
FCC Test Report

Equipment : Mobile EFT-POS
Brand Name : AEVI
Model No. : bbbcd(bbb-custom version of device, e.g. P01 for CBA specific unit, 0-9, A-Z; c-Wifi or 3G+Wifi version of device, W or G;d-0-9)
FCC ID : OHBMPT10WBG
Standard : 47 CFR FCC Part 15.247
Frequency : 2400 MHz – 2483.5 MHz
FCC Classification : DTS
Function : Point-to-multipoint; Point-to-point
Applicant : AAEON Technology Inc.
Manufacturer : 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei, Taiwan

The product sample received on May 10, 2016 and completely tested on Jun. 07, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT.....	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Mode	9
2.3	The Worst Case Measurement Configuration.....	10
2.4	Accessories and Support Equipment	12
2.5	Test Setup Diagram	13
3	TRANSMITTER TEST RESULT	15
3.1	AC Power-line Conducted Emissions	15
3.2	DTS Bandwidth.....	17
3.3	Fundamental Emission Output Power.....	18
3.4	Power Spectral Density	21
3.5	Transmitter Radiated Bandedge Emissions.....	23
3.6	Transmitter Radiated Unwanted Emissions	26
4	TEST EQUIPMENT AND CALIBRATION DATA.....	29

Appendix I. Test Result of AC Power-line Conducted Emissions**Appendix A. Test Result of Emission Bandwidth****Appendix B. Test Result of Maximum Conducted Output Power****Appendix C. Test Result of Power Spectral Density****Appendix D. Test Result of Transmitter Radiated Bandedge Emissions****Appendix E. Transmitter Radiated Unwanted Emissions****Appendix F. Test Photos****Appendix G. Photographs of EUT**

Summary of Test Result

Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.4328100MHz 32.02 (Margin 25.18dB) - QP 26.72 (Margin 20.48dB) - AV	FCC 15.207	Complied
3.2	15.247(a)	DTS Bandwidth	Refer as Appendix A	\geq 500kHz	Complied
3.3	15.247(b)	Fundamental Emission Output Power	Refer as Appendix B	Power [dBm]:30	Complied
3.4	15.247(e)	Power Spectral Density	Refer as Appendix C	PSD [dBm/3kHz]:8	Complied
3.5	15.247(d)	Test Result of Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2500.30 MHz: 40.94 dB Restricted Bands [dBuV/m at 3m]: 2497.28 MHz 50.94 (Margin 23.06 dB) – PK [dBuV/m at 3m]: 2495.20 MHz 41.15 (Margin 12.85 dB) - AV	Non-Restricted Bands:> 20 dBc Bands: FCC 15.209	Complied
3.6	15.247(d)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 7440MHz 38.79 (Margin 15.21dB) – AV 50.90 (Margin 23.10dB) - PK	Non-Restricted Bands:> 20 dBc Restricted Bands: FCC 15.209	Complied

Revision History

1 General Description

1.1 Information

1.1.1 RF General Information

Band	Mode	BWch (MHz)	Nss-Min	Nant
2.4G	BT-LE	1	1	1

Note:

- 2.4G is the 2.4GHz Band (2.4-2.4835GHz).
- Bluetooth LE (Low Energy) using GFSK modulation for DTS digital modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs.

1.1.2 Antenna Information

Antenna Category	
<input checked="" type="checkbox"/>	Integral antenna (antenna permanently attached)
<input type="checkbox"/>	<input type="checkbox"/> Temporary RF connector provided
<input type="checkbox"/>	<input checked="" type="checkbox"/> No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.
<input type="checkbox"/>	External antenna (dedicated antennas)
<input type="checkbox"/>	<input type="checkbox"/> Single power level with corresponding antenna(s).
<input type="checkbox"/>	<input type="checkbox"/> Multiple power level and corresponding antenna(s).
<input type="checkbox"/>	<input type="checkbox"/> RF connector provided
	<input type="checkbox"/> Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type...)
	<input type="checkbox"/> Standard antenna connector. (e.g., SMA, N, BNC, and TNC type...)

Antenna General Information			
No.	Ant. Cat.	Ant. Type	Gain (dBi)
1	Integral	PCB	2

1.1.3 Type of EUT

Identify EUT	
EUT Serial Number	N/A
Presentation of Equipment	<input checked="" type="checkbox"/> Production ; <input type="checkbox"/> Pre-Production ; <input type="checkbox"/> Prototype
Type of EUT	
<input checked="" type="checkbox"/> Stand-alone	
<input type="checkbox"/> Combined (EUT where the radio part is fully integrated within another device) Combined Equipment - Brand Name / Model No.: ...	
<input type="checkbox"/> Plug-in radio (EUT intended for a variety of host systems) Host System - Brand Name / Model No.: ...	
<input type="checkbox"/> Other:	

1.1.4 Mode Test Duty Cycle

Operated Mode for Worst Duty Cycle	
<input checked="" type="checkbox"/> Operated test mode for worst duty cycle	
Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)
<input checked="" type="checkbox"/> 100% - test mode single channel – LE	0.00

1.1.5 EUT Operational Condition

Supply Voltage	<input checked="" type="checkbox"/> AC mains	<input checked="" type="checkbox"/> DC	
Type of DC Source	<input checked="" type="checkbox"/> External AC adapter	<input type="checkbox"/> From Host System	<input checked="" type="checkbox"/> Battery

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ 47 CFR FCC Part 15
- ♦ ANSI C63.10-2013
- ♦ FCC KDB 558074 D01 v03r05

1.3 Testing Location Information

Testing Location				
<input checked="" type="checkbox"/>	HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.	TEL : 886-3-327-3456	FAX : 886-3-318-0055

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction	CO04-HY	Ryan	23°C / 56%	31/05/2016
RF Conducted	TH01-HY	Howard	23.5°C / 65%	23/05/2016
Radiated	03CH09-HY	Joe	22.2°C / 51.8%	22/05/2016

Test site registered number [553509] with FCC.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty		
Test Item	Uncertainty	
AC power-line conducted emissions	±2.3 dB	
Emission bandwidth, 6dB bandwidth	±0.6 %	
RF output power, conducted	±0.1 dB	
Power density, conducted	±0.6 dB	
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.6 dB
	1 – 18 GHz	±0.5 dB
	18 – 40 GHz	±0.5 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature	±0.8 °C	
Humidity	±5 %	
DC and low frequency voltages	±0.9%	
Time	±1.4 %	
Duty Cycle	±0.6 %	

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing			
Bluetooth Version	Transmit Chains (N _{TX})	Data Rate	Modulation Mode
LE	1	1 Mbps	LE-1Mbps

Note 1: Bluetooth LE (Low Energy) using GFSK modulation for DTS digital modulation.
Note 2: Modulation modes consist below configuration:
DSSS LE-1Mbps: GFSK (1Mbps)

2.2 Test Channel Mode

Test Software Version	DOS						
Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Power Setting
2.4G	LE	1	1	1	2402	L	Default
2.4G	LE	1	1	1	2440	M	Default
2.4G	LE	1	1	1	2480	H	Default

Note:

- ◆ Test range channel consist of L (Low Ch.), M (Middle Ch.), H (High Ch.), S (Single Ch).

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests	
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Pole mount mode.
2	Simple Tablet mode.
3	Charging Module+Charging Station mode.
4	Printer+Charging Station mode.
5	Printer only mode.

For operating mode 3 is the worst case and it was record in this test report.

The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth, Fundamental Emission Output Power, Power Spectral Density, Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains

The Worst Case Mode for Following Conformance Tests	
Tests Item	Emissions in Restricted Frequency Bands
Test Condition	<p>Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.</p>
User Position	<p><input type="checkbox"/> EUT will be placed in fixed position.</p> <p><input type="checkbox"/> EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes.</p> <p><input checked="" type="checkbox"/> EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes.</p>
Operating Mode < 1GHz	<p><input checked="" type="checkbox"/> 1. Pole mount mode.</p> <p><input checked="" type="checkbox"/> 2. Simple Tablet mode.</p> <p><input checked="" type="checkbox"/> 3. Charging Module+Charging Station mode.</p> <p><input checked="" type="checkbox"/> 4. Printer+Charging Station mode.</p> <p><input checked="" type="checkbox"/> 5. Printer only mode.</p>

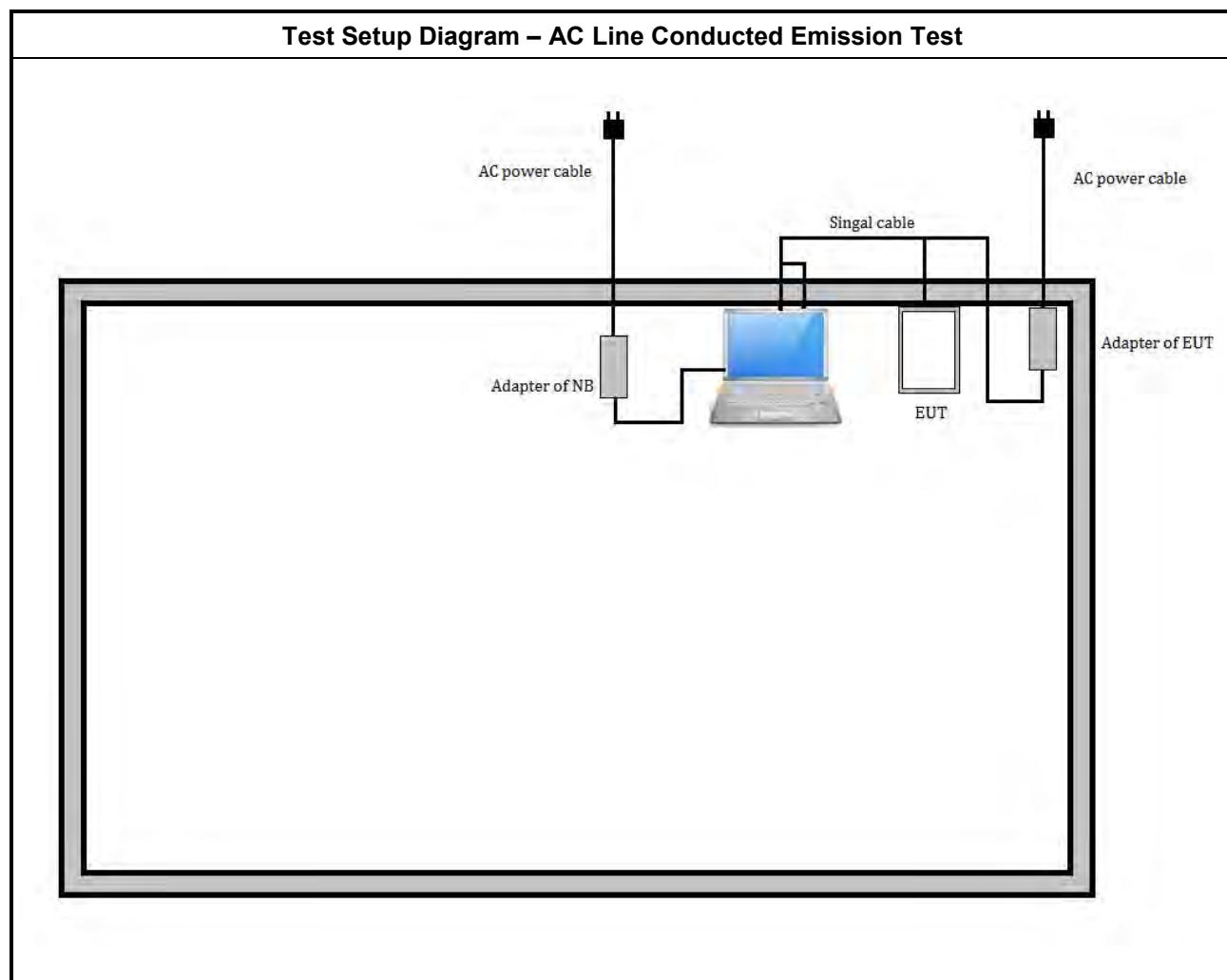
For operating mode 1 is the worst case and it was record in this test report.

