

FCC Part 15.225

TEST REPORT

For

AAEON Technology Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist., New Taipei City 23145, Taiwan, R.O.C

FCC ID: OHBRTC700RKWBG

Report Type Original Report	Product Type: Rugged Tablet Computer
Report Producer :	Himiko Chen <i>Himiko Chen</i>
Report Number :	RLK1803004-00D
Report Date :	2018-05-03 <i>Jerry Chang</i>
Reviewed By:	Jerry Chang <i>Jerry Chang</i>
Prepared By: Bay Area Compliance Laboratories Corp.(Taiwan) 70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C. Tel: +886 (2)2647 6898 Fax: +886 (2) 2647 6895 www.bacl.com.tw	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan)

Revision History

Revision	Report Number	Issue Date	Description	Author/Revised by
1.0	RLK1803004-00D	2018.05.03	Original Report	Himiko Chen

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
1.2	OPERATION CONDITION OF EUT	5
1.3	OBJECTIVE AND TEST METHODOLOGY	5
1.4	MEASUREMENT UNCERTAINTY	6
1.5	TEST FACILITY	6
2	SYSTEM TEST CONFIGURATION.....	7
2.1	DESCRIPTION OF TEST CONFIGURATION.....	7
2.2	SUPPORT EQUIPMENT LIST AND DETAILS.....	7
2.3	EXTERNAL CABLE LIST AND DETAILS.....	7
2.4	BLOCK DIAGRAM OF TEST SETUP.....	7
3	SUMMARY OF TEST RESULTS	8
4	FCC §15.203 – ANTENNA REQUIREMENTS	9
4.1	APPLICABLE STANDARD	9
4.2	ANTENNA LIST AND DETAILS	9
5	FCC §15.207 - AC LINE CONDUCTED EMISSIONS	10
5.1	APPLICABLE STANDARD	10
5.2	EUT SETUP	10
5.3	EMI TEST RECEIVER SETUP.....	11
5.4	TEST PROCEDURE.....	11
5.5	TEST EQUIPMENT LIST AND DETAILS.....	11
5.6	TEST ENVIRONMENTAL CONDITIONS	11
5.7	AC LINE CONDUCTED EMISSION TEST PLOT AND DATA.....	12
6	FCC §15.209, §15.205, §15.225 – SPURIOUS EMISSIONS.....	14
6.1	APPLICABLE STANDARD	14
6.2	EUT SETUP	15
6.3	EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	16
6.4	TEST PROCEDURE	16
6.5	TEST EQUIPMENT LIST AND DETAILS	17
6.6	TEST ENVIRONMENTAL CONDITIONS	17
6.7	RADIATED EMISSION TEST PLOT AND DATA.....	18
7	FCC §15.225(E) – FREQUENCY STABILITY	21
7.1	APPLICABLE STANDARD	21
7.2	TEST EQUIPMENT LIST AND DETAILS.....	21
7.3	TEST ENVIRONMENTAL CONDITIONS	21
7.4	FREQUENCY STABILITY TEST PLOT AND DATA.....	22
8	FCC §15.215(C) – 20 DB BANDWIDTH.....	23
8.1	APPLICABLE STANDARD	23
8.2	TEST PROCEDURE	23
8.3	TEST EQUIPMENT LIST AND DETAILS	23
8.4	TEST ENVIRONMENTAL CONDITIONS	23
8.5	20DB EMISSION BANDWIDTH TEST PLOT AND DATA.....	24

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Application	AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist., New Taipei City 23145, Taiwan, R.O.C
Manufacturer	AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien Dist., New Taipei City 23145, Taiwan, R.O.C
Brand(Trade) Name	
Product (Equipment)	Rugged Tablet Computer
Model Name	RTC-700RK-TAD-WBGR-6102
Serial Model Name	xRTC-700RKx (x - Where x may be any combination of alphanumeric characters or "-" or blank.)
Model Discrepancy	For marketing purpose
EUT Function	NFC
Frequency Range	13.56 MHz
Number of Channels	1 Channel
Field strength (dBuV)	58.10 dBuV
Received Date	Mar 01, 2018.
Date of Test	Mar 02, 2018 ~ May 03, 2018
Related Submittal(s)/Grant(s)	FCC Part 15.247 DTS with FCC ID : OHBRTC700RKWBG FCC Part 15.247 DSS with FCC ID : OHBRTC700RKWBG
Modulation Type	NFC: ASK

**All measurement and test data in this report was gathered from production sample serial number: 1803004
(Assigned by BACL, Taiwan).*

