FCC & Industry Canada Certification Test Report For the Datamatic, Ltd D4100F Radio Module

FCC ID: ODYD4100F IC: 4421A-D4100F

WLL JOB# 11275-01 Rev 1 January 7, 2010 Re-issued January 18, 2010

Prepared for:
Datamatic, Ltd
3600 K Ave
Plano, TX, 75074 USA

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC & Industry Canada Certification Test Report For the Datamatic, Ltd D4100F Radio Module

FCC ID: ODYD4100F

IC: 4421A-D4100F

WLL JOB# 11275-01 Rev 1 January 7, 2010 Re-issued January 18, 2010

Prepared by:

James Ritter EMC Compliance Engineer

Reviewed by:

Steven D. Koster EMC Operations Manager

Abstract

This report has been prepared on behalf of Datamatic Ltd to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 (10/2008) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 issue7 of Industry Canada. This Certification Test Report documents the test configuration and test results for the Datamatic, Ltd D4100F Radio Module.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

The Datamatic, Ltd D4100F Radio module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

Revision History	Description of Change	Date
Rev 0	Initial Release	January 7, 2010
Rev 1	A description of the instrumentation detector functions was added to the Receiver emissions section on page 76	January 18, 2010

Table of Contents

Αł	ostra	ct	ii
1		Introduction1	
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	1
	1.4	Test Dates	1
	1.5	Test and Support Personnel	1
	1.6	Abbreviations	2
2		Equipment Under Test	
	2.1	EUT Identification & Description	3
	2.2	Test Configuration	3
	2.3	Testing Algorithm	3
	2.4	Test Location	4
	2.5	Measurements	4
	2.	5.1 References	4
	2.6	Measurement Uncertainty	4
3		Test Equipment6	
4		Test Summary7	
5		Test Results8	
	5.1	Time of Occupancy (15.247 (a)(1)(i) & RSS-210 [A8. 1 (c)])	
	5.2	RF Power Output: (15.247 (b)(2) & RSS-210 [A8.4 (1)])	
	5.3	99% Occupied Bandwidth: (For Industry Canada- Certification Filing)	
	5.4	20dB Emission Bandwidth: (15.247 (a) (1)(i) & RSS-210 [A8. 1 (c)])	
	5.5	Channel Spacing and Number of Hop Channels (FCC 15. 247(a)(1) & RSS-210 [A8.1 (b)(a 34)]	၁)]
	5.6	Conducted Spurious Emissions at Antenna Terminals (FCC Part §247(d),RSS-210 [A8.5])	. 39
	5.7	Radiated Spurious Emissions: (FCC Part 15.205, 15.209 & RSS-210 [Sect 2.2])	
	5.	7.1 Test Procedure	
	5.8	Receiver Radiated Spurious Emissions: (§15.209, RSS-210 [Sect 2.6])	76
	5.	8.1 Test Procedure	
	5.	8.2 Test Summary	76
	5.9	·	
	5.	9.1 Requirements	
	5	9.2 Test Data	78

List of Tables

Table 1: Device Summary	3
Table 2: Expanded Uncertainty List	
Table 3: Test Equipment List.	6
Table 4: Test Summary Table	7
Table 5: RF Power Output	
Table 6: 99% Occupied Bandwidth Results	20
Table 7: 20dB bandwidth Results	27
Table 8: Channel Spacing Results	34
Table 9: Number of Hopping Channels Results	34
Table 10: Spectrum Analyzer Settings	72
Table 11: Radiated Emission Test Data, Low Channel	
Table 12: Radiated Emission Test Data, Center Channel	74
Table 13: Radiated Emission Test Data, High Channel	75
Table 14: Receiver Radiated Emission Test Data	77
List of Figures	
Figure 1: Duty Cycle Plot- Mesh Mode	9
Figure 2: Time of Occupancy per 20 Seconds- Mesh Mode	
Figure 3: Duty Cycle- Driveby Mode	11
Figure 4: Time of Occupancy per 10 Seconds- Driveby Mode	
Figure 5: RF Peak Power, Low Channel, Mesh Mode	
Figure 6: RF Peak Power, Center Channel, Mesh Mode	
Figure 7: RF Peak Power, High Channel, Mesh Mode	
Figure 8: RF Peak Power, Low Channel, Driveby Mode	17
Figure 9: RF Peak Power, Center Channel, Driveby Mode	18
Figure 10: RF Peak Power, High Channel, Driveby Mode	19
Figure 11: 99% Occupied Bandwidth, Low Channel, Mesh Mode	21
Figure 12: 99% Occupied Bandwidth, Center Channel, Mesh Mode	22
Figure 13: 99% Occupied Bandwidth, High Channel, Mesh Mode	23
Figure 14: 99% Occupied Bandwidth, Low Channel, Driveby Mode	24
Figure 15: 99% Occupied Bandwidth, Center Channel, Driveby Mode	25
Figure 16: 99% Occupied Bandwidth, High Channel, Driveby Mode	26
Figure 17: 20dB bandwidth, Low Channel, Mesh Mode	
Figure 18: 20dB bandwidth, Center Channel, Mesh Mode	29
Figure 19: 20dB bandwidth, High Channel, Mesh Mode	30
Figure 20: 20dB bandwidth, Low Channel, Driveby Mode	31
Figure 21: 20dB bandwidth, Center Channel, Driveby Mode	32
Figure 22: 20dB bandwidth, High Channel, Driveby Mode	
Figure 23: Channel Spacing. Mesh mode	
Figure 24: Channel Spacing. Driveby mode	
Figure 25: Number of Channels, Mesh Mode	
Figure 26: Number of Channels, Driveby Mode	
Figure 27: Lower Band-edge, Low channel, Non-hopping, Mesh Mode	