Orthogonal Planes of EUT	X Plane	Y Plane	Z Plane
Worst Planes of EUT			V

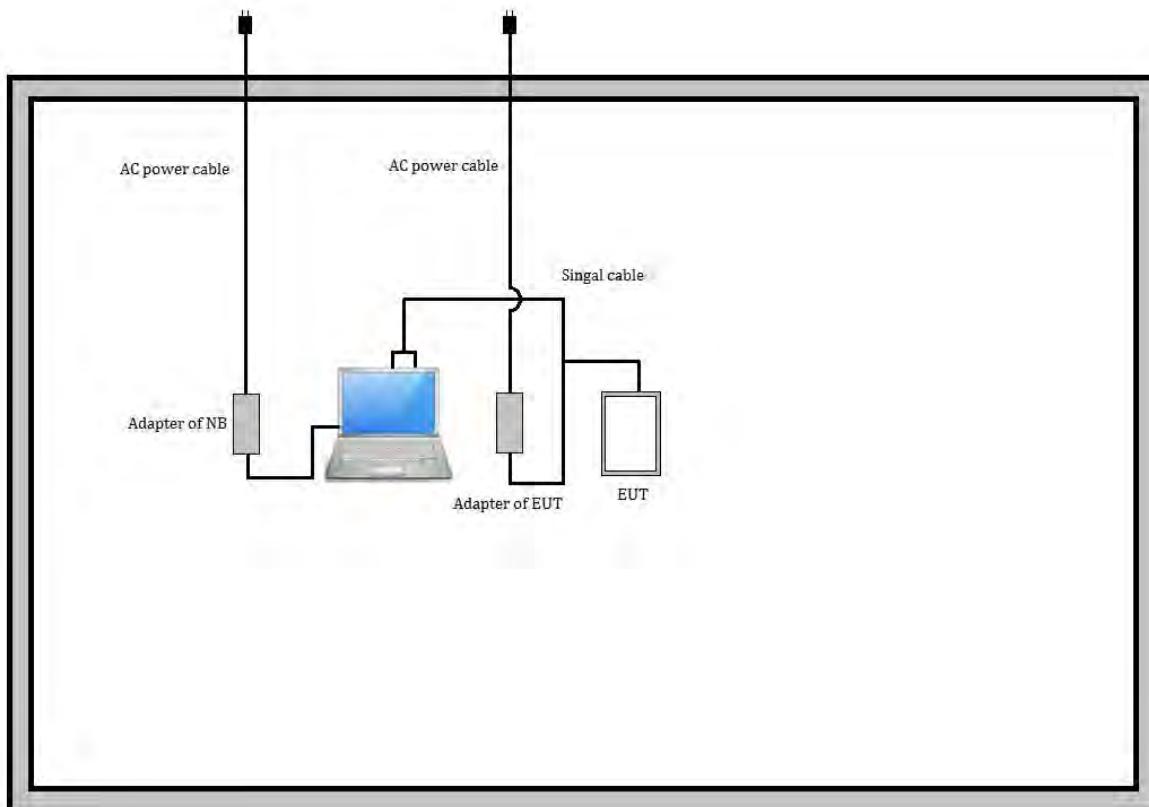
2.4 Accessories and Support Equipment

Support Local

No.	Equipment	Brand	Model	FCC ID
1	NOTE BOOK (x2)	DELL	E5540	DoC
2	AC adapter for NB	DELL	LA65NS2-01	DoC


Support Remote

No.	Equipment	Brand	Model	FCC ID
-	-	-	-	-


Accessories

AC Adapter 1	Brand Name	AOEM	Model Name	A0605TD-120054
	Power Rating	I/P:100-240Vac, 1.8A, O/P: 12Vdc, 5.4A		
	Power Cord	0.2 meter, non-shielded cable, with w/o ferrite core		
Battery 1	Brand Name	Aaeon	Model Name	POS-5000B
	Power Rating	7.4Vdc, 4540 mAh	Type	Li-ion,NCA103450
Power Extend cable	Brand Name	AOEM	Model Name	A0605TD-120054
	Signal Line	1.5 meter, non-shielded cable, w/o ferrite core		
Singal cable	Brand Name	FLYINGWAY	Model Name	FWAA513
	Signal Line	3.1 meter, Braided-Shielded cable, with two ferrite core		

2.5 Test Setup Diagram

Test Setup Diagram - Radiated Test

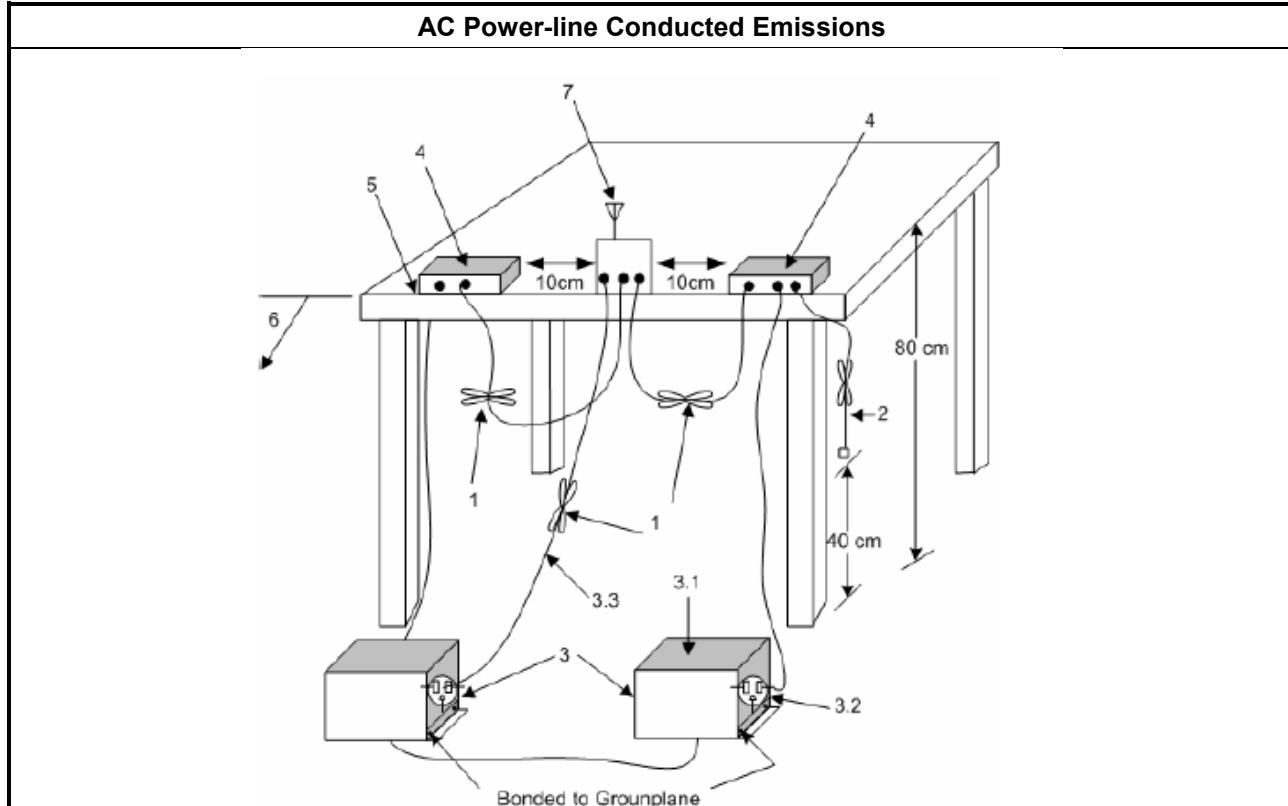
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

Note 1: * Decreases with the logarithm of the frequency.


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
▪ Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

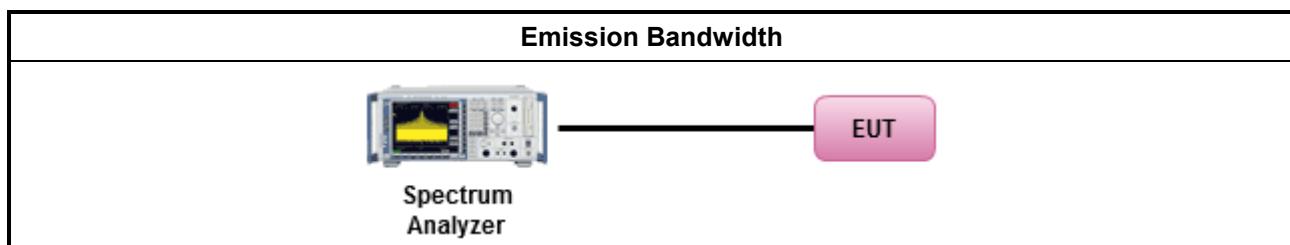
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix I

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
▪ 6 dB bandwidth \geq 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method
▪ For the emission bandwidth shall be measured using one of the options below:
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
<input type="checkbox"/> Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix A

3.3 Fundamental Emission Output Power

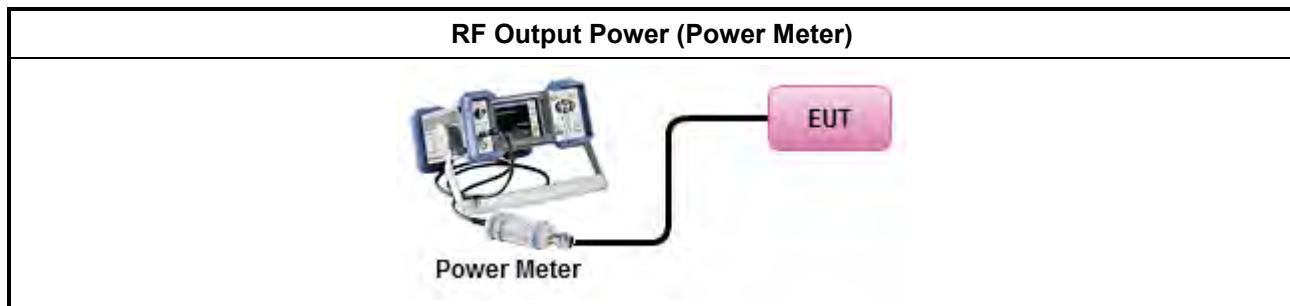
3.3.1 Fundamental Emission Output Power Limit

Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit	
▪ 2400-2483.5 MHz Band:	
	▪ If $G_{TX} \leq 6$ dBi, then $P_{Out} \leq 30$ dBm (1 W)
	▪ Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	▪ Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	▪ Smart antenna system (SAS):
	- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
e.i.r.p. Power Limit:	
▪ 2400-2483.5 MHz Band	
	▪ Point-to-multipoint systems (P2M): $P_{eirp} \leq 36$ dBm (4 W)
	▪ Point-to-point systems (P2P): $P_{eirp} \leq \text{MAX}(36, [P_{Out} + G_{TX}])$ dBm
	▪ Smart antenna system (SAS)
	- Single beam: $P_{eirp} \leq \text{MAX}(36, P_{Out} + G_{TX})$ dBm
	- Overlap beam: $P_{eirp} \leq \text{MAX}(36, P_{Out} + G_{TX})$ dBm
	- Aggregate power on all beams: $P_{eirp} \leq \text{MAX}(36, [P_{Out} + G_{TX} + 8])$ dBm

P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm,

G_{TX} = the maximum transmitting antenna directional gain in dBi.