1.2 Operation Condition of EUT

Power Operation (Voltage Range)	<input checked="" type="checkbox"/> AC 120V/60Hz
	<input checked="" type="checkbox"/> Adapter Brand Name: FSP Model: FSP036-RBBN2 I/P: 100-240Vac, 1.2A O/P: 12Vdc, 3A
	<input type="checkbox"/> By Power Core
	<input type="checkbox"/> DC Type <input type="checkbox"/> DC Power Supply <input checked="" type="checkbox"/> Battery : (1) Rechargeable Li-polymer Battery Brand Name: AAEON Model: RTC600S 7.4V = 1530mAh, 11.322Wh (2) Rechargeable Li-polymer Battery Brand Name: AAEON Model: RTC600H 7.4V = 1530mAh, 11.322Wh <input type="checkbox"/> External from USB Cable <input type="checkbox"/> External DC Adapter
	<input type="checkbox"/> Host System

1.3 Objective and Test Methodology

The Objective of this Test Report was to document the compliance of the AAEON Technology Inc. Displays (Model: RTC-700RK-TAD-WBGR-6102, xRTC-700RKx (x - Where x may be any combination of alphanumeric characters or "-" or blank.) to the requirements of the following Standards:

Part 2, Subpart J, Part 15 Subparts A and Part 15 Subparts C the Federal Communication Commission's rules.

The objective is to determine compliance with FCC Part 15.225 rules and all measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
Occupied Channel Bandwidth	± 4.45 %
RF Conducted test with Spectrum	± 1.45 dB
AC Power Line Conducted Emission	± 4.64 dB
Radiated Below 1G	± 5.83 dB

1.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on

- 70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.
- 68-3, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

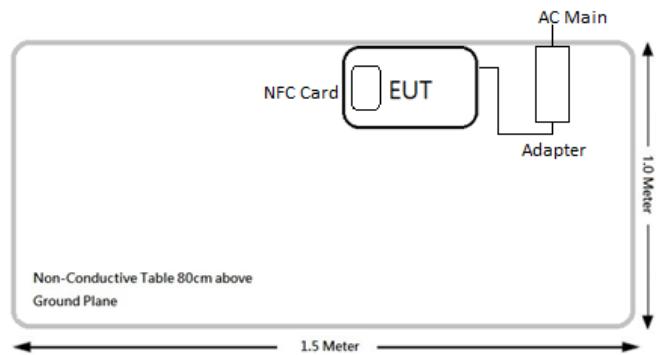
2 System Test Configuration

2.1 Description of Test Configuration

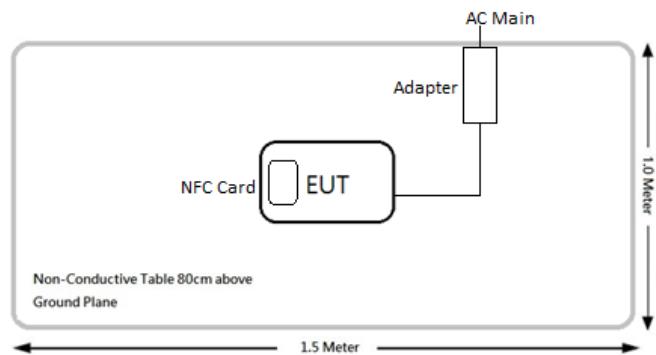
The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

2.2 Support Equipment List and Details


No.	Description	Manufacturer	Model Number	BSMI	FCC ID/ DoC
A	NFC Card	N/A	N/A	N/A	N/A

2.3 External Cable List and Details


No.	Cable Description	Length (m)	From	To
1	N/A	N/A	N/A	N/A

2.4 Block Diagram of Test Setup

Conduction

Radiation 9 kHz to 1 GHz:

3 Summary of Test Results

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.225(d)	Spurious Emissions	Compliance
§15.225(e)	Frequency Stability	Compliance
§15.215(c)	20 dB Emission Bandwidth	Compliance

4 FCC §15.203 – Antenna Requirements

4.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

4.2 Antenna List and Details

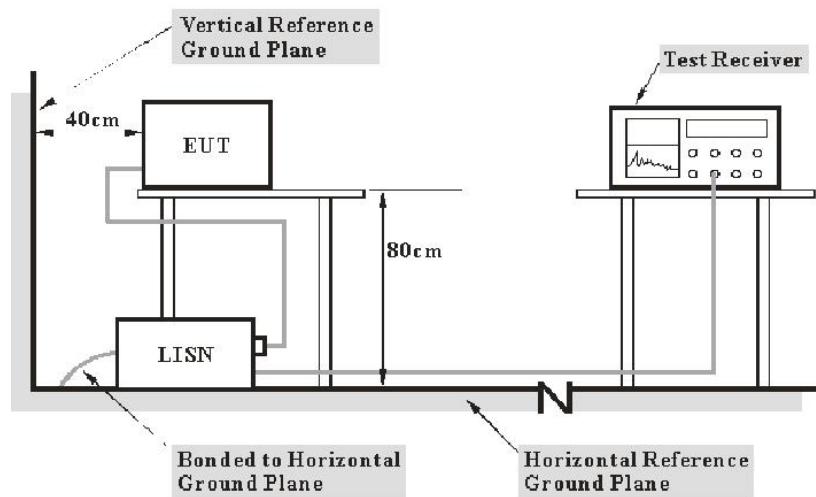
Manufacturer	Model	Antenna Type	Antenna Gain	Result
AAEON	AAEON-NFC.	Loop Antenna	0 dBi	Compliance

The EUT has an internal detachable antenna arrangement, fulfill the requirement of this section.

