

SAR TEST REPORT

for

Rullingnet Corporation Limited

VINCI Learning Tablet

Model No.: ViNCi Tab

FCC ID: ODD-VTB321A

Prepared for : Rullingnet Corporation Limited
Unit 1210, Level 12, Core F, Cyberport 3, 100 Cyberport
Road, Hong Kong.

Prepared By : Audix Technology (Shenzhen) Co., Ltd.
No. 6, Ke Feng Rd., 52 Block,
Shenzhen Science & Industrial Park,
Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496
Fax: (0755) 26632877

Report Number : ACS-F12163
Date of Test : Jul.27~Aug.20, 2012
Date of Report : Aug.21, 2012

TABLE OF CONTENTS

<u>Description</u>	<u>Page</u>
Test Report Verification.....	6
1. GENERAL INFORMATION.....	4
1.1. Description of Device (DUT)	4
2. GENERAL DESCRIPTION.....	5
2.1. Product Description For DUT	5
2.2. Applied Standards.....	7
2.3. Device Category and SAR Limits.....	7
2.4. Test Conditions	7
2.5. Exposure Positions Consideration	8
2.6. Block Diagram of connection between DUT and simulators	9
2.7. Test Equipment	9
2.8. Laboratory Environment.....	10
2.9. Measurement Uncertainty	10
3. MEASURE PROCEDURES.....	12
3.1. General description of test procedures.....	12
3.2. Position of module in Portable devices.....	13
4. SAR MEASUREMENTS SYSTEM.....	14
4.1. SAR Measurement Set-up.....	14
4.2. ELI Phantom	15
4.3. Device Holder for SAM Twin Phantom	16
4.4. DASY5 E-field Probe System.....	17
4.5. E-field Probe Calibration	18
4.6. Scanning procedure.....	19
5. DATA STORAGE AND EVALUATION.....	21
5.1. Data Storage.....	21
5.2. Data Evaluation by SEMCAD	21
6. SYSTEM CHECK	23
7. TEST RESULTS.....	24
7.1. Output power	24
7.2. System Check for Body Tissue simulating liquid.....	24
7.3. Test Results	24
7.4. Dielectric Performance for Body Tissue simulating liquid.....	25
8. ANNEX A: SYSTEM CHECK RESULTS	26
9. ANNEX B: GRAPH RESULTS WITH BANDS OF WATCH	30
10. ANNEX C: DASY CABLIBRATION CERTIFICATE.....	37
11. ANNEX D: TEST SETUP PHOTOS	54
12. ANNEX E: PHOTOS OF THE DUT	55

SAR TEST REPORT

Applicant : Rullingnet Corporation Limited
Manufacturer : Dowslake Microsystems Corporation
DUT Description : VINCI Learning Tablet
FCC ID : ODD-VTB321A
(A) MODEL NO. : ViNCi Tab
(B) SERIAL NO. : N/A
(C) TEST VOLTAGE : DC 3.7V From Battery

Measurement Standard Used:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1991
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 616217 D03
- FCC KDB 447498 D01 v04
- FCC KDB 248227 D01 v01r02

The device described above is tested by Audix Technology (Shenzhen) Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Audix Technology (Shenzhen) Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the DUT is technically compliant with the OET 65 Supplement C, KDB 248227, and Wrist Watch Transmitter Issues requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shenzhen) Co., Ltd.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test : Jul.27~ Aug.20, 2012 Report of date: Aug.21, 2012

Prepared by :

Sherry Zhuo

Reviewed by :

Sunny Lu

Sherry Zhuo / Assistant

AUDIX

信華科技（深圳）有限公司 Sunny Lu / Supervisor

Audix Technology (Shenzhen) Co., Ltd.

EMC 部門 報告 專用 章

Stamp only for EMC Dept. Report

Signature: *Ken Lu 8/3/12*

Approved & Authorized Signer :

Ken Lu / Manager

1. GENERAL INFORMATION

1.1. Description of Device (DUT)

Description : VINCI Learning Tablet

Model Number : ViNCi Tab

FCC ID : ODD-VTB321A

Applicant : Rullingnet Corporation Limited
Unit 1210, Level 12, Core F, Cyberport 3, 100 Cyberport
Road, Hong Kong

Manufacturer : Dowslake Microsystems Corporation
5th Floor, No.45 Building, 555 Guiping Road, Shanghai
Caohejing Hi-Tech Park

