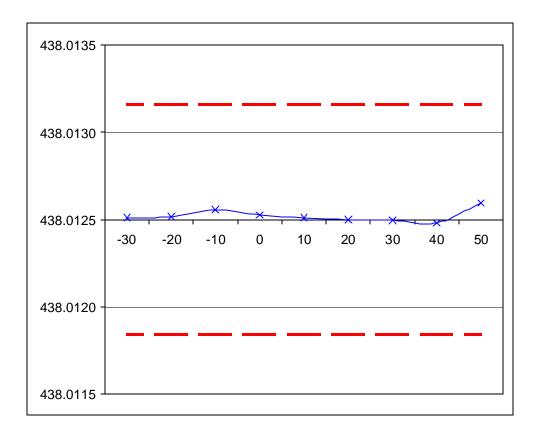

Specification: 47 CFR 2.1055(a)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT and test equipment were set up as shown on the following page.
- B) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- C) With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- D) The temperature tests were performed for the worst case.

Transmitter Test Set-Up: Temperature Variation


	Asset	Description	s/n	Cycle	Last Cal
(1) X	Temperature i00027	e, Humidity, Vibration Tenney Temp. Chamber	9083-765-234	NCR	
(2) X	Coaxial Atte i00231/2 i00122/3	enuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(3) X	RF Power i00067	HP 8920A Communications TS	3345U01242	12 mo.	Jun-05
(4) X	Frequency 0 i00067	Counter HP 8920A Communications TS	3345U01242	12 mo.	Jun-05

Name of Test:

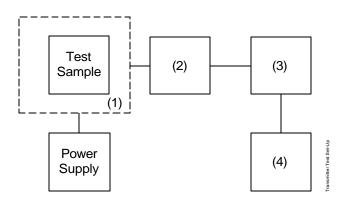
Frequency Stability (Temperature Variation)

Measurement Results

Performed By:

Fred Chastain, Test Technician

Name of Test: Frequency Stability (Voltage Variation)


Specification: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT was placed in a temperature chamber (if required) at 25±5°C and connected as shown below.
- B) The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- C) The variation in frequency was measured for the worst case.

Transmitter Test Set-Up: Voltage Variation

	Asset	Description	s/n	Cycle	Last Cal
(1)	Temperature	e, Humidity, Vibration			
	i00027	Tenney Temp. Chamber	9083-765-234	NCR	
(2)	Coaxial Atte	enuator			
X	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
	i00122/3	NARDA 766 (10 dB)	7802 or 7802A	NCR	
(3)	RF Power				
X	i00020	HP 8901A Power Mode	2105A01087	12 mo.	Apr-06
(4)	Frequency (Counter			
(+)	i00020	HP 8901A Frequency Mode	2105A01087	12 mo.	Apr-06
	.000=0	in eseminagement, meas			p. 00

Fred Charle

Results: Frequency Stability (Voltage Variation)

State: Ambient Temperature: 23°C ± 3°C

Limit, ppm= ± 1 Limit, Hz= ± 438 Battery End Point (Voltage)=10.5

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
115	13.8	438.012575	+75	>0.5
100	12.0	438.012580	+80	>0.5
85	10.2	Automatic Shutoff at 10.5 V	-	-
BEP	10.5	438.012570	+70	>0.5

Performed By: Fred Chastain, Test Technician

Name of Test: Necessary Bandwidth and Emission Bandwidth

Specification: 47 CFR 2.202(g)

Modulation = 10K7F1E, 10K7F1D Digital Voice and Data

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz 2.025

Maximum Deviation (D), kHz = 3.300 Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = $(2 \times 2.025) + (2 \times 1 \times 3.300)$

= 10.65

Modulation = 11K2F3E Station ID

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz 1.350

Maximum Deviation (D), kHz = 2.300

Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = $(2 \times 1.350) + (2 \times 1 \times 2.300)$

= 7.30

Fred Charle

Performed By: Fred Chastain, Test Technician

END OF TEST REPORT

Testimonial and Statement of Certification

This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

David E. Lee, FCC/IC Compliance Manager

FCC ID: OHN-B1000-4

MFA p0630002, d0630032