Figure 28: Lower Band-edge, Low channel, Hopping, Mesh Mode	41
Figure 29: Upper Band-edge, High channel, Non-hopping, Mesh Mode	42
Figure 30: Upper Band-edge, High channel, Hopping, Mesh Mode	43
Figure 31: Lower Band-edge, Low channel, Non-hopping, Driveby Mode	
Figure 32: Lower Band-edge, Low channel, Hopping, Driveby Mode	
Figure 33: Upper Band-edge, High channel, Non-hopping, Driveby Mode	46
Figure 34: Upper Band-edge, High channel, Hopping, Driveby Mode	47
Figure 35: Conducted Spurious Emissions, Mesh Mode, Low Channel 30 - 900MHz	48
Figure 36: Conducted Spurious Emissions, Mesh Mode, Low Channel 900 - 930MHz	
Figure 37: Conducted Spurious Emissions, Mesh Mode, Low Channel 930MHz – 5GHz	50
Figure 38: Conducted Spurious Emissions, Mesh Mode, Low Channel 5GHz – 10GHz	51
Figure 39: Conducted Spurious Emissions, Mesh Mode, Center Channel 30 - 900MHz	52
Figure 40: Conducted Spurious Emissions, Mesh Mode, Center Channel 900 - 930MHz	53
Figure 41: Conducted Spurious Emissions, Mesh Mode, Center Channel 930MHz - 5GHz	54
Figure 42: Conducted Spurious Emissions, Mesh Mode, Center Channel 5 – 10GHz	55
Figure 43: Conducted Spurious Emissions, Mesh Mode, High Channel 30 - 900MHz	56
Figure 44: Conducted Spurious Emissions, Mesh Mode, High Channel 900 - 930MHz	57
Figure 45: Conducted Spurious Emissions, Mesh Mode, High Channel 930MHz – 5GHz	58
Figure 46: Conducted Spurious Emissions, Mesh Mode, High Channel 5 - 10GHz	59
Figure 47: Conducted Spurious Emissions, Driveby Mode, Low Channel 30 - 900MHz	
Figure 48: Conducted Spurious Emissions, Driveby Mode, Low Channel 900 - 930MHz	61
Figure 49: Conducted Spurious Emissions, Driveby Mode, Low Channel 930MHz – 5GHz	62
Figure 50: Conducted Spurious Emissions, Driveby Mode, Low Channel 5GHz – 10GHz	63
Figure 51: Conducted Spurious Emissions, Driveby Mode, Center Channel 30 - 900MHz	64
Figure 52: Conducted Spurious Emissions, Driveby Mode, Center Channel 900 - 930MHz	65
Figure 53: Conducted Spurious Emissions, Driveby Mode, Center Channel 930MHz - 5GHz	66
Figure 54: Conducted Spurious Emissions, Driveby Mode, Center Channel 5 – 10GHz	67
Figure 55: Conducted Spurious Emissions, Driveby Mode, High Channel 30 - 900MHz	68
Figure 56: Conducted Spurious Emissions, Driveby Mode, High Channel 900 - 930MHz	69
Figure 57: Conducted Spurious Emissions, Driveby Mode, High Channel 930MHz – 5GHz	70
Figure 58: Conducted Spurious Emissions, Driveby Mode, High Channel 5- 10GHz	71

1 Introduction

1.1 Compliance Statement

The Datamatic, Ltd D4100F radio module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247, 15.212 (10/2008) and Industry Canada RSS-210 issue 7.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Datamatic, Ltd

3600 K Ave

Plano, TX, 75074 USA

Purchase Order Number: DATAM-2000006522

Quotation Number: 65245

1.4 Test Dates

Testing was performed on the following date(s): 12/16/2009 to 12/18/2009

1.5 Test and Support Personnel

Washington Laboratories, LTD James Ritter

Customer Representative Ken Derry

1.6 Abbreviations

A	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	B and W idth	
CE	Conducted Emission	
cm	c enti m eter	
CW	Continuous Wave	
dB	deci B el	
dc	direct current	
EMI	Electromagnetic Interference	
EUT	Equipment Under Test	
FM	Frequency Modulation	
G	giga - prefix for 10 ⁹ multiplier	
Hz	Hertz	
IF	Intermediate Frequency	
k	k ilo - prefix for 10 ³ multiplier	
LISN	Line Impedance Stabilization Network	
M	Mega - prefix for 10 ⁶ multiplier	
m	m eter	
μ	m icro - prefix for 10 ⁻⁶ multiplier	
NB	Narrowband	
QP	Quasi-Peak	
RE	Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	Serial Number	
S/A	Spectrum Analyzer	
\mathbf{V}	Volt	

2 Equipment Under Test

2.1 EUT Identification & Description

The Datamatic, Ltd D4100F radio module is a 902.5 – 927 MHz transceiver for use in water utility mesh networks. This EUT has 2 transmit modes of operation a normal 'Mesh Mode' and an alternative 'Driveby mode (Star or Fence Read)'. The EUT will always be powered from a battery pack unit.

ITEM DESCRIPTION Manufacturer: Datamatic, Ltd FCC ID: ODYD4100F IC: 4421A-D4100F Model: D4100F RADIO MODULE FCC Rule Parts: §15.247 RSS210 Issue 7 Industry Canada: Frequency Range: 902.5 - 927MHz 21.66 dBm (0.1466 W) Maximum Output Power: Modulation: FHSS FSK 99% Occupied 133.7kHz (Mesh Mode) Bandwidth: 260.1kHz (Driveby Mode {Star or Fence Read}) Keying: Automatic, Manual Type of Information: Data Number of Channels: 50 Power Output Level Fixed Antenna Connector Internal Antenna Type Integral helical antenna Antenna Gain: 1dBi Interface Cables: Unshielded sensor cable Power Source & Voltage: Dual 3.6V Lithium Thionylchloride Battery 16.8uV/m @ 3m- 37.87MHz Receiver spurious Transmitter spurious 349.9 uV/m @ 3m - 4512.5MHz **Emissions Designator** 260KFXD

Table 1: Device Summary

2.2 Test Configuration

The D4100F radio module was configured with an integral antenna. A test port on the module circuit board was connected to a support laptop to run the test configurations. The sensor cables were left un-terminated for this test

2.3 Testing Algorithm

The D4100F radio module was programmed via a support laptop to continuously transmit on 902.5, 915, and 927MHz. The unit was also programmed to hop it its normal operating mode. The EUT has 2 modes of operation a normal 'Mesh Mode' and an alternative 'Driveby Mode', both modes were evaluated for compliance.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 Methods of Measurement of Radio Noise from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where u_c = standard uncertainty

a, b, $c_{,...}$ = individual uncertainty elements

Div_{a, b, c} = the individual uncertainty element divisor based

on the probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

Where U = expanded uncertainty

k = coverage factor

 $k \le 2$ for 95% coverage (ANSI/NCSL Z540-2 Annex G)

 u_c = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 2 below.

Table 2: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	4.55 dB

3 Test Equipment

Table 3 shows a list of the test equipment used for measurements along with the calibration information.

Table 3: Test Equipment List

Test Name:	Radiated Emissions	Test Date: 12/17/2	
Asset #	Manufacturer/Model	Description Ca	
618	HP 8563A	Analyzer, Spectrum	04/10/2010
66	HP, 8449B	Pre-Amplifier, RF. 1-26.5GHz	07/21/2010
337	WLL, 1.2-5GHz	Filter, Band Pass 02/19/20	
66	HP, 8449B	Pre-Amplifier, RF. 1-26.5GHz 07/21/20	
626	ARA, DRG-118/A	Antenna, Horn 06/03/20	
644	Sunol Science JB1 925-833-9936	BiConalog Antenna 12/29	
69	HP, 85650A	Adapter, QP	06/28/2010
71	HP, 85685A	Preselector, RF 06/28/20	
73	HP, 8568B	Analyzer, Spectrum	06/28/2010

Test Name: Bench conducted		Test Date:	12/18/2009
Asset #	Manufacturer/Model	Description	Cal. Due
618	HP 8563A	Analyzer, Spectrum	04/10/2010

4 Test Summary

The Table Below shows the results of testing for compliance with a Digital Transmission System in accordance with FCC Part 15.247:2007 and RSS210e issue 7. Full results are shown in section 5.