P_{eirp} = e.i.r.p. Power in dBm.


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method	
▪ Maximum Peak Conducted Output Power	<input type="checkbox"/> Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW \geq EBW method). <input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 9.1.2 Option 2 (peak power meter for VBW \geq DTS BW)
▪ Maximum Conducted Output Power	<p>[duty cycle \geq 98% or external video / power trigger]</p> <input type="checkbox"/> Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging). <input type="checkbox"/> Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle $<$ 98% and average over on/off periods with duty factor
	<input type="checkbox"/> Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging). <input type="checkbox"/> Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over on/off periods with duty factor or gated trigger
	<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
▪ For conducted measurement.	<p>▪ If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.</p> <p>▪ If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + \dots + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$</p>

3.3.4 Test Setup

3.3.5 Test Result of Maximum Peak Conducted Output Power

Refer as Appendix B

3.3.6 Test Result of Maximum Average Conducted Output Power

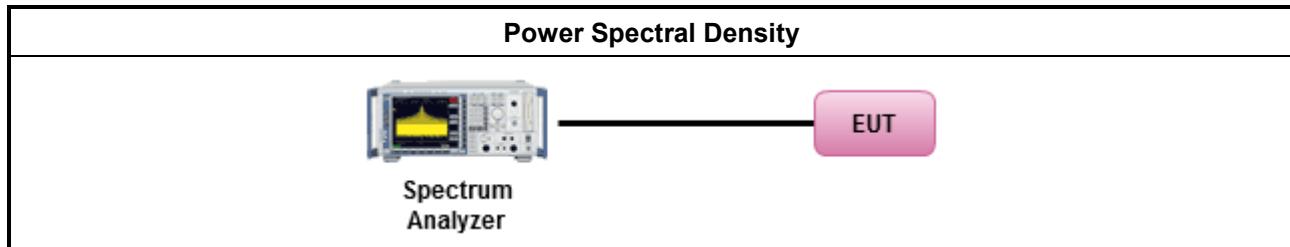
Refer as Appendix B

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit
▪ Power Spectral Density (PSD) $\leq 8 \text{ dBm/3kHz}$

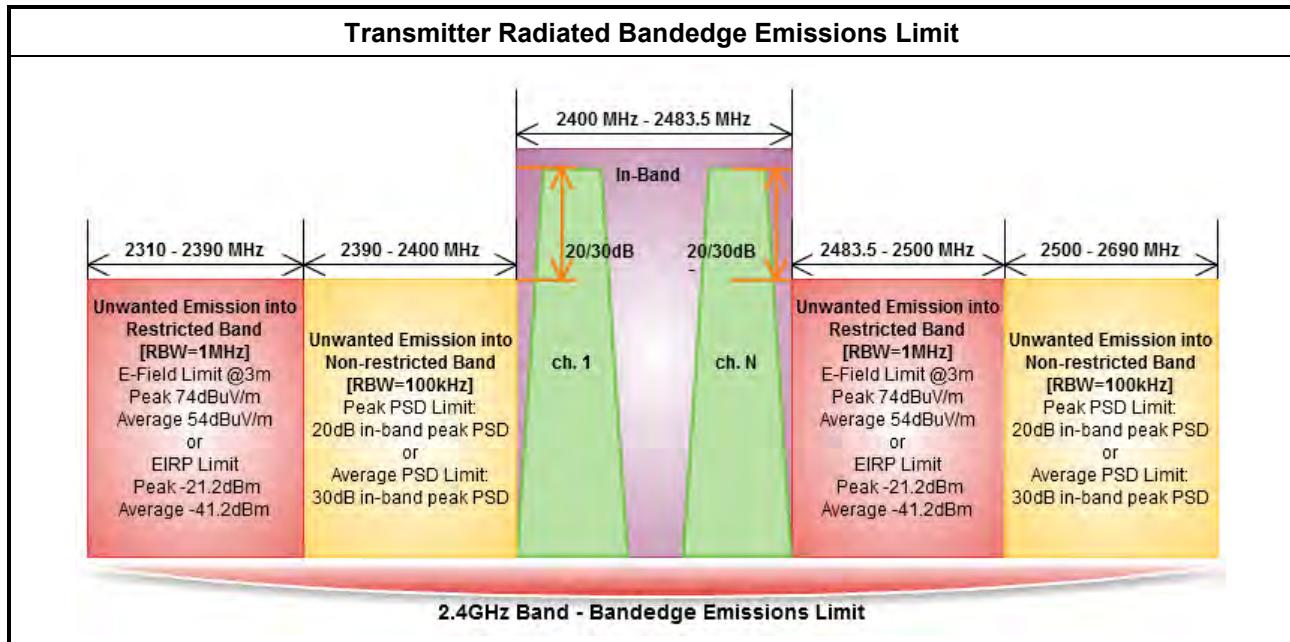
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method
▪ Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak). [duty cycle $\geq 98\%$ or external video / power trigger]
<input type="checkbox"/> Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
<input type="checkbox"/> Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-2 (slow sweep speed)
duty cycle $< 98\%$ and average over on/off periods with duty factor
<input type="checkbox"/> Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-1 Alt (spectral trace averaging).
<input type="checkbox"/> Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
▪ For conducted measurement.
▪ If The EUT supports multiple transmit chains using options given below:
<input checked="" type="checkbox"/> Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
<input type="checkbox"/> Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
<input type="checkbox"/> Option 3: Measure and add $10 \log(N) \text{ dB}$, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with $10 \log(N)$. Or each transmit chains shall be add $10 \log(N)$ to compared with the limit.

3.4.4 Test Setup

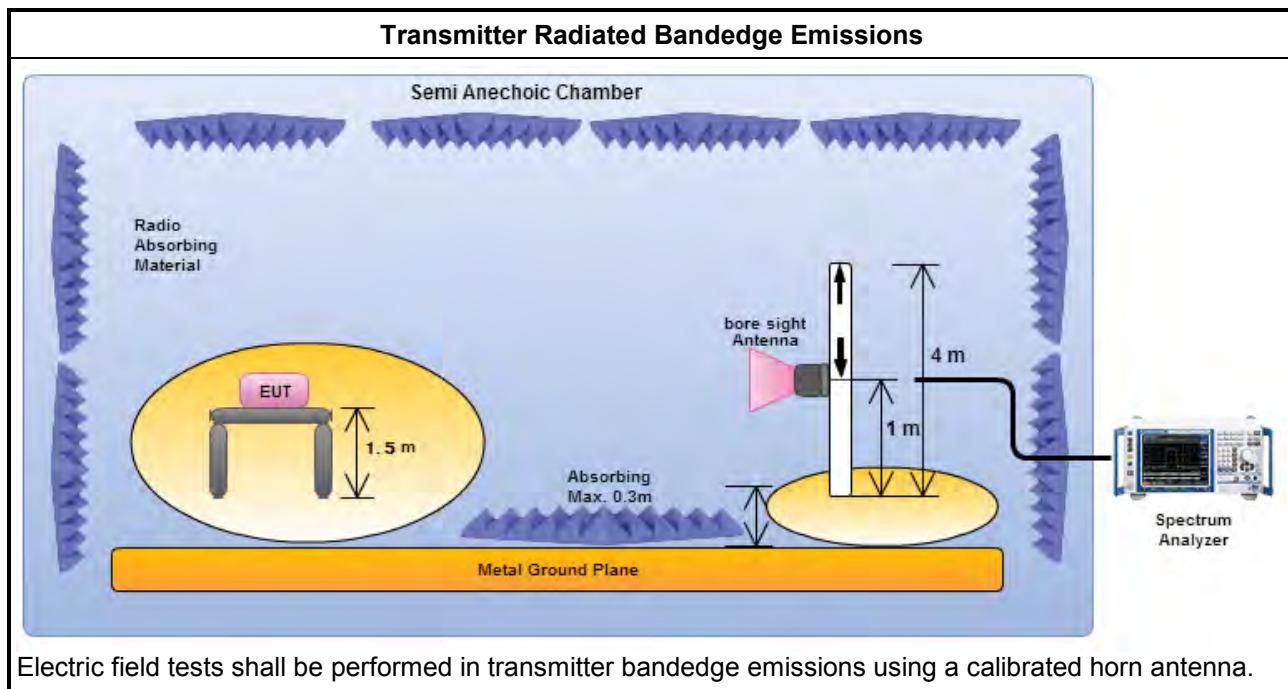


3.4.5 Test Result of Power Spectral Density

Refer as Appendix C

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method
<input checked="" type="checkbox"/> The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
<input checked="" type="checkbox"/> For the transmitter unwanted emissions shall be measured using following options below:
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
<input type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle $\geq 98\%$)
<input type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced $VBW \geq 1/T$).
<input type="checkbox"/> Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). $VBW \geq 1/T$, where T is pulse time.
<input type="checkbox"/> Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
<input checked="" type="checkbox"/> For the transmitter bandedge emissions shall be measured using following options below:
<input type="checkbox"/> Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
<input type="checkbox"/> Refer as ANSI C63.10, clause 6.10 for band-edge testing.
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.
<input checked="" type="checkbox"/> For radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. Test distance is 3m.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix D

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter in Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