Operation frequency : IEEE 802.11g: 2412 MHz—2462 MHz

Modulation : IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

Antenna : IFA, 1.5dBi PK Gain

Date of Test : Jul.27~Aug.20, 2012

Date of Receipt : Jul.17, 2012

Sample Type : Prototype production

2. GENERAL DESCRIPTION

2.1. Product Description For DUT

Interface Specifications

Keys:

Power On/Off, Sleep/wake, Reset (long press)

Volume Up/Down

3 Android Button, Home/Back/Menu

Multimedia:

7" LCD Panel, Resolution 800x480

Microphone

Stereo built-in speaker

External Storage:

MicroSD card slot

Safety:

Food-class handler

VINCI Learning Tablet is a mobile touchscreen computer created with child's safety as our primary concern. A protective soft-cornered handle uses non-toxic food-grade material. VINCI uses the most advanced technology - capacitive touchscreen, Cortex A8 processor, and Android OS, to provide incremental and interactive learning through engaging games as per VINCI Curriculum, which includes 3 cognitive learning levels: Level 1 The Curious; Level 2 The Confident; and Level 3 The Capable, for children between the ages of 18 months to 5 years.

It runs Android OS (operating system) with following Features:

- Little handle for little hands - keeping your child 100% mobile
- Display: 7-inch (diagonal) glossy widescreen, multi-touch, 800-by-480-pixel resolution
- 512MB RAM, 8G Internal Storage
- 3 megapixel back-facing camera/camcorder
- Full MP3, MP4 player
- Expandable storage with MicroSD card slot (up to 32GB)
- 6 to 8 hours of continuous play time (6400 mAH rechargeable battery)
- Desktop Connection for app installation and media synchronization via VINCI Tab Manager

Size and Weight: 7.3" (18.5 cm) by 10" (25.40 cm) by 0.67" (1.7 cm); 1.5 lb (0.68 kg)

Engineering Specification

Here is the engineering specification of Vinci Tab II VS-3001

Display:

- 7-inch (diagonal) glossy widescreen
- Multi-Touch display
- 800-by-480-pixel resolution

Processor:

- Cortex A8 @ 1.0GHz

Memory:

- DDR3-1333 512MB RAM

Camera:

- 3 Mega Pixels, back facing

Battery and Power:

- Built-in (6400 mAH) rechargeable lithium-polymer battery

Size and Weight:

- Height: 7.25" (18.50 cm)
- Width: 10" (25.40 cm)
- Depth: 0.625" (1.7 cm)
- Weight: 1.5 lb (680 g)

Wireless Communication:

VINCI Learning Tablet uses IEEE 802.11 g network access, with integrating a module on PCBA. The wireless network can be configured on LCD with Android OS utility.

WIFI module operates within 2412MHz~2462MHz frequency band. Channels are numbered 1~11 and are centered on the frequencies below.

2.2. Applied Standards

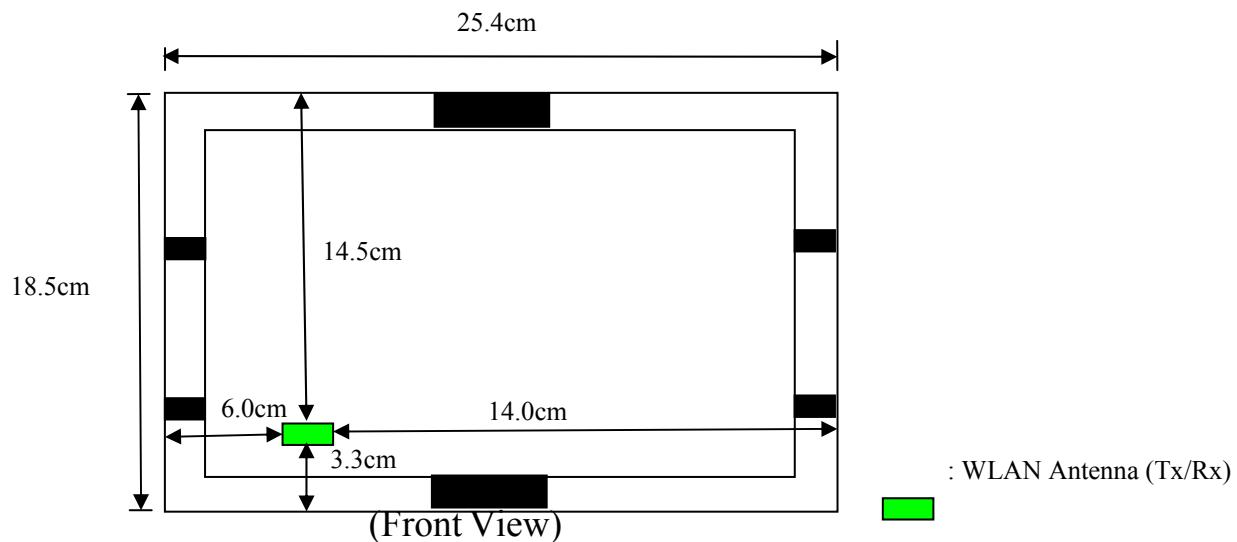
The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1991
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 616217 D03
- FCC KDB 447498 D01 v04
- FCC KDB 248227 D01 v01r02