Table 4: Test Summary Table

TX Test Summary (Frequency Hopping Spread Spectrum)							
FCC Rule Part IC Rule Part Description Result							
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	20dB Bandwidth	Pass				
15.247 (b)(2)	RSS-210 [A8.4 (1)]	Transmit Output Power	Pass				
15.247 (a)(1)	RSS-210 [A8.1 (b)]	Channel Separation	Pass				
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Number of Channels =50 minimum	Pass				
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Time of Occupancy	Pass				
15.247 (d)	RSS-210 [A8. 5]	Occupied BW / Out-of-	Pass				
Band Emissions (Band							
		Edge @ 20dB below)					
15.205	RSS-210 Sect.2.2	General Field Strength	Pass				
15.209							
& RE Limits)							
15.207	RSS-Gen [7.2.2] AC Conducted Emissions		NA				
			(battery powered)				
	RX/Digital Tes	st Summary					
	(Frequency Hopping	Spread Spectrum)					
FCC Rule Part	FCC Rule Part IC Rule Part Description						
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions NA					
			(battery powered)				
15.209 RSS-210 sect 2.6 General Field Strength Limits		Pass					

5 Test Results

5.1 Time of Occupancy (15.247 (a)(1)(i) & RSS-210 [A8. 1 (c)])

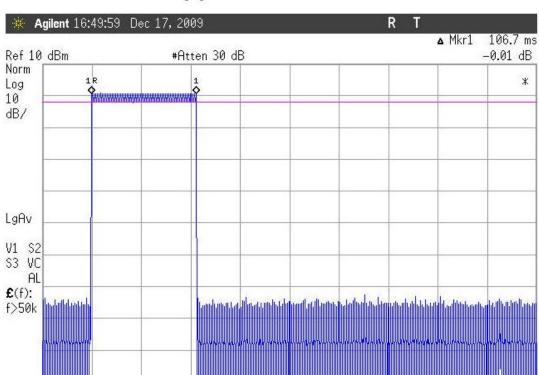
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period for bandwidth less than 250 kHz (Mesh Mode) and not be greater than 0.4 seconds within a 10 second period for bandwidth greater than 250 kHz (Driveby Mode)

From Figures 1 and 2 it is determined that for Mesh mode:

Single pulse duration is 106.7ms

In a 20 s sweep period 1 pulses occurs, and

Therefore the total on time is 106.7ms


From Figures 3 and 4 it is determined that for driveby mode:

Single pulse duration is 40.67ms

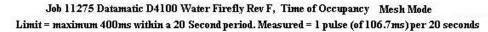
In a 10 s sweep period 1 pulses occurs, and

Therefore the total on time is 40.67ms

The EUT complies with the requirement in both modes of operation.

Job 11275 Datamatic D4100 Water Firefly Rev F, Single Pulse On Time- Mesh Mode Single pulse On Time = 106.7mSec

Figure 1: Duty Cycle Plot- Mesh Mode


VBW 100 kHz

Center 902.500 MHz

Res BW 100 kHz

Span 0 Hz

Sweep 500 ms (601 pts)_

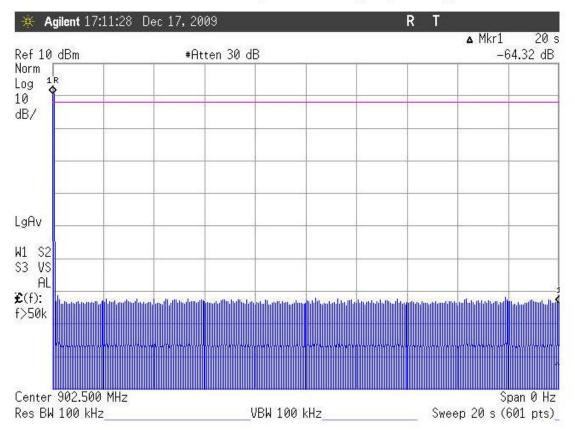
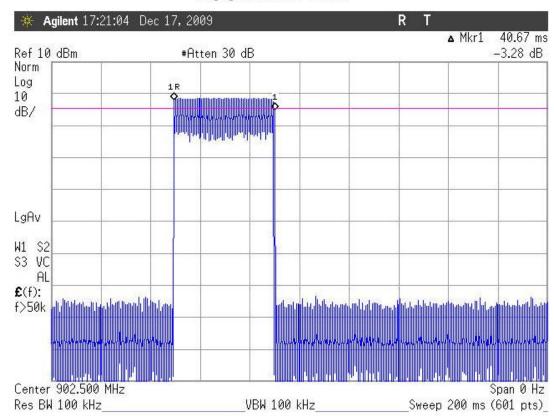



Figure 2: Time of Occupancy per 20 Seconds- Mesh Mode

Job 11275 Datamatic D4100 Water Firefly Rev F, Single Pulse On Time-Driveby Mode Single pulse On Time = 40.67ms

Figure 3: Duty Cycle- Driveby Mode

Job 11275 Datamatic D4100 Water Firefly Rev F, Time of Occupancy Driveby Mode

Limit = maximum 400ms within a 10 Second period (for Bandwidth >250kHz) Measured = 1 pulse (of 40.67ms) per 10 seconds

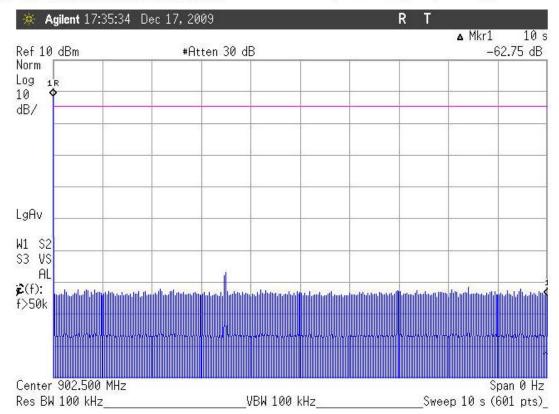


Figure 4: Time of Occupancy per 10 Seconds- Driveby Mode

5.2 RF Power Output: (15.247 (b)(2) & RSS-210 [A8.4 (1)])

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and Center channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

Table 5: RF Power Output

Frequency	Mode	Level	Limit	Pass/Fail
Low Channel: 902.5MHz	Mesh	21.66 dBm	30 dBm	Pass
Center Channel: 915MHz	Mesh	21.48 dBm	30 dBm	Pass
High Channel: 927MHz	Mesh	21.06 dBm	30 dBm	Pass
Low Channel: 902.5MHz	Driveby	21.65 dBm	30 dBm	Pass
Center Channel: 915MHz	Driveby	21.48 dBm	30 dBm	Pass
High Channel: 927MHz	Driveby	21.06 dBm	30 dBm	Pass