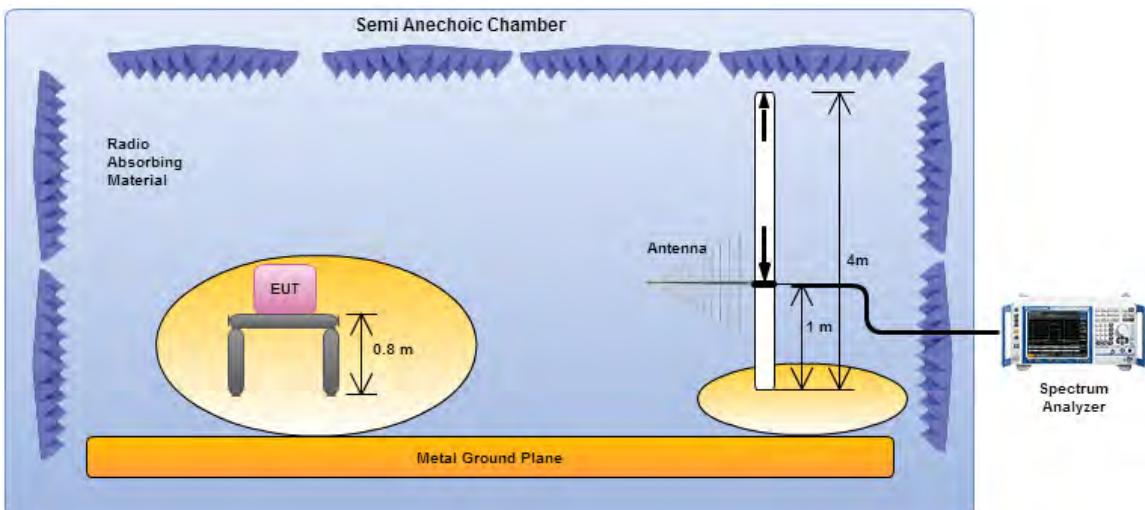
Un-restricted Band Emissions Limit	
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

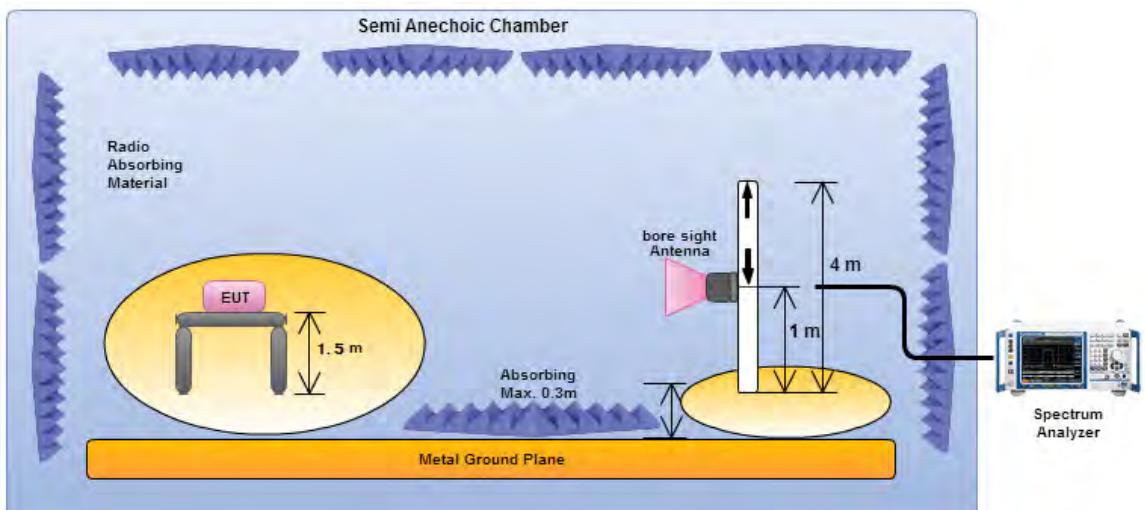
3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

Test Method
<input checked="" type="checkbox"/> Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
<input checked="" type="checkbox"/> The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
<input checked="" type="checkbox"/> For the transmitter unwanted emissions shall be measured using following options below:
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
<input type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle $\geq 98\%$)
<input type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced $VBW \geq 1/T$).
<input type="checkbox"/> Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). $VBW \geq 1/T$, where T is pulse time.
<input type="checkbox"/> Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
<input checked="" type="checkbox"/> Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
<input checked="" type="checkbox"/> For radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
<input checked="" type="checkbox"/> Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
<input checked="" type="checkbox"/> The any unwanted emissions level shall not exceed the fundamental emission level.
<input checked="" type="checkbox"/> All amplitude of spurious emissions that are attenuated by more than 30 dB below the permissible value has no need to be reported.


3.6.4 Test Setup

Transmitter Radiated Unwanted Emissions (below 1GHz)

Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna.

Transmitter Radiated Unwanted Emissions (below 1GHz)

Electric field tests shall be performed in the frequency range of 1 GHz to 10th harmonic of highest fundamental frequency or 40 GHz using a calibrated horn antenna.

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.6.6 Transmitter Radiated Unwanted Emissions

Refer as Appendix E

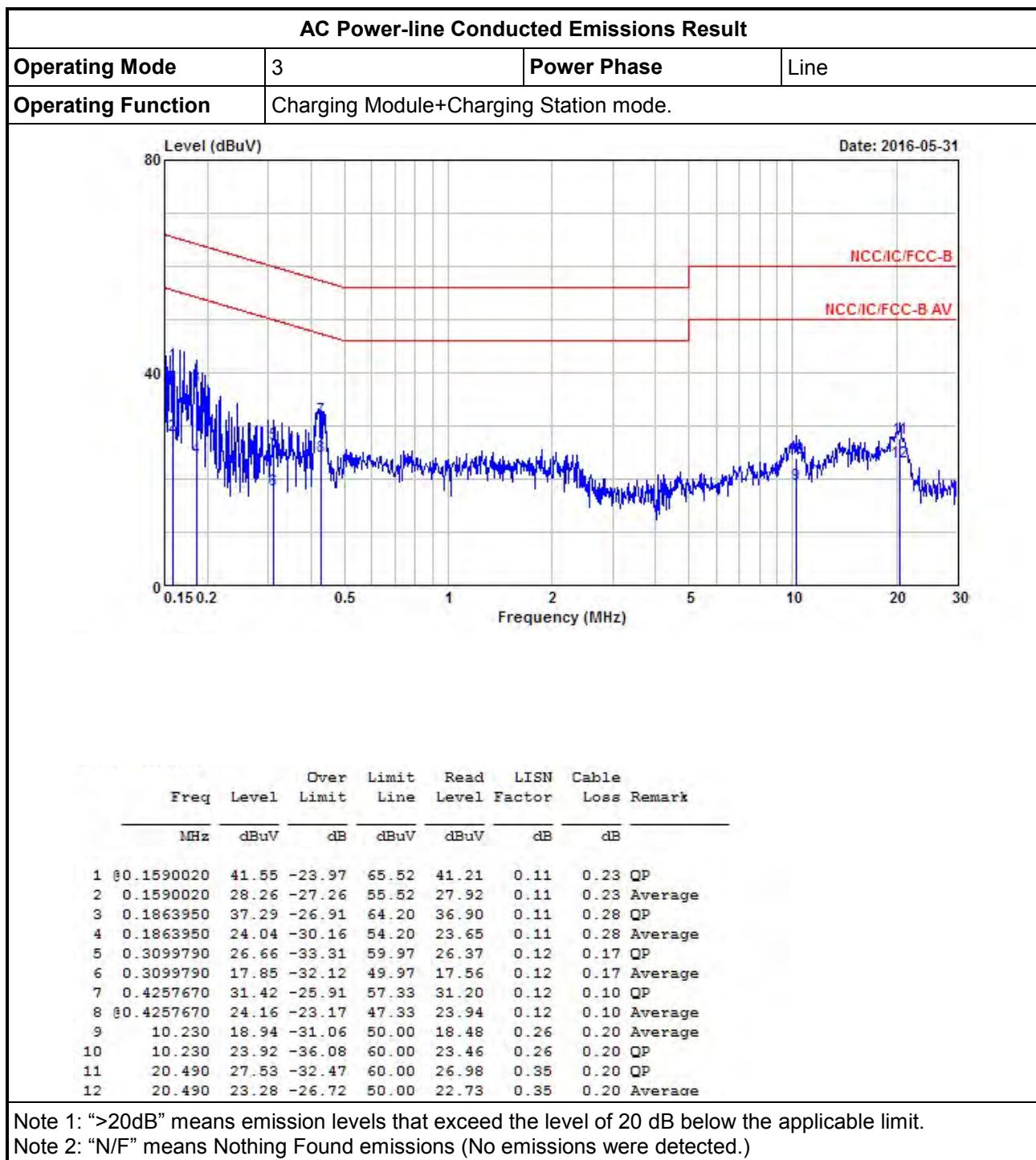
4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
EMC Receiver	KETSIGHT	N9038A	MY54130031	20Hz ~ 8.4GHz	Apr. 14, 2016	Apr. 13, 2017
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 26, 2016	Jan. 25, 2017
LISN (Support Unit)	R&S	ENV216	101295	9kHz ~ 30MHz	Nov. 04, 2015	Nov. 03, 2016
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	NCR	NCR

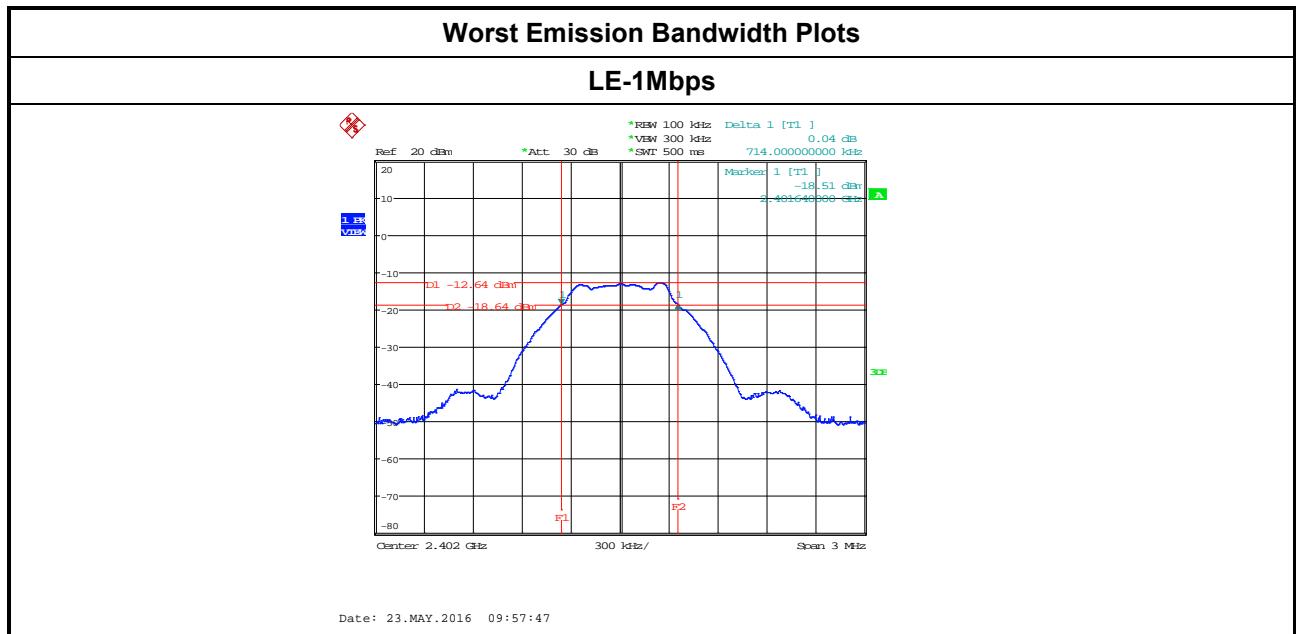
Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 12, 2016	May 11, 2017
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 04 ,2016	Feb. 03 ,2017
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 04, 2016	Feb. 03, 2017


Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	May 14, 2016	May 13, 2017
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Jun. 30, 2016
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan. 29, 2016	Jan. 28, 2017
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Apr.11.2016	Apr.10.2017
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Jul. 14, 2016
Bilog Antenna & 5dB Attenuator	TESEQ & MTJ	CBL 6111D & MTJ6102	35418	30MHz ~ 1GHz	Mar. 31, 2016	Mar. 30, 2017
Horn Antenna	SCHWARZBECK	BBHA 9120D	BBHA 9120D 1534	1GHz ~ 18GHz	Apr. 22, 2016	Apr. 21, 2017
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170614	18GHz ~ 40GHz	Jan. 04, 2016	Jan. 03, 2017

Test Result of AC Power-line Conducted Emissions

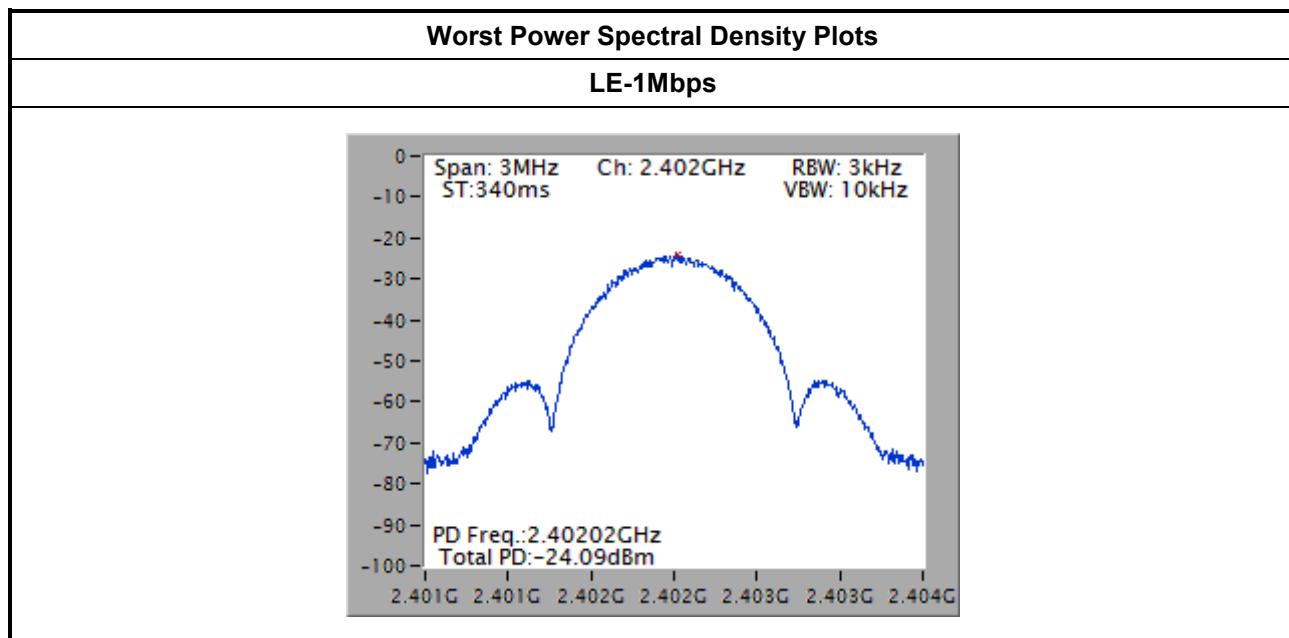

AC Power-line Conducted Emissions Result																																																																																																																								
Operating Mode	3	Power Phase	Neutral																																																																																																																					
Operating Function	Charging Module+Charging Station mode.																																																																																																																							
Date: 2016-05-31																																																																																																																								
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Freq</th> <th style="text-align: center;">Over Level</th> <th style="text-align: center;">Limit</th> <th style="text-align: center;">Read Line</th> <th style="text-align: center;">LISN Level</th> <th style="text-align: center;">Cable Factor</th> <th style="text-align: center;">Cable Loss</th> <th style="text-align: center;">Remark</th> </tr> <tr> <th style="text-align: center;">MHz</th> <th style="text-align: center;">dBuV</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dBuV</th> <th style="text-align: center;">dBuV</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dB</th> <th></th> </tr> </thead> <tbody> <tr><td>1</td><td>0.1667680</td><td>25.83</td><td>-29.29</td><td>55.12</td><td>25.48</td><td>0.10</td><td>0.25 Average</td></tr> <tr><td>2</td><td>0.1667680</td><td>39.63</td><td>-25.49</td><td>65.12</td><td>39.28</td><td>0.10</td><td>0.25 QP</td></tr> <tr><td>3</td><td>0.1954980</td><td>34.70</td><td>-29.10</td><td>63.80</td><td>34.30</td><td>0.11</td><td>0.29 QP</td></tr> <tr><td>4</td><td>0.1954980</td><td>21.79</td><td>-32.01</td><td>53.80</td><td>21.39</td><td>0.11</td><td>0.29 Average</td></tr> <tr><td>5</td><td>0.4328100</td><td>32.02</td><td>-25.18</td><td>57.20</td><td>31.80</td><td>0.12</td><td>0.10 QP</td></tr> <tr style="outline: 1px solid black;"><td>6</td><td>0.4328100</td><td>26.72</td><td>-20.48</td><td>47.20</td><td>26.50</td><td>0.12</td><td>0.10 Average</td></tr> <tr><td>7</td><td>2.350</td><td>22.09</td><td>-33.91</td><td>56.00</td><td>21.68</td><td>0.16</td><td>0.25 QP</td></tr> <tr><td>8</td><td>2.350</td><td>16.10</td><td>-29.90</td><td>46.00</td><td>15.69</td><td>0.16</td><td>0.25 Average</td></tr> <tr><td>9</td><td>10.340</td><td>19.76</td><td>-30.24</td><td>50.00</td><td>19.28</td><td>0.28</td><td>0.20 Average</td></tr> <tr><td>10</td><td>10.340</td><td>24.49</td><td>-35.51</td><td>60.00</td><td>24.01</td><td>0.28</td><td>0.20 QP</td></tr> <tr><td>11</td><td>20.810</td><td>22.52</td><td>-27.48</td><td>50.00</td><td>21.93</td><td>0.39</td><td>0.20 Average</td></tr> <tr><td>12</td><td>20.810</td><td>26.73</td><td>-33.27</td><td>60.00</td><td>26.14</td><td>0.39</td><td>0.20 QP</td></tr> </tbody> </table>									Freq	Over Level	Limit	Read Line	LISN Level	Cable Factor	Cable Loss	Remark	MHz	dBuV	dB	dBuV	dBuV	dB	dB		1	0.1667680	25.83	-29.29	55.12	25.48	0.10	0.25 Average	2	0.1667680	39.63	-25.49	65.12	39.28	0.10	0.25 QP	3	0.1954980	34.70	-29.10	63.80	34.30	0.11	0.29 QP	4	0.1954980	21.79	-32.01	53.80	21.39	0.11	0.29 Average	5	0.4328100	32.02	-25.18	57.20	31.80	0.12	0.10 QP	6	0.4328100	26.72	-20.48	47.20	26.50	0.12	0.10 Average	7	2.350	22.09	-33.91	56.00	21.68	0.16	0.25 QP	8	2.350	16.10	-29.90	46.00	15.69	0.16	0.25 Average	9	10.340	19.76	-30.24	50.00	19.28	0.28	0.20 Average	10	10.340	24.49	-35.51	60.00	24.01	0.28	0.20 QP	11	20.810	22.52	-27.48	50.00	21.93	0.39	0.20 Average	12	20.810	26.73	-33.27	60.00	26.14	0.39	0.20 QP
Freq	Over Level	Limit	Read Line	LISN Level	Cable Factor	Cable Loss	Remark																																																																																																																	
MHz	dBuV	dB	dBuV	dBuV	dB	dB																																																																																																																		
1	0.1667680	25.83	-29.29	55.12	25.48	0.10	0.25 Average																																																																																																																	
2	0.1667680	39.63	-25.49	65.12	39.28	0.10	0.25 QP																																																																																																																	
3	0.1954980	34.70	-29.10	63.80	34.30	0.11	0.29 QP																																																																																																																	
4	0.1954980	21.79	-32.01	53.80	21.39	0.11	0.29 Average																																																																																																																	
5	0.4328100	32.02	-25.18	57.20	31.80	0.12	0.10 QP																																																																																																																	
6	0.4328100	26.72	-20.48	47.20	26.50	0.12	0.10 Average																																																																																																																	
7	2.350	22.09	-33.91	56.00	21.68	0.16	0.25 QP																																																																																																																	
8	2.350	16.10	-29.90	46.00	15.69	0.16	0.25 Average																																																																																																																	
9	10.340	19.76	-30.24	50.00	19.28	0.28	0.20 Average																																																																																																																	
10	10.340	24.49	-35.51	60.00	24.01	0.28	0.20 QP																																																																																																																	
11	20.810	22.52	-27.48	50.00	21.93	0.39	0.20 Average																																																																																																																	
12	20.810	26.73	-33.27	60.00	26.14	0.39	0.20 QP																																																																																																																	
Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.																																																																																																																								
Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)																																																																																																																								

Test Result of Emission Bandwidth

Emission Bandwidth Result			
Modulation Mode	Freq. (MHz)	99% Bandwidth (kHz)	6dB Bandwidth (kHz)
LE-1Mbps	2402	1062.00	714.00
LE-1Mbps	2440	1062.00	714.00
LE-1Mbps	2480	1068.00	720.00
Limit		N/A	≥ 500 kHz
Result		Complied	

Test Result of Maximum Peak Conducted Output Power

Maximum Peak Conducted Output Power Result						
Condition		RF Output Power (dBm)				
Modulation Mode	Freq. (MHz)	RF Output Power	Power Limit	Antenna Gain (dBi)	EIRP Power	EIRP Limit
LE-1Mbps	2402	-6.62	30	2.00	-4.62	36
LE-1Mbps	2440	-7.02	30	2.00	-5.02	36
LE-1Mbps	2480	-7.61	30	2.00	-5.61	36
Result		Complied				