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Test Conditions


2.4.1. Ambient Condition

Ambient Temperature	20 to 24 °C
Humidity	< 60 %

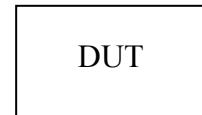
2.4.2. Test Configuration

The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

2.5. Exposure Positions Consideration

Antenna	Description
WLAN Antenna (Tx/Rx)	IEEE 802.11 g

Note:


1. The distance from the WLAN antenna to the back surface is 5.0mm.
2. The distance from the WLAN antenna to the Front surface is 7.0mm.

Sides for Body SAR tests						
Test distance: 0 mm						
Band	Back	Front	Top	Bottom	Right	Left
WLAN 2.4GHz	✓	✓	✗	✗	✗	✗

Note:

1. The Top、Bottom、Right、Left side SAR test is excluded due to the distance from WLAN antenna to the some side surface during the SAR test is $>2.5\text{cm}$, So don't tested.

2.6. Block Diagram of connection between DUT and simulators

(Full charged battery)

(DUT: VINCI Learning Tablet)

2.7. Test Equipment

Item	Equipment	Manufacturer	Model No.	S/N	Last Cal Date	Cal. Interval
1.	SAR Test System	Speag	DASY5 TX60L SAR	N/A	June.4,12	1 Year
2.	Wireless Communication Test Set	Agilent	E5515C	GB44300243	May.08, 12	1 Year
3.	Power Meter	Anritsu	ML2487A	6K00002472	May.08, 12	1 Year
4.	Power Sensor	Anritsu	MA2491A	032516	May.08, 12	1 Year
5.	Signal Generator	Marconi	2031B	119606/058	May.08, 12	1 Year
6.	Amplifier	Milmega	AS0206-50	1036253	NCR	N/A
7.	Dipole Antenna	Speag	D2450V2	735	June.22,11	2 Year
8.	Attenuator	Agilent	8491A 3dB	MY39262001	May.08, 12	1 Year
9.	Attenuator	Agilent	8491A 10dB	MY39264375	May.08, 12	1 Year
10.	DAE	Speag	DAE4	679	Dec.08,11	1 Year
11.	E-Field Probe	Speag	EX3DV4	3578	Jan.14,12	1 Year

2.8. Laboratory Environment

Temperature	Min:20°C,Max.25°C
Relative humidity	Min. = 30%, Max. = 70%
Note: Ambient noise is checked and found very low and in compliance with requirement of standards.	

2.9. Measurement Uncertainty

Test Item	Uncertainty
Uncertainty for SAR test	1g: 21.14
	10g: 20.64
Uncertainty for test site temperature and humidity	0.6°C