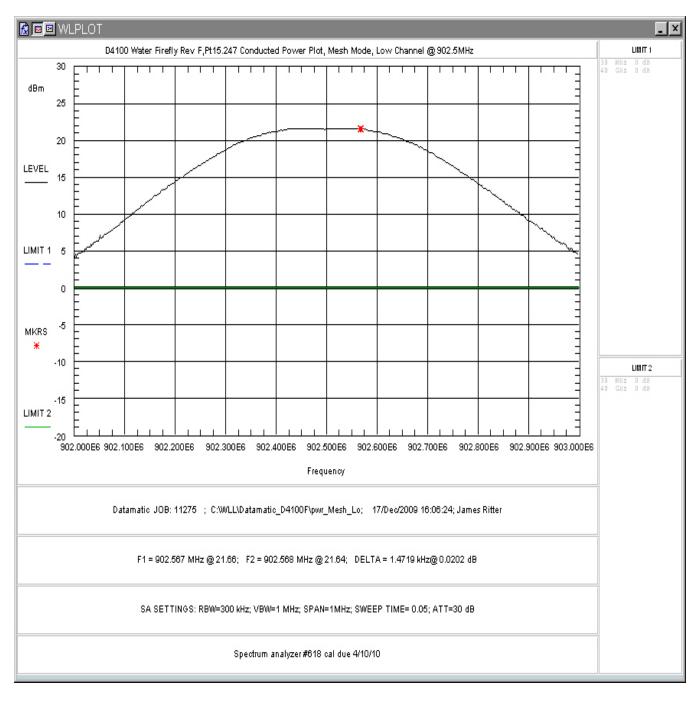


Figure 5: RF Peak Power, Low Channel, Mesh Mode

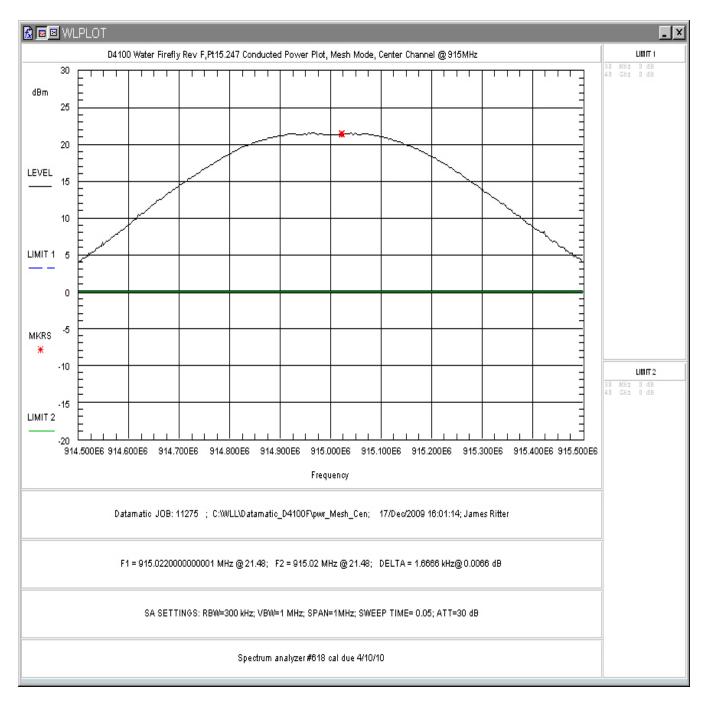


Figure 6: RF Peak Power, Center Channel, Mesh Mode

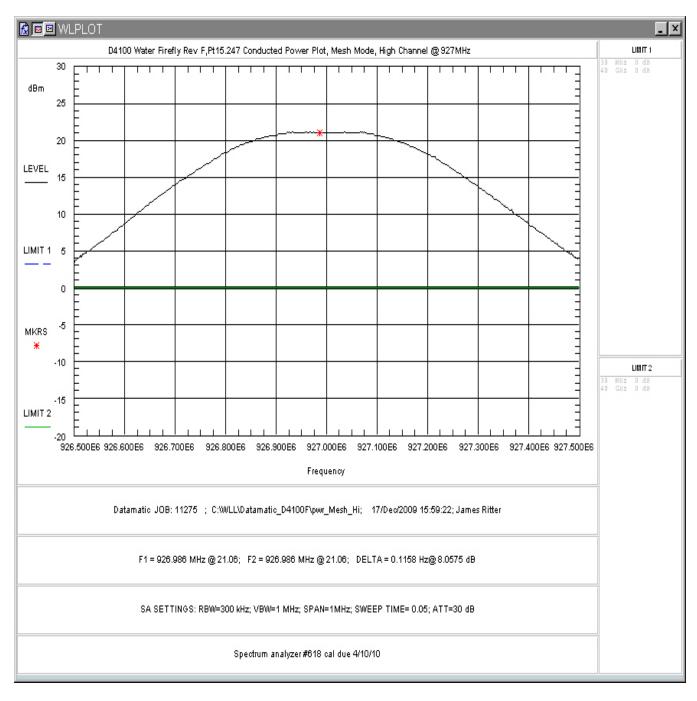


Figure 7: RF Peak Power, High Channel, Mesh Mode

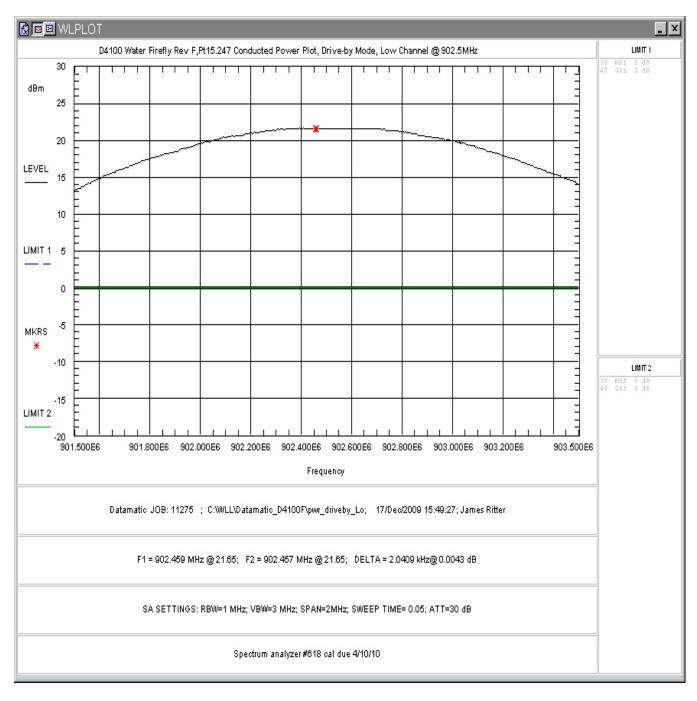


Figure 8: RF Peak Power, Low Channel, Driveby Mode

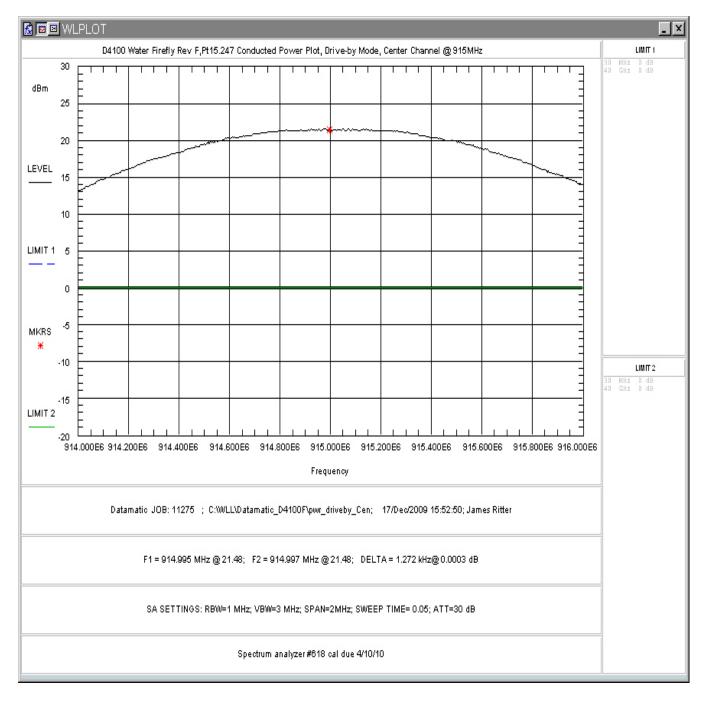


Figure 9: RF Peak Power, Center Channel, Driveby Mode

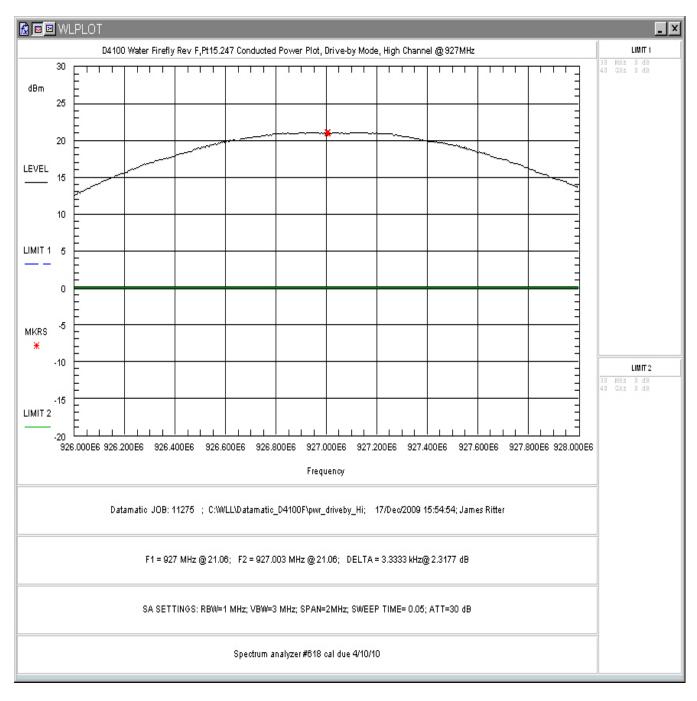
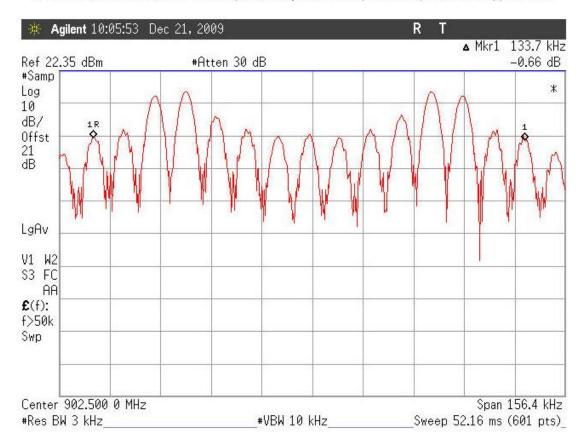


Figure 10: RF Peak Power, High Channel, Driveby Mode

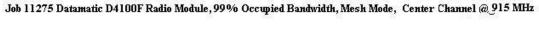
5.3 99% Occupied Bandwidth: (For Industry Canada- Certification Filing)

The 99% Occupied Bandwidth Measurement was performed by coupling the output of the EUT to the input of a spectrum analyzer using the following procedure:


The spectrum analyzer was set to a resolution and video bandwidth far greater than the emission bandwidth and the peak of the signal was set to the top line of the analyzer using a sampling detector.

The analyzer resolution bandwidth was then reduced to between 1 and 3 % of the approximate emission bandwidth with the video bandwidth set to approximately 3 times the resolution bandwidth.

The marker was then placed on the trace at the point left of center that displays a value that is 20 dB below the value of the reference level. The delta marker is evoked and placed at the point to the right of center that displays 0 dB differential. The frequency differential is the occupied bandwidth. This result was used as part of the emission designator calculation.


Table 6: 99% Occupied Bandwidth Results

Frequency	Mode	Bandwidth (kHz)
Low Channel: 902.5MHz	Mesh	133.7
Center Channel: 915MHz	Mesh	133.2
High Channel: 927MHz	Mesh	133.6
Low Channel: 902.5MHz	Driveby	259.8
Center Channel: 915MHz	Driveby	260.1
High Channel: 927MHz	Driveby	259.9

Job 11275 Datamatic D4100F Radio Module, 99% Occupied Bandwidth, Mesh Mode, Low Channel @ 902.5MHz