Test Result of Maximum Average Conducted Output Power

Maximum Average Conducted Output Power Result						
Condition		RF Output Power (dBm)				
Modulation Mode	Freq. (MHz)	Average Power	Duty Factor (dB)	RF Output Power	Antenna Gain (dBi)	EIRP Power
LE-1Mbps	2402	-6.93	0.00	-6.93	2.00	-4.93
LE-1Mbps	2440	-7.31	0.00	-7.31	2.00	-5.31
LE-1Mbps	2480	-7.9	0.00	-7.90	2.00	-5.90
Result		Complied				

Test Result of Power Spectral Density

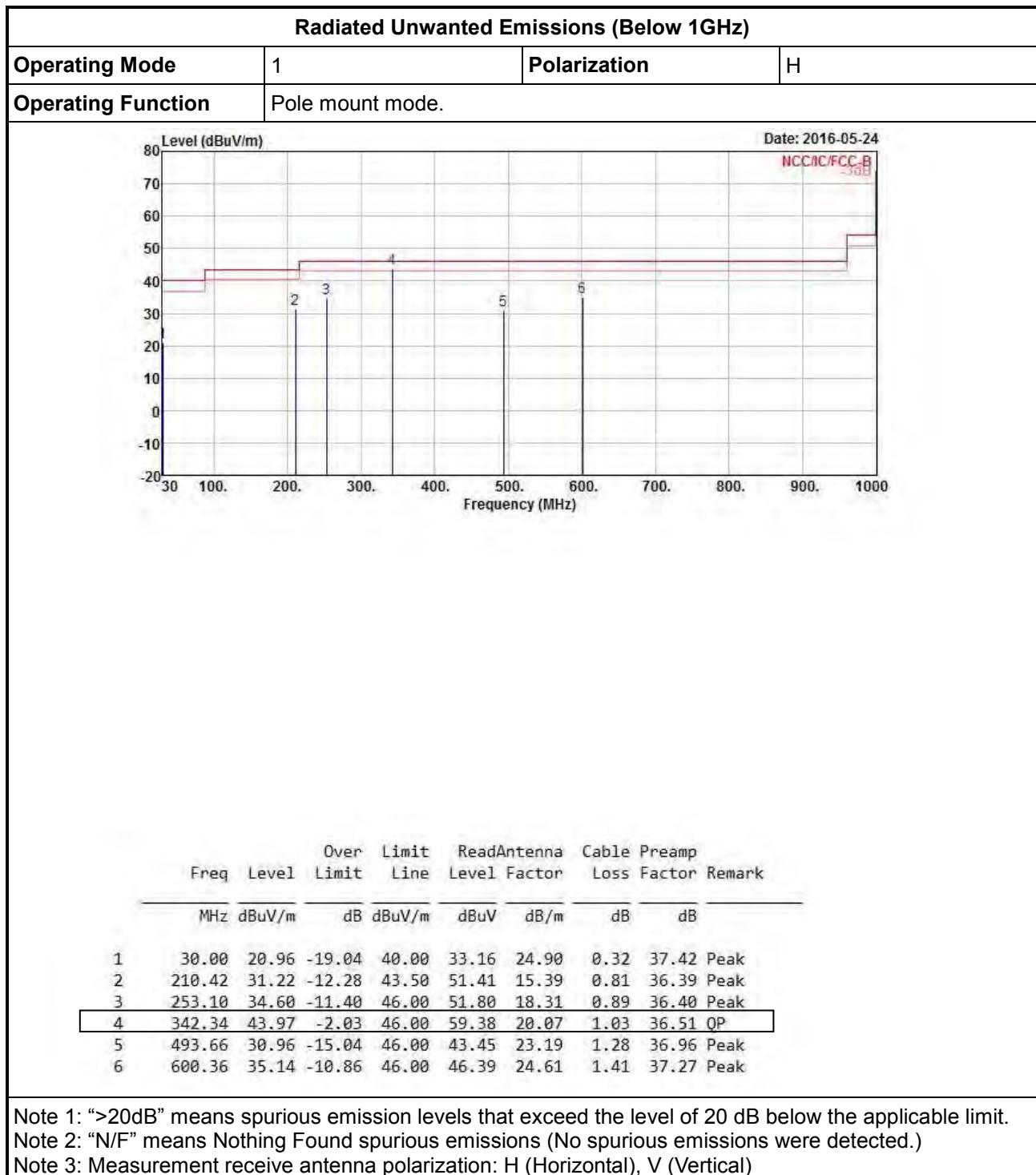
Power Spectral Density Result			
Modulation Mode	Freq. (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)
LE-1Mbps	2402	-24.09	8
LE-1Mbps	2440	-24.43	8
LE-1Mbps	2480	-25.10	8
Result		Complied	

Test Result of Transmitter Radiated Bandedge Emissions

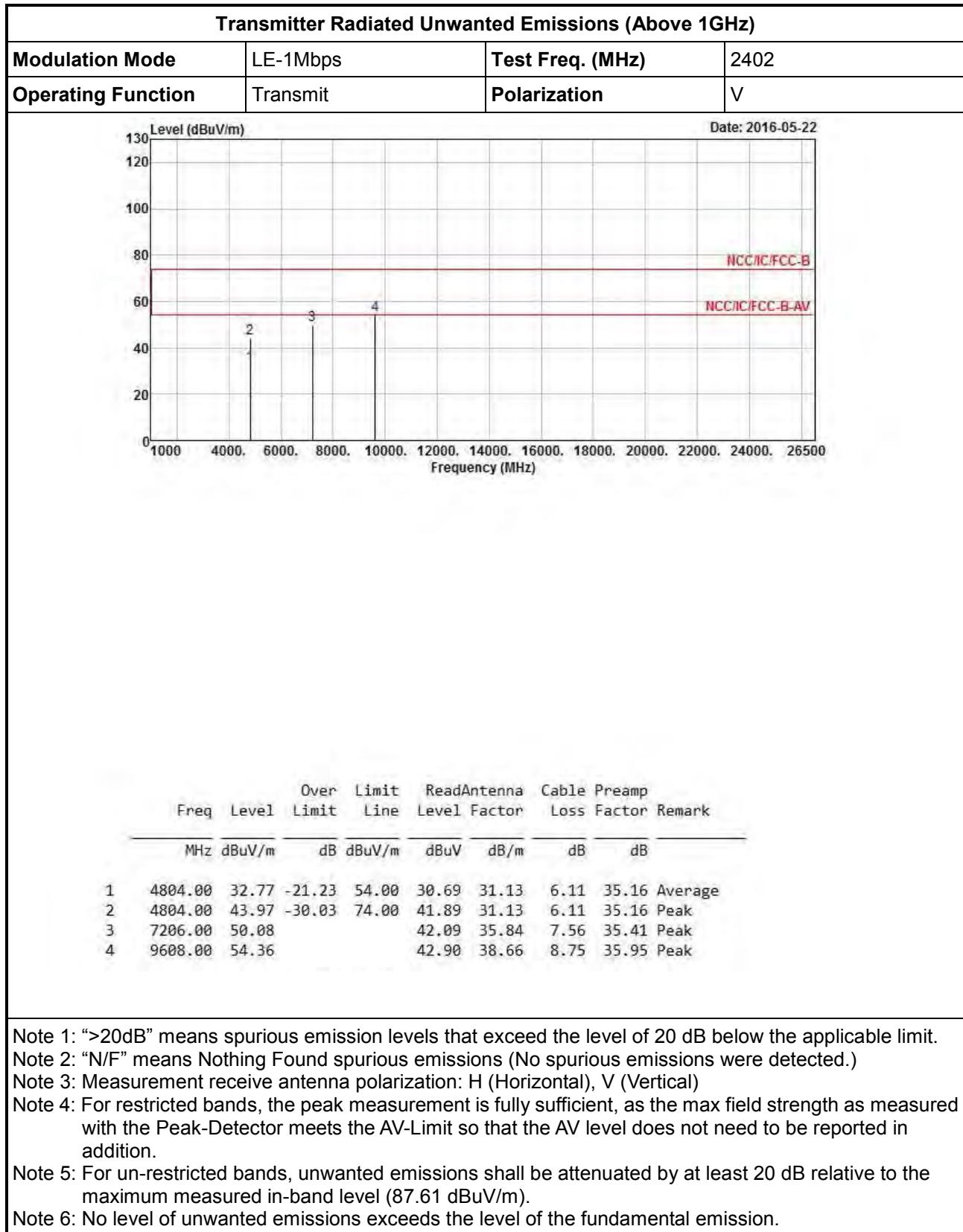
2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Non-restricted Band)								
Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
LE-1Mbps	1	2402	86.10	2395.060	40.49	45.61	20	H
LE-1Mbps	1	2480	82.22	2500.320	41.28	40.94	20	H