Source	Type	Uncertainty Value (%)	Probability Distribution	K	C1(1g)	C1(10g)	Standard uncertainty ul(%)1g	Standard uncertainty ul(%)10g	Degree of freedom Veff or Vi
Measurement system repetitivity	A	0.5	N	1		1	0.5	0.5	9
Probe calibration	B	5.9	N	1	1	1	5.9	5.9	∞
Isotropy	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Probe modulation response	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Detection limits	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Boundary effect	B	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	∞
Readout electronics	B	1.0	N	1	1	1	1.0	1.0	∞
Response time	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration time	B	4.32	R	$\sqrt{3}$	1	1	2.5	2.5	∞
RF ambient conditions – noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions – reflections	B	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mech. restrictions	B	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning with respect to phantom shell	B	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Post-processing	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Test sample related									
Device holder uncertainty	A	2.94	N	1	1	1	2.94	2.94	M-1
Test sample positioning	A	4.1	N	1	1	1	4.1	4.1	M-1
Power scaling	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Drift of output power (measured SAR drift)	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up									
Phantom uncertainty (shape and thickness tolerances)	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.1	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	B	1.9	N	1	1	0,84	1,9	1,6	∞
Liquid conductivity (meas.)	A	0.55	N	1	0.78	0.71	0.24	0.21	M-1
Liquid permittivity (meas.)	A	0.19	N	1	0.23	0.26	0.09	0.06	M
Liquid permittivity – temperature uncertainty	A	5.0	R	$\sqrt{3}$	0,78	0,71	1.4	1.1	∞
Liquid conductivity – temperature uncertainty	A	5.0	R	$\sqrt{3}$	0.23	0,26	1.2	0.8	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$						10.57	10.32	
Expanded uncertainty (95 % conf. interval)	$u_e = 2u_c$		N	K=2			21.14	20.64	

3. MEASURE PROCEDURES

3.1. General description of test procedures

For the 802.11b/g SAR body tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radiofrequency Channel Number (ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the DUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g modes are tested on channels 1,6,11; however, if output power reduction is necessary for channels 1 and /or 13 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the “default test channels”, the maximum channel should be tested instead of an adjacent “default test channels”, these are referred to as the “required test channels” and are illustrated in table 1.

Mode	GHz	Channel	Turbo Channel	“Default Test Channels”
				15.247
				802.11g
IEEE 802.11g	2.412	1	1	√
	2.437	6 [#]	6 [#]	√
	2.462	11 [#]	11 [#]	√

Table 1

Note: # = when output power is reduced for channel 6 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

√ = “default test channels”

3.2. Position of module in Portable devices

SAR is required for Front, back, Right, Left, Top and bottom with the most conservative exposure conditions, The DUT is tested at the following test positions:

- (1) Test Position Front Side: The Front Side of the DUT towards and directed tightly to touch the flat phantom.
- (2) Test Position Back Side: The Back Side of the DUT towards and directed tightly to touch the flat phantom.
- (3) Test Position Top Side: The SAR is not required.
- (4) Test Position Bottom Side: The SAR is not required.
- (5) Test Position Left Side: The SAR is not required.
- (6) Test Position Right Side: The SAR is not required.

(The distance is more than 2.5 cm between antenna and the some side)

4. SAR MEASUREMENTS SYSTEM

4.1. SAR Measurement Set-up

DASY5 system for performing compliance tests consists of the following items:

- (1) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- (2) A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in liquid simulating liquid. The probe is equipped with an optical surface detector system.
- (3) A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- (4) A unit to operate the optical surface detector which is connected to the EOC.
- (5) The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- (6) The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- (7) DASY5 software and SEMCAD data evaluation software.
- (8) Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- (9) The generic twin phantom enabling the testing of left-hand and right-hand usage.
- (10) The device holder for handheld mobile phones.
- (11) Tissue simulating liquid mixed according to the given recipes.
- (12) System validation dipoles allowing to validate the proper functioning of the system.