5 FCC §15.207 - AC Line Conducted Emissions

5.1 Applicable Standard

According to FCC §15.207


For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15-0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 2}
0.5-5	56	46
5-30	60	50

Note 1: Decreases with the logarithm of the frequency.

Note 2: A linear average detector is required

5.2 EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

5.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	Receiver RBW
150 kHz - 30 MHz	9 kHz

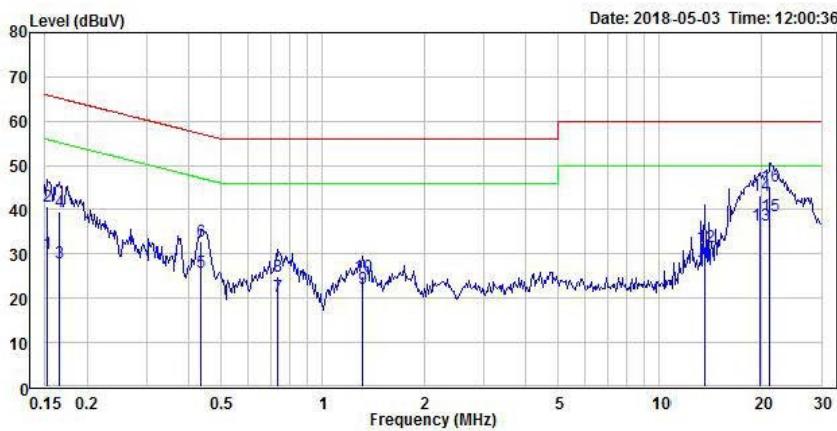
5.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

5.5 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Date	Calibration Due Date
LISN	EMCO	3816/2	00075848	2017/08/02	2018/08/01
LISN	Rohde & Schwarz	ENV216	101248	2017/07/20	2018/07/19
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2017/11/06	2018/11/05
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2017/08/10	2018/08/09
RF Cable	EMEC	EM-CB5D	001	2017/07/10	2018/07/09
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R

***Statement of Traceability:** The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


5.6 Test Environmental Conditions

Temperature:	25 °C
Relative Humidity:	58 %
ATM Pressure:	1010 hPa

The testing was performed by Ian on 2018-05-03

5.7 AC Line Conducted Emission Test Plot and Data

Mode: AC 120V/60 Hz, NFC mode, Line

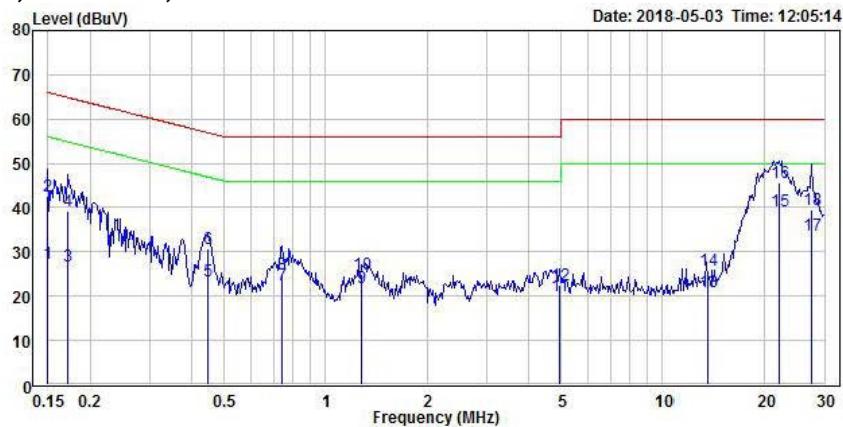
Condition: limit\FCC\FCC Conduction Clsaa-B QP .csv Line

EUT : Rugged Tablet Computer

Model : RTC-700RK-TAD-WBGR-6102

Note : NFC MODE

Power : 120V/60Hz


Freq	Level	Limit	Over	Read		Remark	Pol/Phase
		Line	Limit Factor	Level	dBuV		
	MHz	dBuV	dBuV	dB	dB		
1	0.152	30.24	55.87	-25.63	19.50	10.74	Average Line
2	0.152	40.68	65.87	-25.19	19.50	21.18	QP Line
3	0.165	27.92	55.21	-27.29	19.50	8.42	Average Line
4	0.165	39.62	65.21	-25.59	19.50	20.12	QP Line
5	0.436	25.98	47.13	-21.15	19.51	6.47	Average Line
6	0.436	32.93	57.13	-24.20	19.51	13.42	QP Line
7	0.738	20.53	46.00	-25.47	19.52	1.01	Average Line
8	0.738	25.02	56.00	-30.98	19.52	5.50	QP Line
9	1.310	22.30	46.00	-23.70	19.54	2.76	Average Line
10	1.310	24.82	56.00	-31.18	19.54	5.28	QP Line
11	13.524	26.55	50.00	-23.45	19.79	6.76	Average Line
12	13.524	31.50	60.00	-28.50	19.79	11.71	QP Line
13	19.667	36.47	50.00	-13.53	19.84	16.63	Average Line
14	19.667	43.05	60.00	-16.95	19.84	23.21	QP Line
15	21.129	38.57	50.00	-11.43	19.84	18.73	Average Line
16	21.129	45.32	60.00	-14.68	19.84	25.48	QP Line