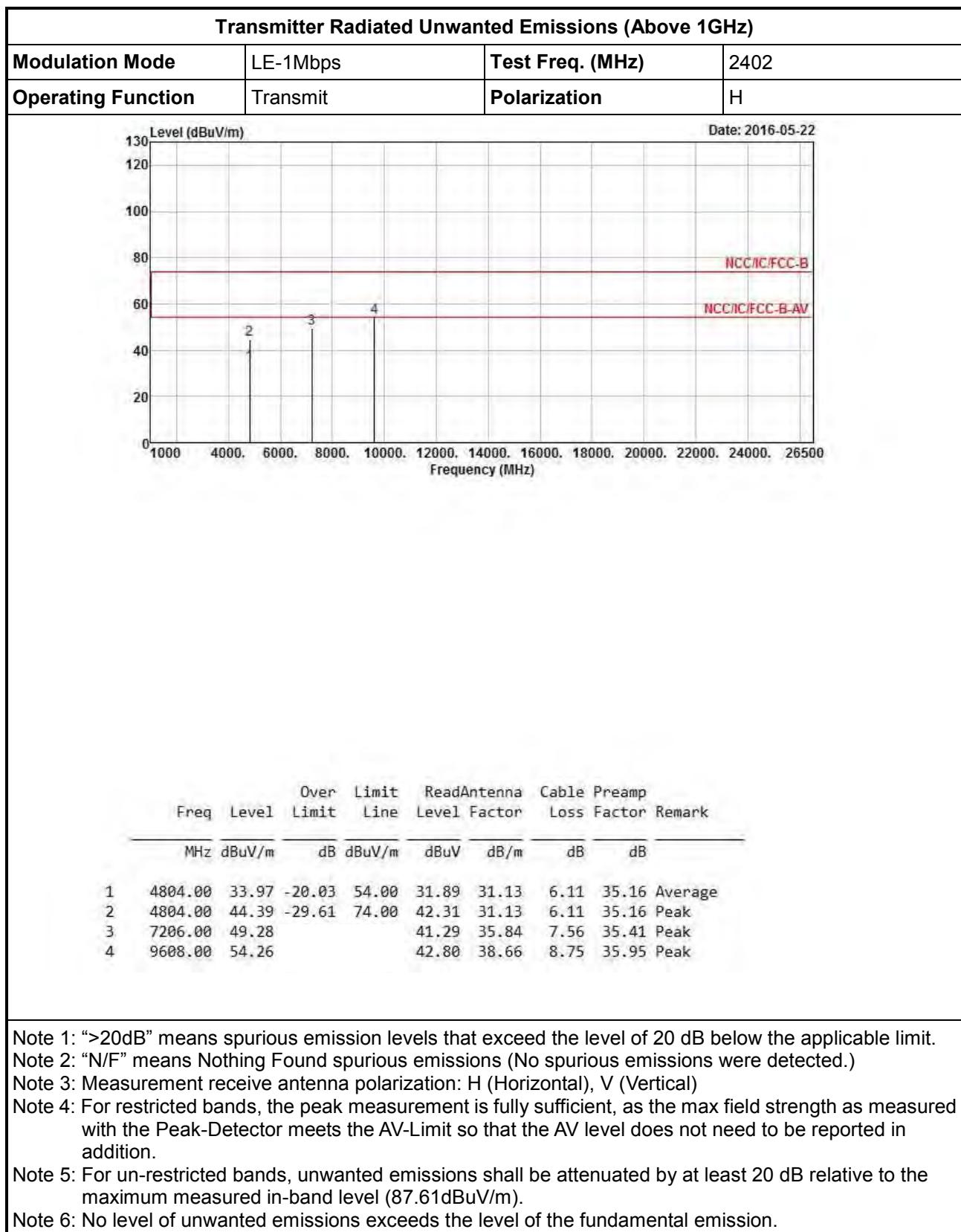
Note 1: Measurement worst emissions of receive antenna polarization

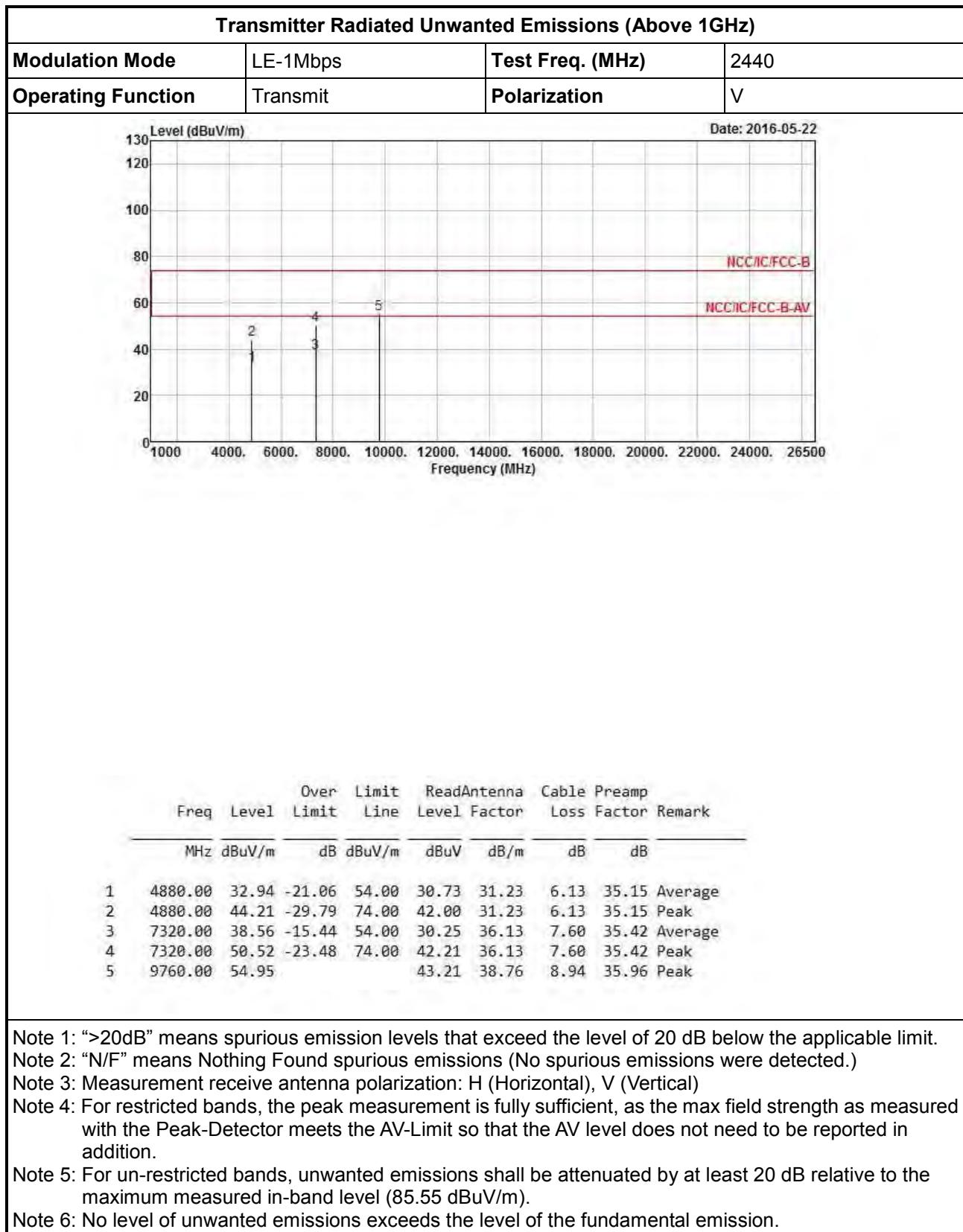
2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Restricted Band)										
Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
LE-1Mbps	1	2402	3	2387.720	50.48	74	2389.760	40.58	54	H
LE-1Mbps	1	2480	3	2497.280	50.94	74	2495.200	41.15	54	H

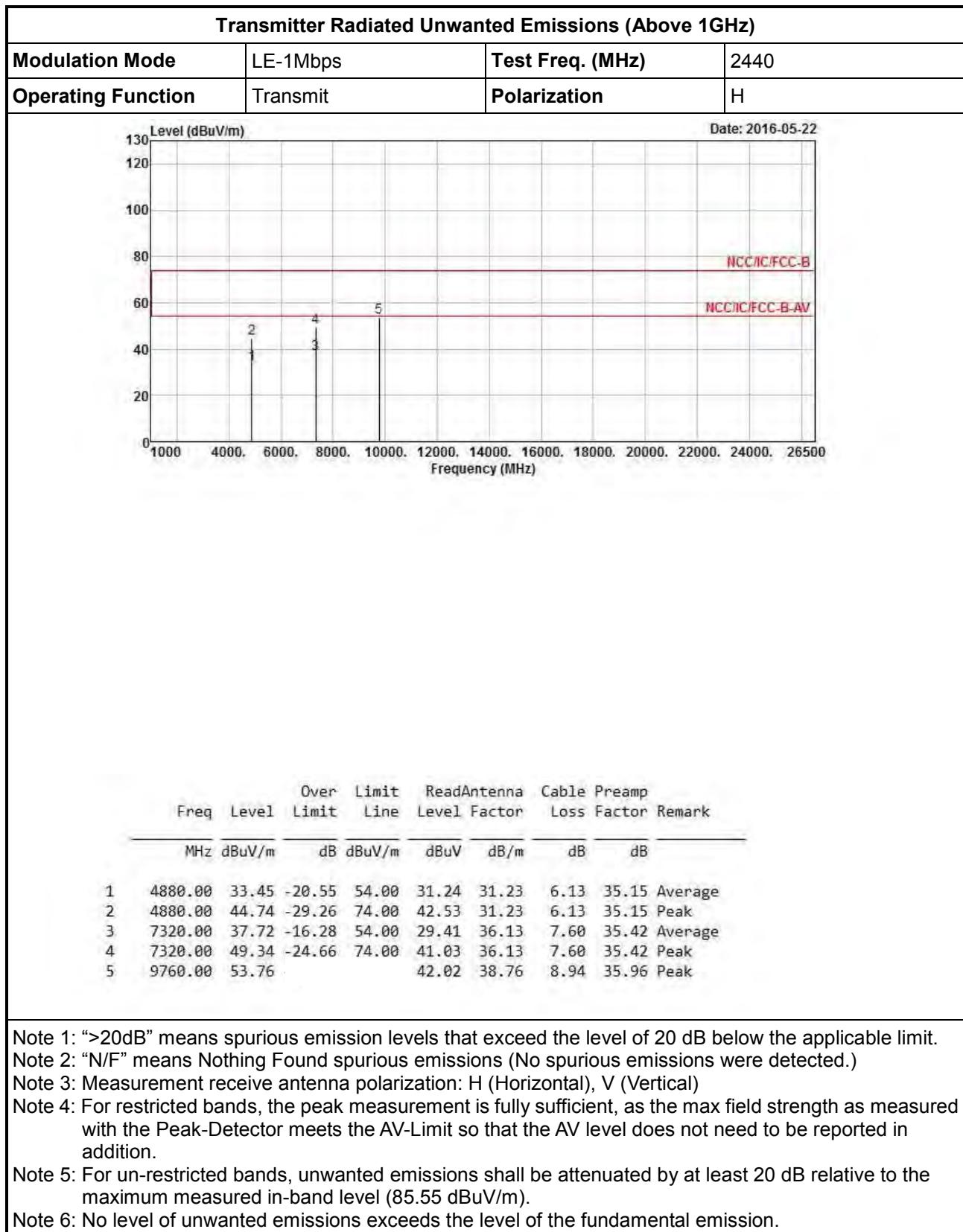

Note 1: Measurement worst emissions of receive antenna polarization.