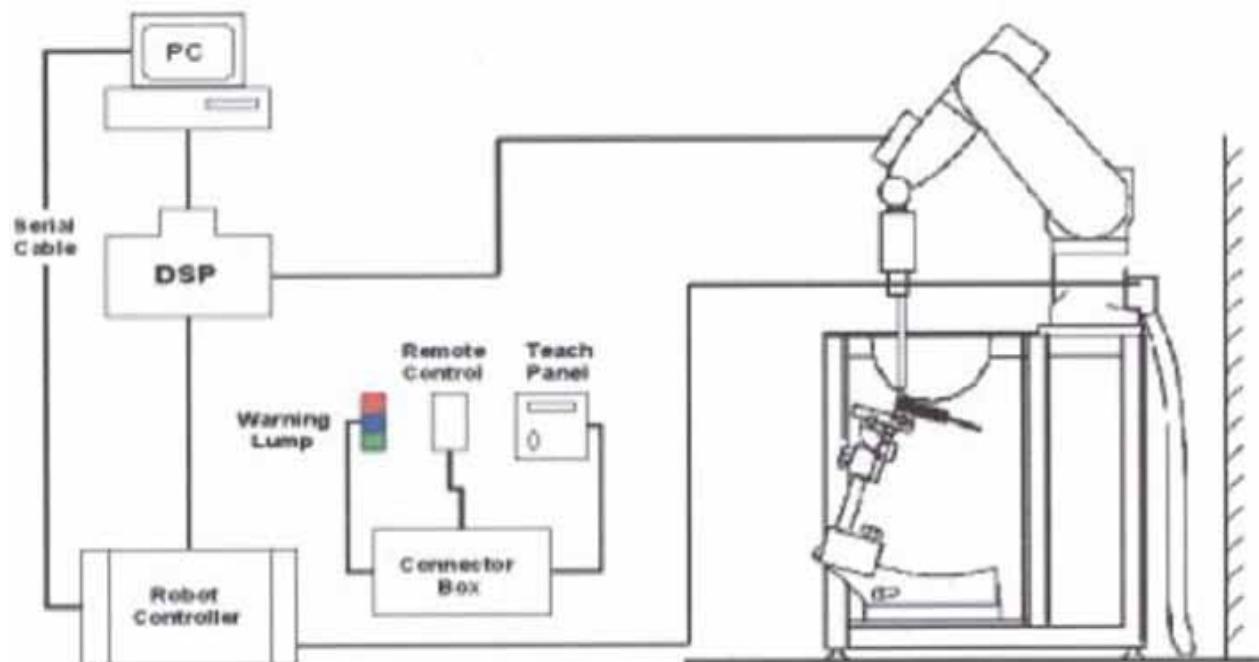
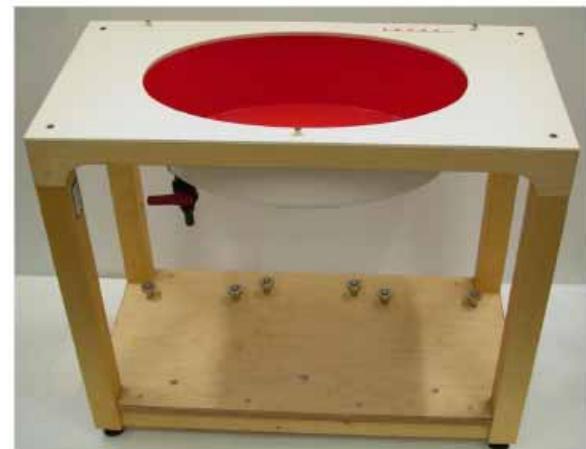



Figure 4.1 SAR Lab Test Measurement Set-up

4.2. ELI Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid.

Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Figure 6.2 Top View of Twin Phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

4.3. Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permitivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Figure 4.3 Device Holder

4.4. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

4.4.1. EX3DV4 Probe Specification

Figure 4.4 EX3DV4 E-field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: PRS-T2 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

4.5. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m^3).

4.6. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles.

The difference between the optical surface detection and the actual surface depends on the Probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

4.6.1. Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

4.6.2. Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

4.6.3. Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

5. DATA STORAGE AND EVALUATION

5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi =Ui +Ui2 \cdot cf / d c pi$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $Ei = (Vi / Normi \cdot ConvF)I/2$

H-field probes: $Hi = (Vi)I/2 \cdot (ai0 + ai1f + ai2f^2)/f$

With Vi = compensated signal of channel i (i = x, y, z)

$Normi$ = sensor sensitivity of channel i (i = x, y, z)

$ConvF$ = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$Etot = (Ex^2 + EY^2 + Ez^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \rho) / (4 \pi \cdot 1000)$$

with

SAR = local specific absorption rate in mW/g

$Etot$ = total field strength in V/m

ρ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$Ppwe = Etot^2 / 3770 \quad \text{or} \quad Ppwe = Htot^2 \cdot 37.7$$

with $Ppwe$ = equivalent power density of a plane wave in mW/cm²

$Etot$ = total electric field strength in V/m

$Htot$ = total magnetic field strength in A/m

6. SYSTEM CHECK

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the ANNEX A.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