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Mode: AC 120V/60 Hz, NFC mode, Neutral

Condition: limit\FCC\FCC Conduction Clsaa-B QP .csv Neutral

EUT : Rugged Tablet Computer

Model : RTC-700RK-TAD-WBGR-6102

Note : NFC MODE

Power : 120V/60Hz

Freq	Level	Limit	Over	Read		Pol/Phase
		Line	Limit Factor	Level	Remark	
		MHz	dBuV	dB	dBuV	
1	0.150	27.37	56.00	-28.63	19.63	7.74 Average Neutral
2	0.150	42.72	66.00	-23.28	19.63	23.09 QP Neutral
3	0.172	26.70	54.88	-28.18	19.63	7.07 Average Neutral
4	0.172	39.30	64.88	-25.58	19.63	19.67 QP Neutral
5	0.447	23.30	46.93	-23.63	19.64	3.66 Average Neutral
6	0.447	30.77	56.93	-26.16	19.64	11.13 QP Neutral
7	0.744	22.37	46.00	-23.63	19.66	2.71 Average Neutral
8	0.744	24.89	56.00	-31.11	19.66	5.23 QP Neutral
9	1.279	22.02	46.00	-23.98	19.68	2.34 Average Neutral
10	1.279	24.95	56.00	-31.05	19.68	5.27 QP Neutral
11	4.956	20.21	46.00	-25.79	19.82	0.39 Average Neutral
12	4.956	22.54	56.00	-33.46	19.82	2.72 QP Neutral
13	13.524	21.09	50.00	-28.91	19.96	1.13 Average Neutral
14	13.524	25.97	60.00	-34.03	19.96	6.01 QP Neutral
15	21.987	39.35	50.00	-10.65	20.07	19.28 Average Neutral
16	21.987	45.70	60.00	-14.30	20.07	25.63 QP Neutral
17	27.483	33.90	50.00	-16.10	20.13	13.77 Average Neutral
18	27.483	39.50	60.00	-20.50	20.13	19.37 QP Neutral

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

6 FCC §15.209, §15.205, §15.225 – Spurious Emissions

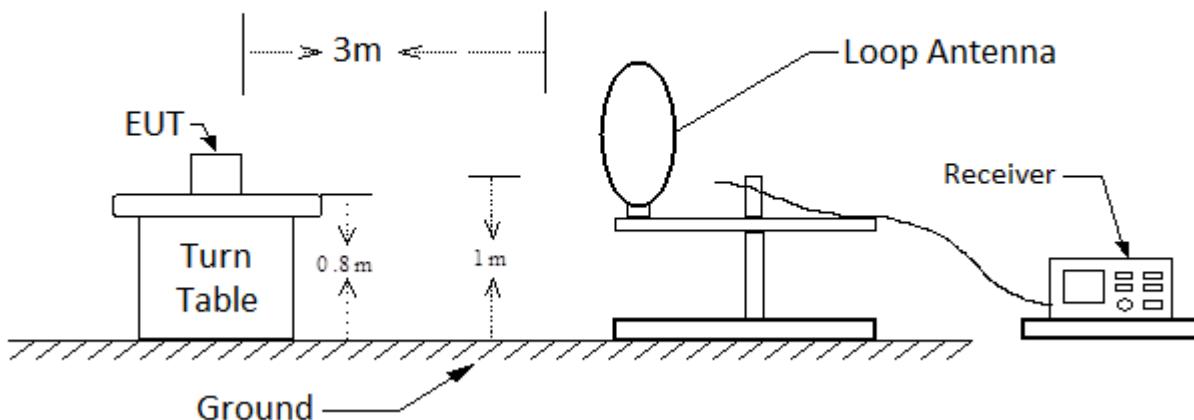
6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