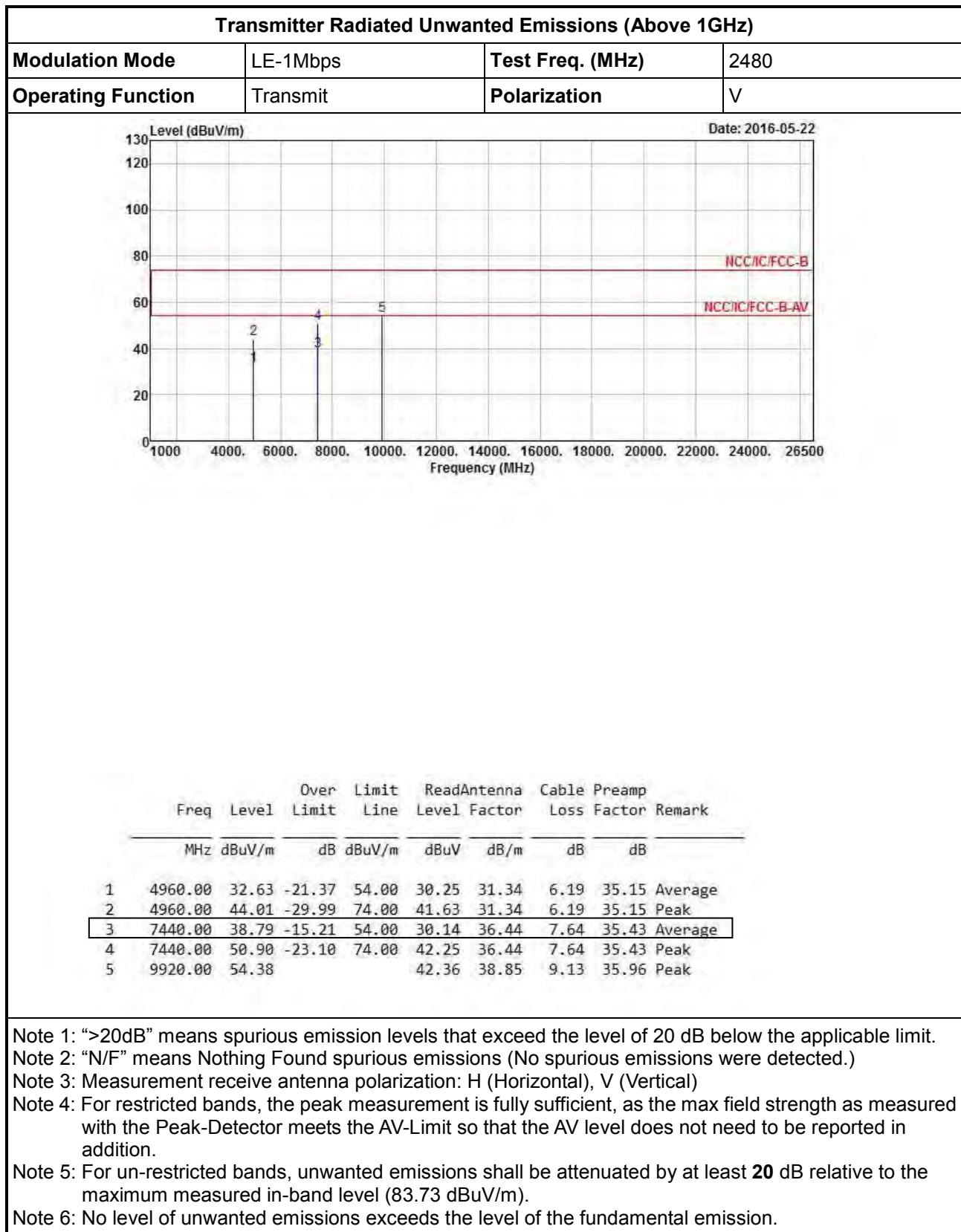
Note 2: Average emission setting: RBW=1MHz; VBW \geq 1/T, where T is "Pulse On Time", e.g., LE VBW \geq 1/625us, VBW=3kHz.


Transmitter Radiated Unwanted Emissions (Below 1GHz)


Radiated Unwanted Emissions (Below 1GHz)																																																																																								
Operating Mode	1			Polarization	V																																																																																			
Operating Function	Pole mount mode.																																																																																							
<table><thead><tr><th rowspan="2">Freq</th><th rowspan="2">Level</th><th>Over</th><th>Limit</th><th>Read</th><th>Antenna</th><th>Cable</th><th>Preamp</th><th rowspan="2">Remark</th></tr><tr><th>Limit</th><th>Line</th><th>Antenna</th><th>Level</th><th>Factor</th><th>Loss</th><th>Factor</th></tr><tr><th>MHz</th><th>dBuV/m</th><th>dB</th><th>dBuV/m</th><th>dBuV</th><th>dB/m</th><th>dB</th><th>dB</th><th></th></tr></thead><tbody><tr><td>1</td><td>31.94</td><td>28.18</td><td>-11.82</td><td>40.00</td><td>41.39</td><td>23.85</td><td>0.33</td><td>37.39 Peak</td></tr><tr><td>2</td><td>64.92</td><td>24.19</td><td>-15.81</td><td>40.00</td><td>49.55</td><td>11.25</td><td>0.47</td><td>37.08 Peak</td></tr><tr><td>3</td><td>210.42</td><td>32.38</td><td>-11.12</td><td>43.50</td><td>52.57</td><td>15.39</td><td>0.81</td><td>36.39 Peak</td></tr><tr><td>4</td><td>350.10</td><td>31.20</td><td>-14.80</td><td>46.00</td><td>46.38</td><td>20.30</td><td>1.05</td><td>36.53 Peak</td></tr><tr><td>5</td><td>598.42</td><td>37.97</td><td>-8.03</td><td>46.00</td><td>49.24</td><td>24.58</td><td>1.41</td><td>37.26 Peak</td></tr><tr><td>6</td><td>833.16</td><td>37.25</td><td>-8.75</td><td>46.00</td><td>45.20</td><td>27.93</td><td>1.71</td><td>37.59 Peak</td></tr></tbody></table>										Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Remark	Limit	Line	Antenna	Level	Factor	Loss	Factor	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		1	31.94	28.18	-11.82	40.00	41.39	23.85	0.33	37.39 Peak	2	64.92	24.19	-15.81	40.00	49.55	11.25	0.47	37.08 Peak	3	210.42	32.38	-11.12	43.50	52.57	15.39	0.81	36.39 Peak	4	350.10	31.20	-14.80	46.00	46.38	20.30	1.05	36.53 Peak	5	598.42	37.97	-8.03	46.00	49.24	24.58	1.41	37.26 Peak	6	833.16	37.25	-8.75	46.00	45.20	27.93	1.71	37.59 Peak
Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Remark																																																																																
		Limit	Line	Antenna	Level	Factor	Loss		Factor																																																																															
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB																																																																																	
1	31.94	28.18	-11.82	40.00	41.39	23.85	0.33	37.39 Peak																																																																																
2	64.92	24.19	-15.81	40.00	49.55	11.25	0.47	37.08 Peak																																																																																
3	210.42	32.38	-11.12	43.50	52.57	15.39	0.81	36.39 Peak																																																																																
4	350.10	31.20	-14.80	46.00	46.38	20.30	1.05	36.53 Peak																																																																																
5	598.42	37.97	-8.03	46.00	49.24	24.58	1.41	37.26 Peak																																																																																
6	833.16	37.25	-8.75	46.00	45.20	27.93	1.71	37.59 Peak																																																																																
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.																																																																																								
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)																																																																																								
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)																																																																																								






Transmitter Radiated Unwanted Emissions (Above 1GHz)

Transmitter Radiated Unwanted Emissions (Above 1GHz)																																																																													
Modulation Mode		LE-1Mbps			Test Freq. (MHz)		2480																																																																						
Operating Function		Transmit			Polarization		H																																																																						
Level (dBuV/m)										Date: 2016-05-22																																																																			
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Freq</th> <th style="text-align: center;">Level</th> <th style="text-align: center;">Over Limit</th> <th style="text-align: center;">Limit</th> <th style="text-align: center;">Line</th> <th style="text-align: center;">ReadAntenna</th> <th style="text-align: center;">Cable</th> <th style="text-align: center;">Preamp</th> <th colspan="3"></th> </tr> <tr> <th style="text-align: center;">MHz</th> <th style="text-align: center;">dBuV/m</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dBuV/m</th> <th style="text-align: center;">dBuV</th> <th style="text-align: center;">dB/m</th> <th style="text-align: center;">dB</th> <th style="text-align: center;">dB</th> <th colspan="3"></th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">1</td> <td style="text-align: center;">4960.00</td> <td style="text-align: center;">33.64</td> <td style="text-align: center;">-20.36</td> <td style="text-align: center;">54.00</td> <td style="text-align: center;">31.26</td> <td style="text-align: center;">31.34</td> <td style="text-align: center;">6.19</td> <td style="text-align: center;">35.15</td> <td colspan="2">Average</td> </tr> <tr> <td style="text-align: center;">2</td> <td style="text-align: center;">4960.00</td> <td style="text-align: center;">44.39</td> <td style="text-align: center;">-29.61</td> <td style="text-align: center;">74.00</td> <td style="text-align: center;">42.01</td> <td style="text-align: center;">31.34</td> <td style="text-align: center;">6.19</td> <td style="text-align: center;">35.15</td> <td colspan="2">Peak</td> </tr> <tr> <td style="text-align: center;">3</td> <td style="text-align: center;">7440.00</td> <td style="text-align: center;">37.89</td> <td style="text-align: center;">-16.11</td> <td style="text-align: center;">54.00</td> <td style="text-align: center;">29.24</td> <td style="text-align: center;">36.44</td> <td style="text-align: center;">7.64</td> <td style="text-align: center;">35.43</td> <td colspan="2">Average</td> </tr> <tr> <td style="text-align: center;">4</td> <td style="text-align: center;">7440.00</td> <td style="text-align: center;">49.68</td> <td style="text-align: center;">-24.32</td> <td style="text-align: center;">74.00</td> <td style="text-align: center;">41.03</td> <td style="text-align: center;">36.44</td> <td style="text-align: center;">7.64</td> <td style="text-align: center;">35.43</td> <td colspan="2">Peak</td> </tr> <tr> <td style="text-align: center;">5</td> <td style="text-align: center;">9920.00</td> <td style="text-align: center;">54.06</td> <td></td> <td></td> <td style="text-align: center;">42.04</td> <td style="text-align: center;">38.85</td> <td style="text-align: center;">9.13</td> <td style="text-align: center;">35.96</td> <td colspan="2">Peak</td> </tr> </tbody> </table>	Freq	Level	Over Limit	Limit	Line	ReadAntenna	Cable	Preamp				MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB				1	4960.00	33.64	-20.36	54.00	31.26	31.34	6.19	35.15	Average		2	4960.00	44.39	-29.61	74.00	42.01	31.34	6.19	35.15	Peak		3	7440.00	37.89	-16.11	54.00	29.24	36.44	7.64	35.43	Average		4	7440.00	49.68	-24.32	74.00	41.03	36.44	7.64	35.43	Peak		5	9920.00	54.06			42.04	38.85	9.13	35.96	Peak	
Freq	Level	Over Limit	Limit	Line	ReadAntenna	Cable	Preamp																																																																						
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB																																																																						
1	4960.00	33.64	-20.36	54.00	31.26	31.34	6.19	35.15	Average																																																																				
2	4960.00	44.39	-29.61	74.00	42.01	31.34	6.19	35.15	Peak																																																																				
3	7440.00	37.89	-16.11	54.00	29.24	36.44	7.64	35.43	Average																																																																				
4	7440.00	49.68	-24.32	74.00	41.03	36.44	7.64	35.43	Peak																																																																				
5	9920.00	54.06			42.04	38.85	9.13	35.96	Peak																																																																				

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 20 dB relative to the maximum measured in-band level (83.73dBuV/m).
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.