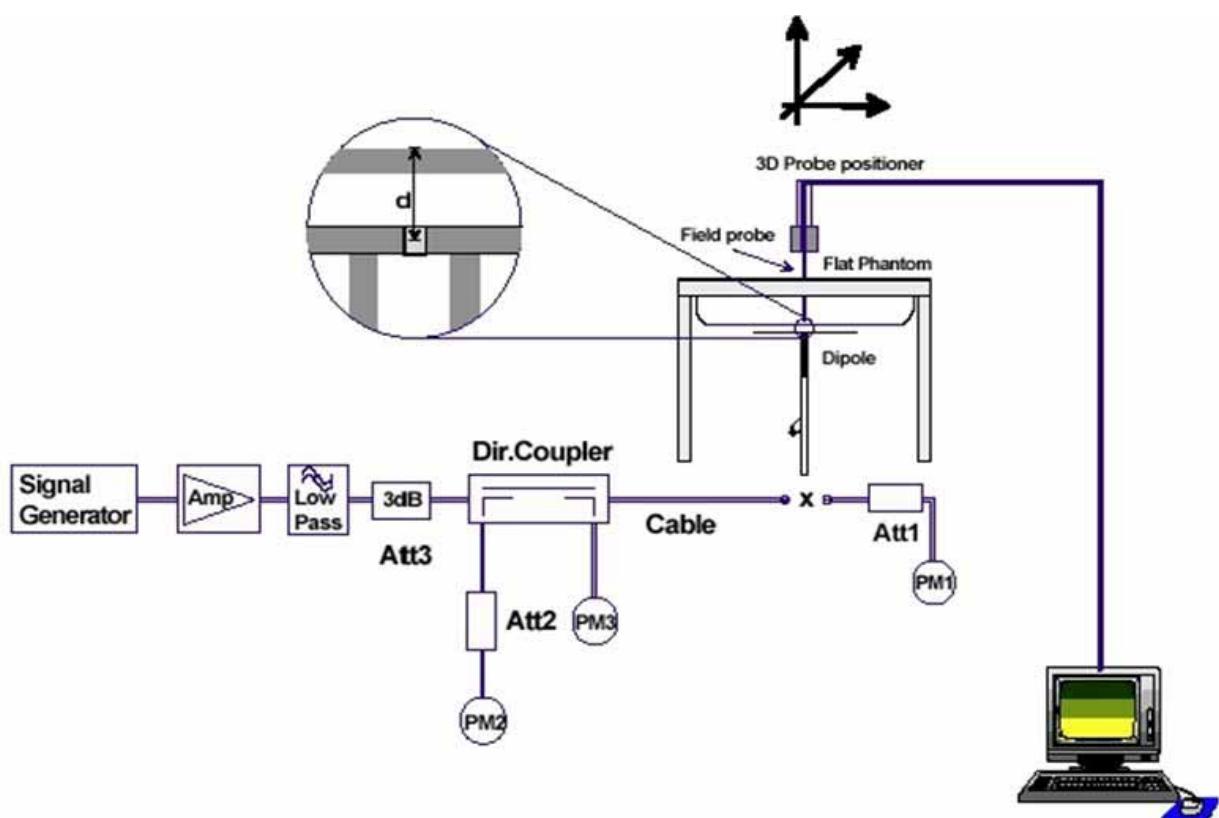


Figure 6.1: System Check Set-up

7. TEST RESULTS

7.1. Output power

Mode	Channel	Peak Power (dBm)	Average Power (dBm)
IEEE 802.11g	CH1	17.81	12.05
	CH6	17.91	12.41
	CH11	17.78	12.32

Note: The duty cycle of the DUT is about 99% for 802.11g mode.

7.2. System Check for Body Tissue simulating liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp °C
		10g	1g	εr	σ(s/m)	
2450MHz	Recommended value ±10% window	5.86 5.27 — 6.45	12.8 11.52 — 14.08	52.7	1.95	/
	Measurement value 2012-07-27	6.17	13.1	50.71	2.02	23.7
	Measurement value 2012-08-20	5.92	12.7	50.71	2.02	24.1

Note: Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

7.3. Test Results

Test Position	Channel	Measured Results		Limit	
		SAR _{1g} (W/kg)	SAR _{10g} (W/kg)	SAR _{1g} (1.6W/kg)	SAR _{10g} (2.0W/kg)
IEEE 802.11g	Front	CH1	0.314	0.102	PASS
		CH6	0.357	0.109	PASS
		CH11	0.409	0.124	PASS
	Back	CH1	0.479	0.165	PASS
		CH6	0.486	0.172	PASS
		CH11	0.501	0.173	PASS

Note:

7.4. Dielectric Performance for Body Tissue simulating liquid

Frequency	Description	Dielectric Parameters		Temp °C
		ϵ_r	$\sigma(\text{s/m})$	
2450MHz	Target value $\pm 5\%$ window	52.7 50.07-55.34	1.95 1.85-2.05	/
	Measurement value 2012-07-27	50.801	1.991	23.1
	Measurement value 2012-08-20	50.825	1.987	24.1