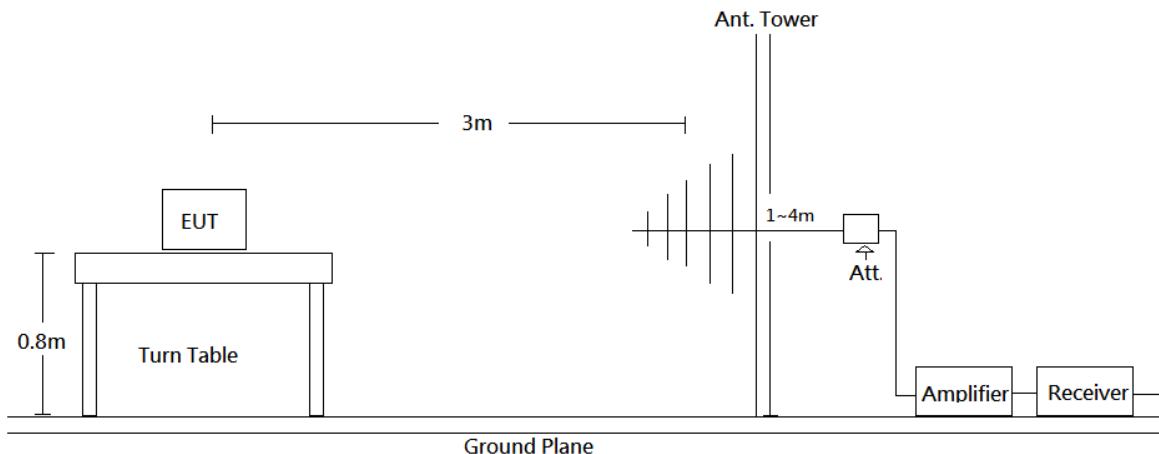
MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5. 35 – 5. 46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3


** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.225,


- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

6.2 EUT Setup

9 kHz to 30 MHz

30 MHz to 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.225 Limits.

6.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 1 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Detector	Measurement method
Below 150 kHz	200 Hz	1 kHz	QP	QP
150 kHz-30 MHz	9 kHz	30 kHz	QP	QP
30-1000 MHz	120 kHz	/	QP	QP

6.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 9 kHz to 1 GHz.

6.5 Test Equipment List and Details

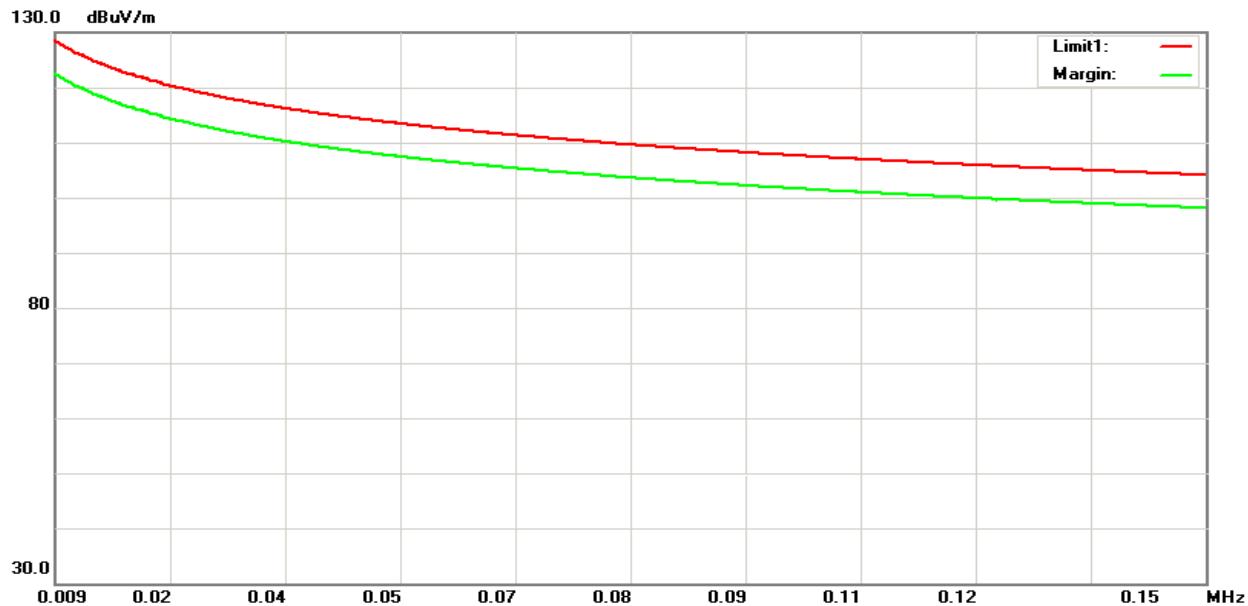
Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol & Mini-Circuits	JB6/UNAT-6+	A050115 / 15542_01	2017/11/10	2018/11/09
Active Loop Antenna	ETS-Lindgren	6502	00035796	2018/03/13	2019/03/12
Preamplifier	Sonoma	310N	130602	2017/07/03	2018/07/02
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2017/11/01	2018/10/31
Spectrum Analyzer	Rohde & Schwarz	FSV40	101203	2017/07/13	2018/07/12
Microflex Cable(8M)	UTIFLEX	UFA210B-1-3149-70U70U	228332-001	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1-2362-70U70U	228331-001	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1-2362-70U70U	228331-002	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1-2362-70U70U	228331-003	2017/09/28	2018/09/27
20 dB Attenuator	NCL	BW-S20W5+	NA	Each Use	/
Turn Table	Champro	TT-2000	060772-T	N.C.R	N.C.R
Antenna Tower	Champro	AM-BS-4500-B	060772-A	N.C.R	N.C.R
Controller	Champro	EM1000	060772	N.C.R	N.C.R
Software	Farad	EZ_EMCA	BACL-03A1	N.C.R	N.C.R