Figure 11: 99% Occupied Bandwidth, Low Channel, Mesh Mode

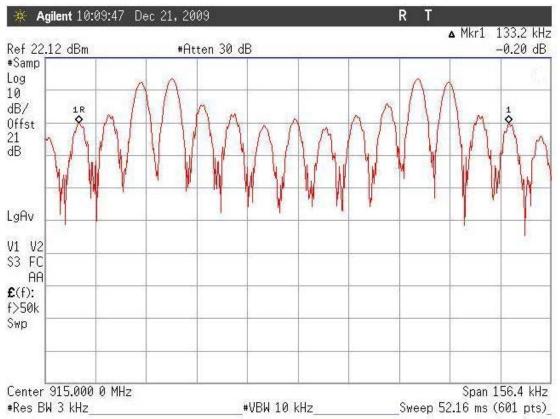
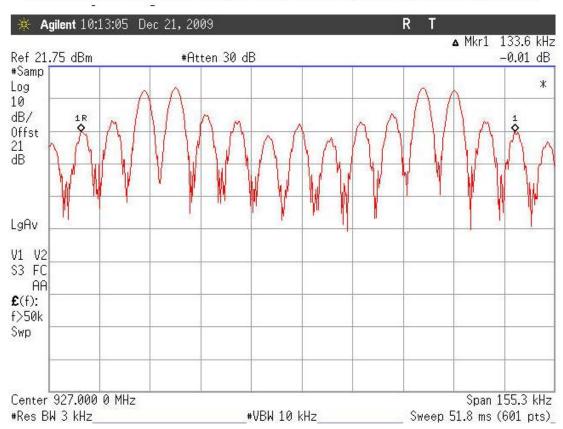
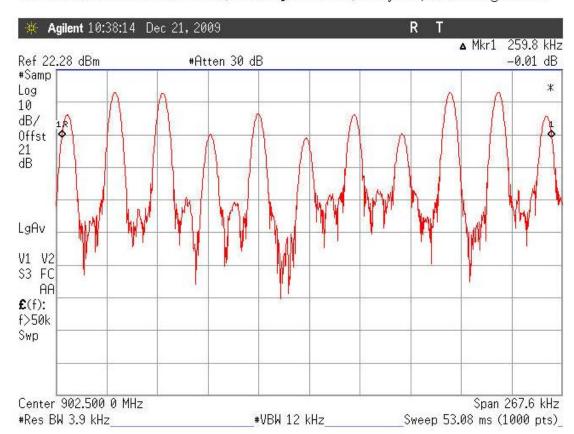




Figure 12: 99% Occupied Bandwidth, Center Channel, Mesh Mode

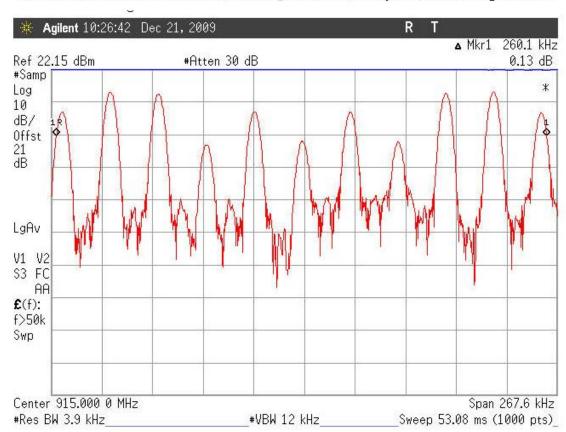

Job 11275 Datamatic D4100F Radio Module, 99% Occupied Bandwidth, Mesh Mode, High Channel @ 927MHz

Figure 13: 99% Occupied Bandwidth, High Channel, Mesh Mode

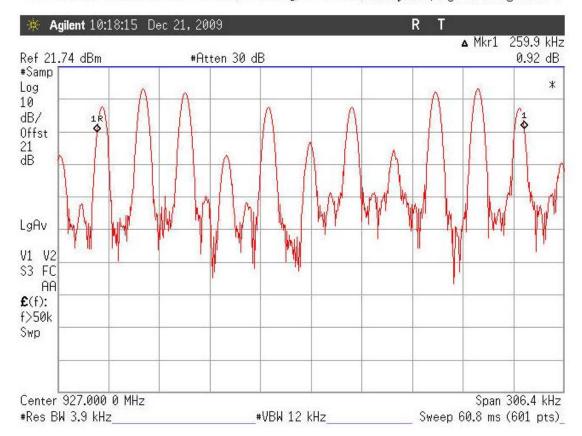

Job 11275 Datamatic D4100F Radio Module, 99% Occupied Bandwidth, Driveby Mode, Low Channel @ 902.5MHz

Figure 14: 99% Occupied Bandwidth, Low Channel, Driveby Mode

Job 11275 Datamatic D4100F Radio Module, 99% Occupied Bandwidth, Driveby Mode, Center Channel @ 915MHz

Figure 15: 99% Occupied Bandwidth, Center Channel, Driveby Mode

Job 11275 Datamatic D4100F Radio Module, 99% Occupied Bandwidth, Driveby Mode, High Channel @ 927MHz

Figure 16: 99% Occupied Bandwidth, High Channel, Driveby Mode

5.4 20dB Emission Bandwidth : (15.247 (a) (1)(i) & RSS-210 [A8. 1 (c)])

20dB bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Frequency Hopping Spread Spectrum Systems, The maximum 20 dB bandwidth not exceed 500kHz.

At full modulation, the 20dB bandwidth for each mode was measured as shown:

Table 7 provides a summary of the 20dB bandwidth Results.

Table 7: 20dB bandwidth Results

Frequency	Mode	Bandwidth (kHz)	Limit (kHz)	Pass/Fail
Low Channel: 902.5MHz	Mesh	158.16	500	Pass
Center Channel: 915MHz	Mesh	155.80	500	Pass
High Channel: 927MHz	Mesh	157.31	500	Pass
Low Channel: 902.5MHz	Driveby	358.68	500	Pass
Center Channel: 915MHz	Driveby	292.92	500	Pass
High Channel: 927MHz	Driveby	309.70	500	Pass