Figure 4.4: Liquid depth in the Flat Phantom

8. ANNEX A: SYSTEM CHECK RESULTS

2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:xxx

Date: 27/07/2012

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.71$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

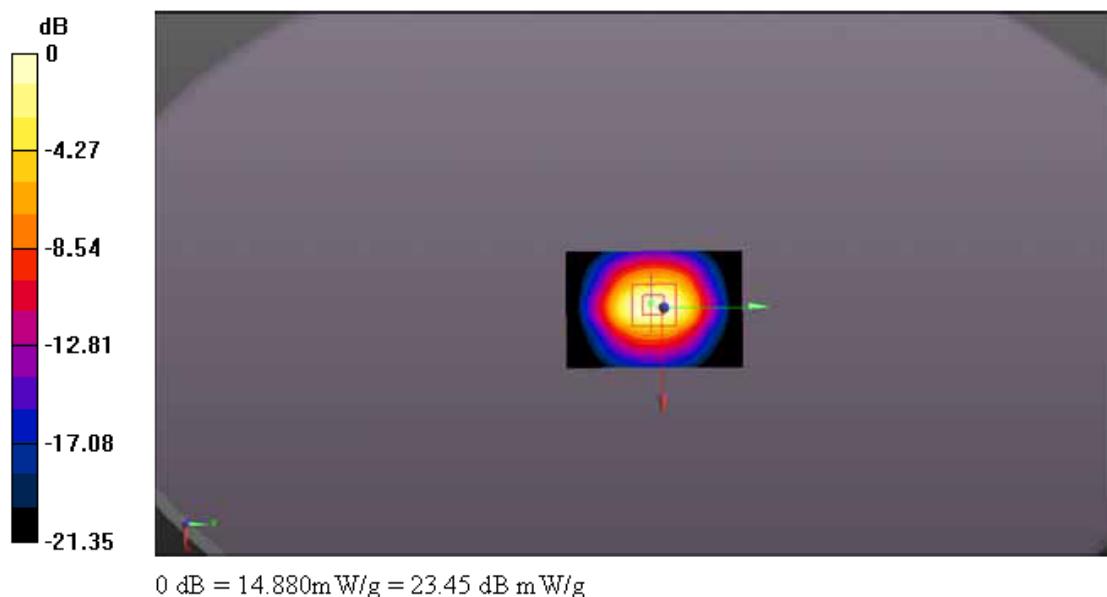
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