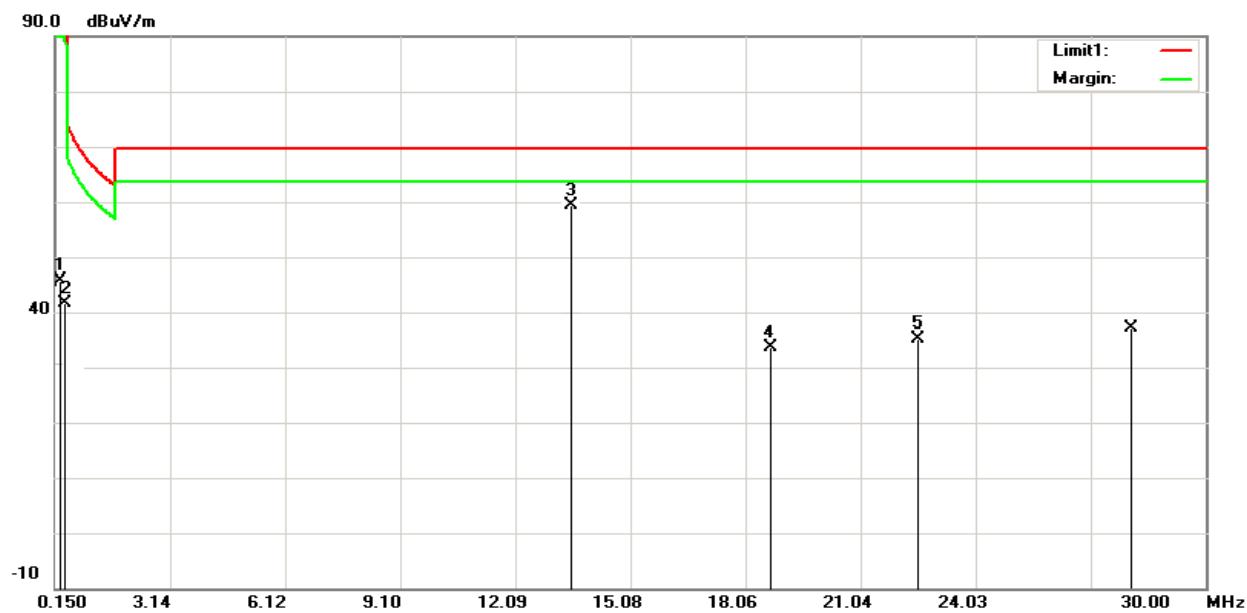
***Statement of Traceability:** The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