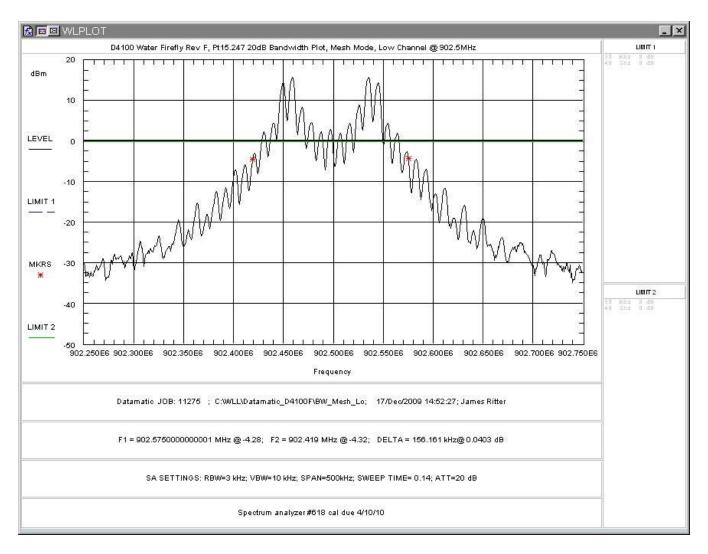


Figure 17: 20dB bandwidth, Low Channel, Mesh Mode

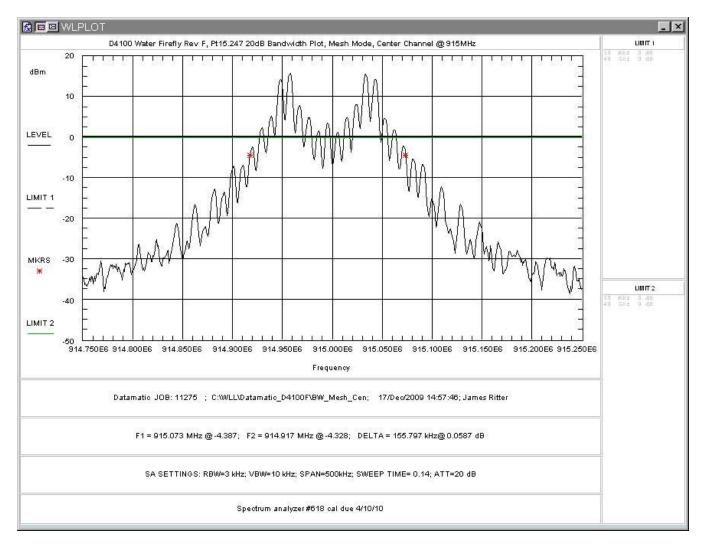


Figure 18: 20dB bandwidth, Center Channel, Mesh Mode

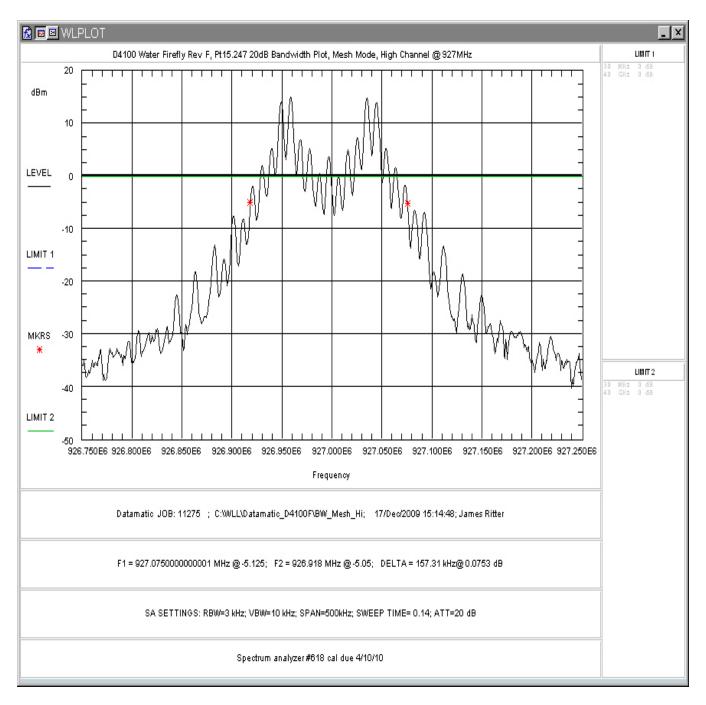


Figure 19: 20dB bandwidth, High Channel, Mesh Mode

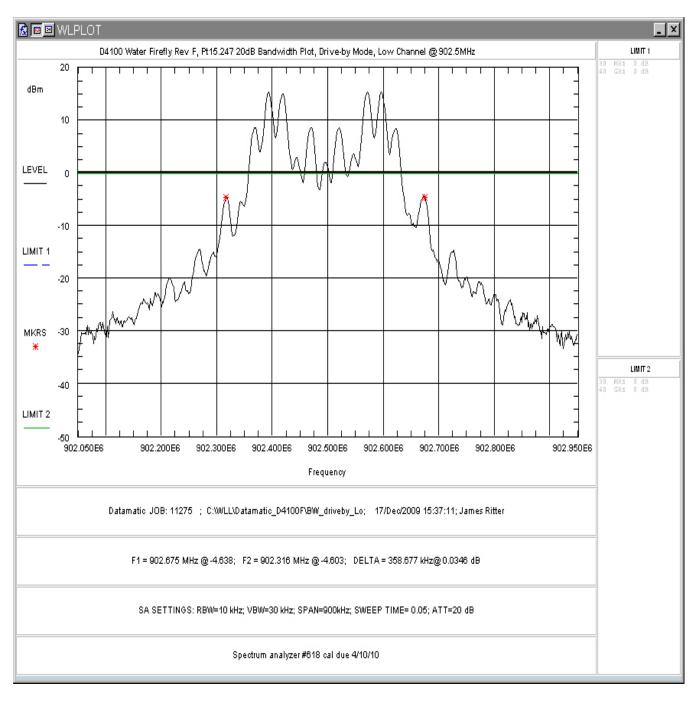


Figure 20: 20dB bandwidth, Low Channel, Driveby Mode

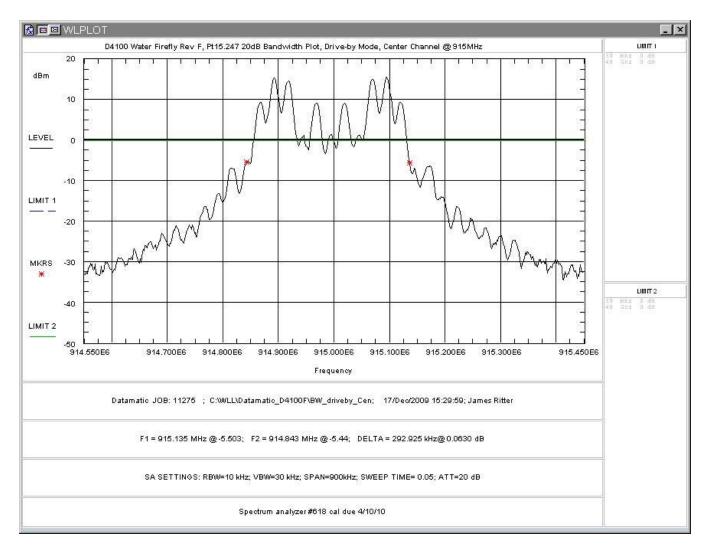


Figure 21: 20dB bandwidth, Center Channel, Driveby Mode

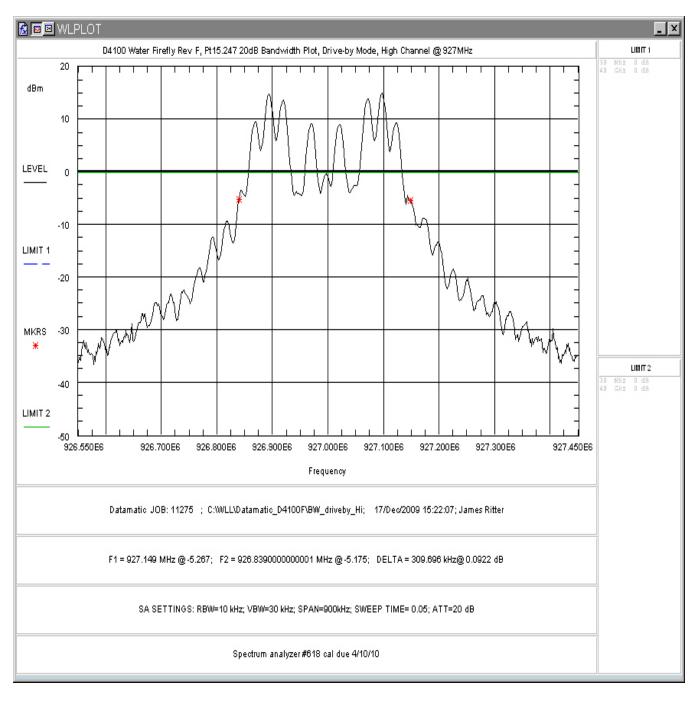


Figure 22: 20dB bandwidth, High Channel, Driveby Mode

5.5 Channel Spacing and Number of Hop Channels (FCC 15. 247(a)(1) & RSS-210 [A8.1 (b)(c)]

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth, whichever is greater. The 20dB bandwidth measured in Mesh Mode is 157.31kHz and in Driveby mode is 358.68kHz,so the channel spacing must be more than 358.68kHz In addition, for a 902-928MHz transmitter the number of hopping channels shall be at least 50 channels for bandwidths less than 250kHz and at least 25 for bandwidth grater than 250kHz..

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 30 kHz and the video bandwidth was set to 100 kHz. The channel spacing of 2 adjacent channels was measured using a spectrum analyzer span setting of 1.5MHz. Also, the number of hopping channels was measured from 901MHz to 928.5MHz.

The following are plots of the channel spacing and number of hopping channels data. The channel spacing was measured to be 500 kHz and the number of channels used is 50.

ModeMeasured Channel Spacing (kHz)Minimum Limit (kHz)Pass/FailMesh505157.31PassDriveby507.5358.68Pass

Table 8: Channel Spacing Results

Table 9: Nu	ımber of	Hopping	Channels	Results
-------------	----------	---------	-----------------	---------

Mode	Measured Channels	Minimum limit	Pass/Fail
Mesh	50	50	Pass
Driveby	50	25	Pass

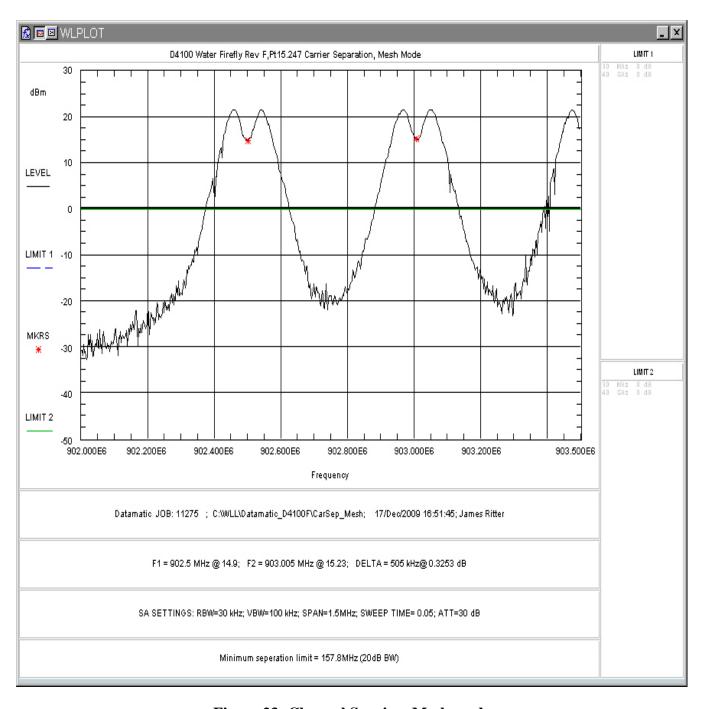


Figure 23: Channel Spacing. Mesh mode

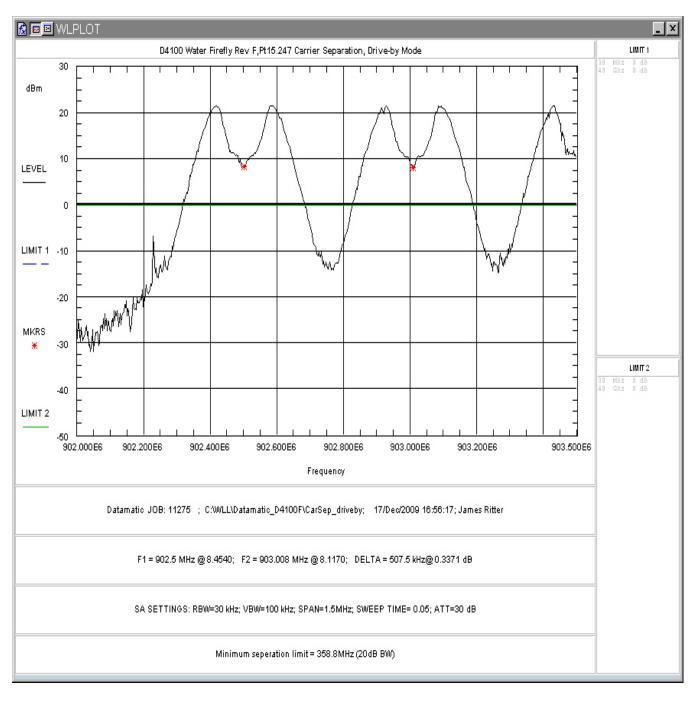


Figure 24: Channel Spacing. Driveby mode

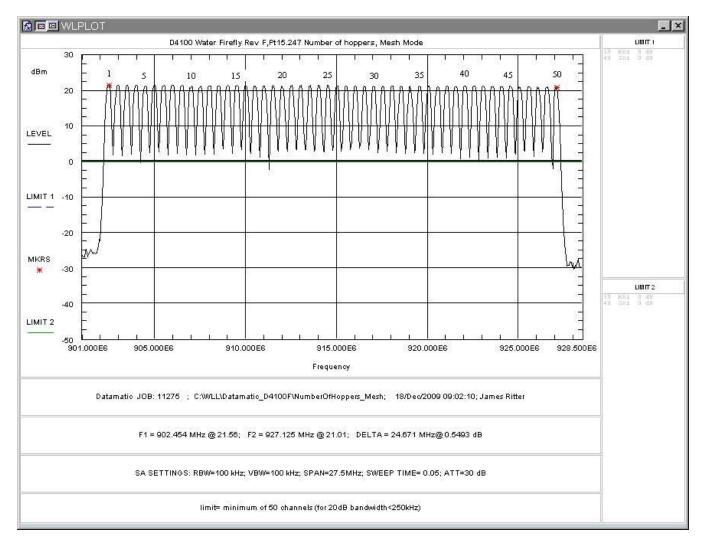


Figure 25: Number of Channels, Mesh Mode