6.6 Test Environmental Conditions

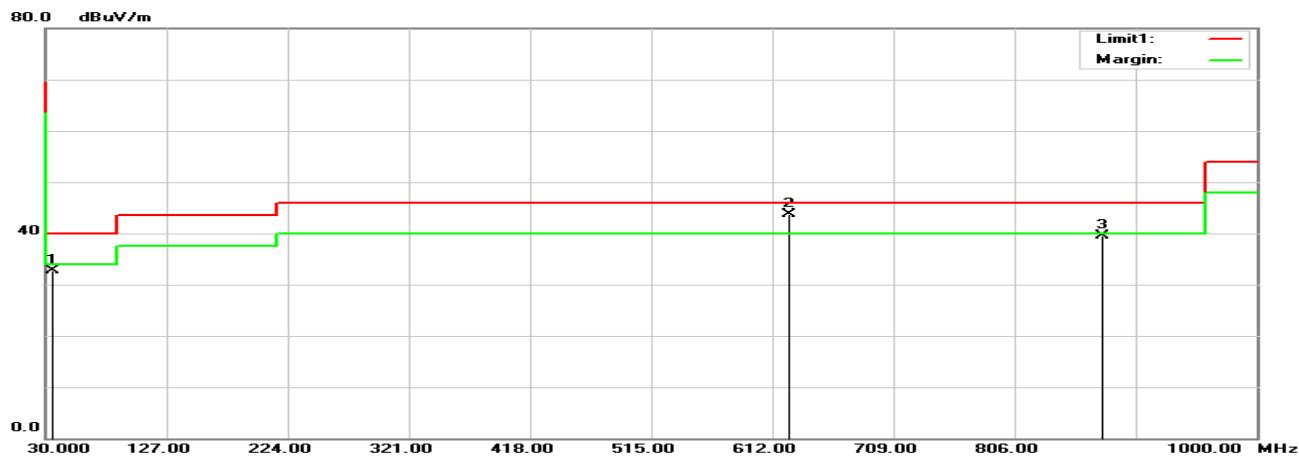

Temperature:	23.5 °C
Relative Humidity:	55.4 %
ATM Pressure:	1015 hPa

The testing was performed by Ian from 2018-04-01 to 2018-04-10

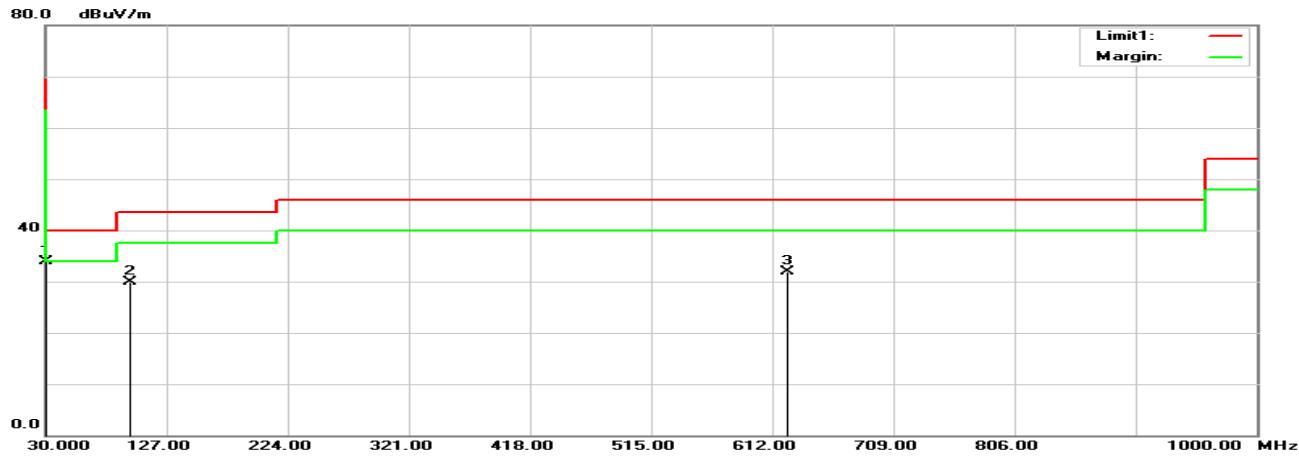

6.7 Radiated Emission Test Plot and Data


NFC 13.56 MHz Mode: Transmitting Mode (*Pre-scan with three orthogonal axis, and worse case as Y axis*)

Fundamental:



9 kHz to 150 kHz:



150 kHz to 30 MHz**9 kHz to 30 MHz:**

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degree (°)	Remark
0.2390	33.37	12.57	45.94	100.04	-54.10	100	351	peak
0.8146	27.75	12.40	40.15	69.39	-29.24	100	28	peak
13.5600	46.01	12.09	58.10	124.00	-65.90	100	177	peak
18.7567	22.61	12.05	34.66	69.50	-34.84	100	289	peak
22.5045	24.18	11.51	35.69	69.50	-33.81	100	82	peak
28.1410	26.42	10.30	36.72	69.50	-32.78	100	102	peak

30 MHz to 1 GHz**Horizontal**

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degree (°)	Remark
35.8200	40.00	-7.35	32.65	40.00	-7.35	100	9	peak
625.5800	47.44	-3.81	43.63	46.00	-2.37	100	232	QP
875.8400	38.81	0.62	39.43	46.00	-6.57	100	234	peak

Vertical

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degree (°)	Remark
30.9700	37.76	-3.93	33.83	40.00	-6.17	150	237	peak
97.9000	45.01	-15.01	30.00	43.50	-13.50	150	155	peak
624.6100	35.74	-3.82	31.92	46.00	-14.08	150	142	peak

7 FCC §15.225(e) – FREQUENCY STABILITY

7.1 Applicable Standard

According to FCC §15.225(e),

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+ 50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery

7.2 Test Equipment List and Details

Descriptions	Manufacturers	Models	Serial Numbers	Calibration Date	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2017/11/15	2018/11/14
Cable	WOKEN	SFL402	S02-160323-07	2018/02/21	2019/02/20
Multimeter	Fluke	114	28810152WS	2018/02/09	2019/02/08
AC Power Source	APC	AFC-11005G	F315050052	N.C.R	N.C.R

***Statement of Traceability:** The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

7.3 Test Environmental Conditions

Temperature:	-20 °C ~ 50 °C
Relative Humidity:	50.1 % ~ 55.4 %

The testing was performed by Ian on 2018-04-30

7.4 Frequency Stability Test Plot and Data

Test Frequency

Condition		Frequency (MHz)			
Extreme	Test Freq	0 min	2 min	5 min	10 min
T _{20°C} Vmax	13.56	13.56131	13.56131	13.56128	13.56128
T _{20°C} Vmin	13.56	13.56131	13.56131	13.56128	13.56128
T _{50°C} Vnom	13.56	13.56052	13.56052	13.56055	13.56055
T _{40°C} Vnom	13.56	13.56046	13.56046	13.56049	13.56049
T _{30°C} Vnom	13.56	13.56087	13.56087	13.56043	13.56043
T _{20°C} Vnom	13.56	13.56131	13.56131	13.56128	13.56128
T _{10°C} Vnom	13.56	13.56128	13.56128	13.56131	13.56131
T _{0°C} Vnom	13.56	13.56043	13.56043	13.56087	13.56087
T _{-10°C} Vnom	13.56	13.55913	13.55913	13.55957	13.55957
T _{-20°C} Vnom	13.56	13.56055	13.56058	13.56060	13.56063

*Vnom = 7.4Vdc, Vmin = 6.29Vdc, Vmax = 8.51Vdc

Frequency Error

Condition		Freq. Error (ppm)			
Extreme	Test Freq	0 min	2 min	5 min	10 min
T _{20°C} Vmax	13.56	96.61	96.61	94.40	94.40
T _{20°C} Vmin	13.56	96.61	96.61	94.40	94.40
T _{50°C} Vnom	13.56	38.35	38.35	40.56	40.56
T _{40°C} Vnom	13.56	33.92	33.92	36.14	36.14
T _{30°C} Vnom	13.56	64.16	64.16	31.71	31.71
T _{20°C} Vnom	13.56	96.61	96.61	94.40	94.40
T _{10°C} Vnom	13.56	94.40	94.40	96.61	96.61
T _{0°C} Vnom	13.56	31.71	31.71	64.16	64.16
T _{-10°C} Vnom	13.56	-64.16	-64.16	-31.71	-31.71
T _{-20°C} Vnom	13.56	40.56	42.70	44.25	46.46

Limit (ppm) = ±100 ppm

*Vnom = 7.4Vdc, Vmin = 6.29Vdc, Vmax = 8.51Vdc

8 FCC §15.215(c) – 20 dB Bandwidth

8.1 Applicable Standard

According to FCC §15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.2 Test Procedure

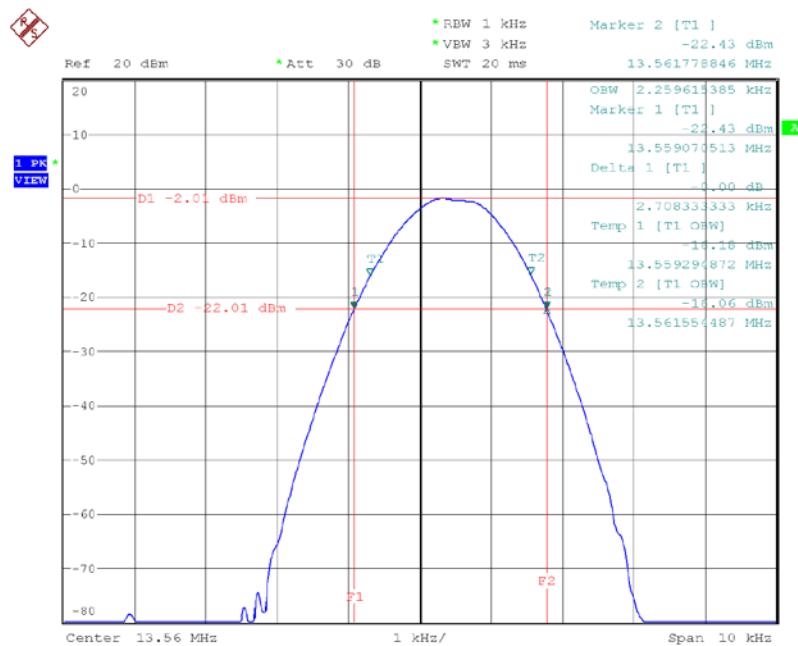
1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

8.3 Test Equipment List and Details

Descriptions	Manufacturers	Models	Serial Numbers	Calibration Date	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSU26	101140	2017/11/15	2018/11/14
Cable	WOKEN	SFL402	S02-160323-07	2018/02/21	2019/02/20

***Statement of Traceability:** The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

8.4 Test Environmental Conditions


Temperature:	23.5 °C
Relative Humidity:	55.4 %
ATM Pressure:	1015 hPa

The testing was performed by Ian on 2018-05-02

8.5 20dB Emission Bandwidth Test Plot and Data

Frequency (MHz)	20dB Bandwidth (kHz)	99% Occupied BW (kHz)	FL > 13.553 (MHz)	FL < 13.567 (MHz)	Result
13.56	2.70833	2.25961	13.55907	13.56177	Compliance

20 dB Emission Bandwidth

Date: 2.MAY.2018 14:27:28

----- END OF REPORT -----