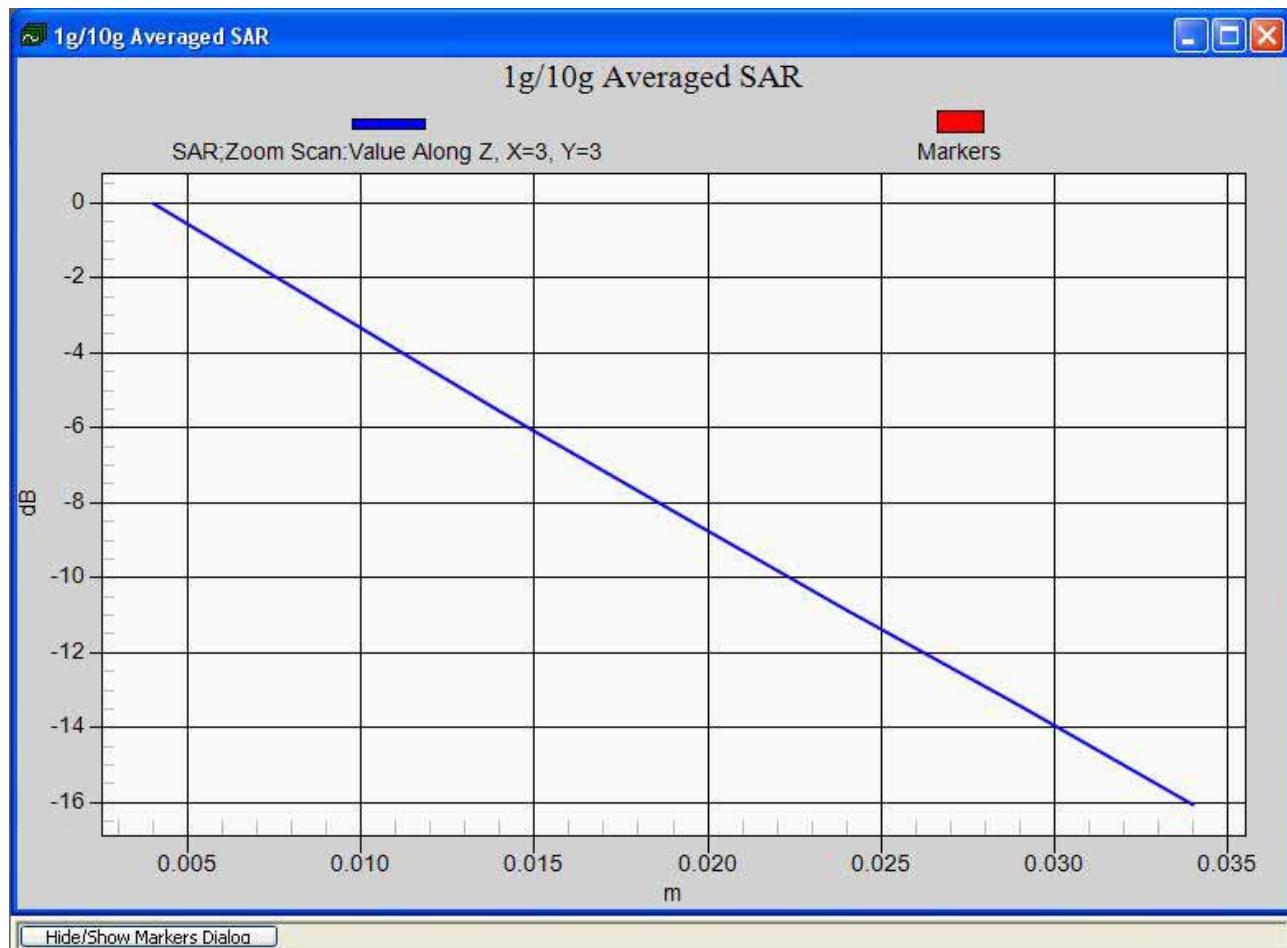
Configuration/Body_2450/Area Scan (41x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 15.472 mW/g

Configuration/Body_2450/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 84.713 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.0400

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.17 mW/g

Maximum value of SAR (measured) = 14.880 mW/g

Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:xxx
Date:27/07/2012

Communication System: CW; Frequency: 2450 MHz; Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02 \text{ mho/m}$; $\epsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section; Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

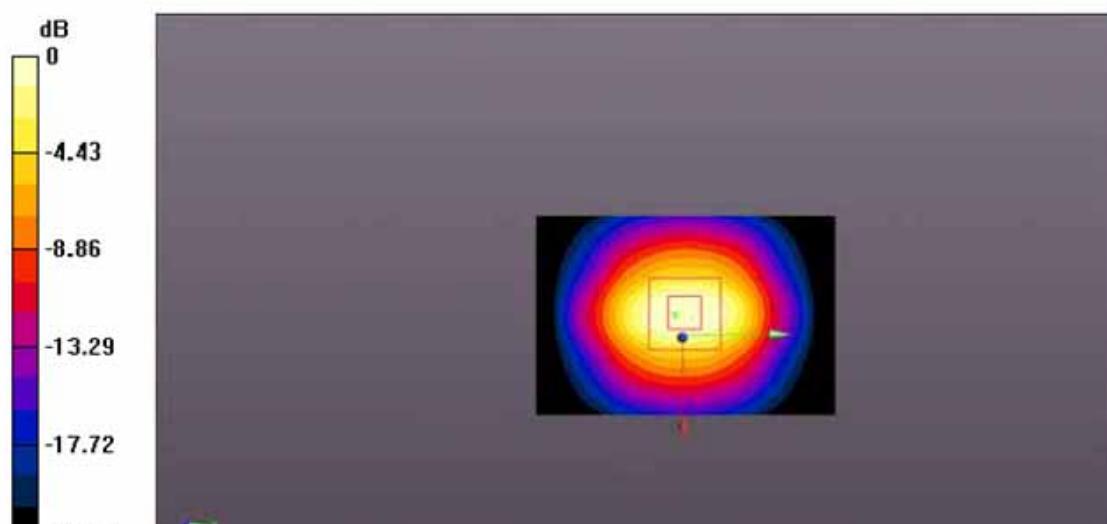
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

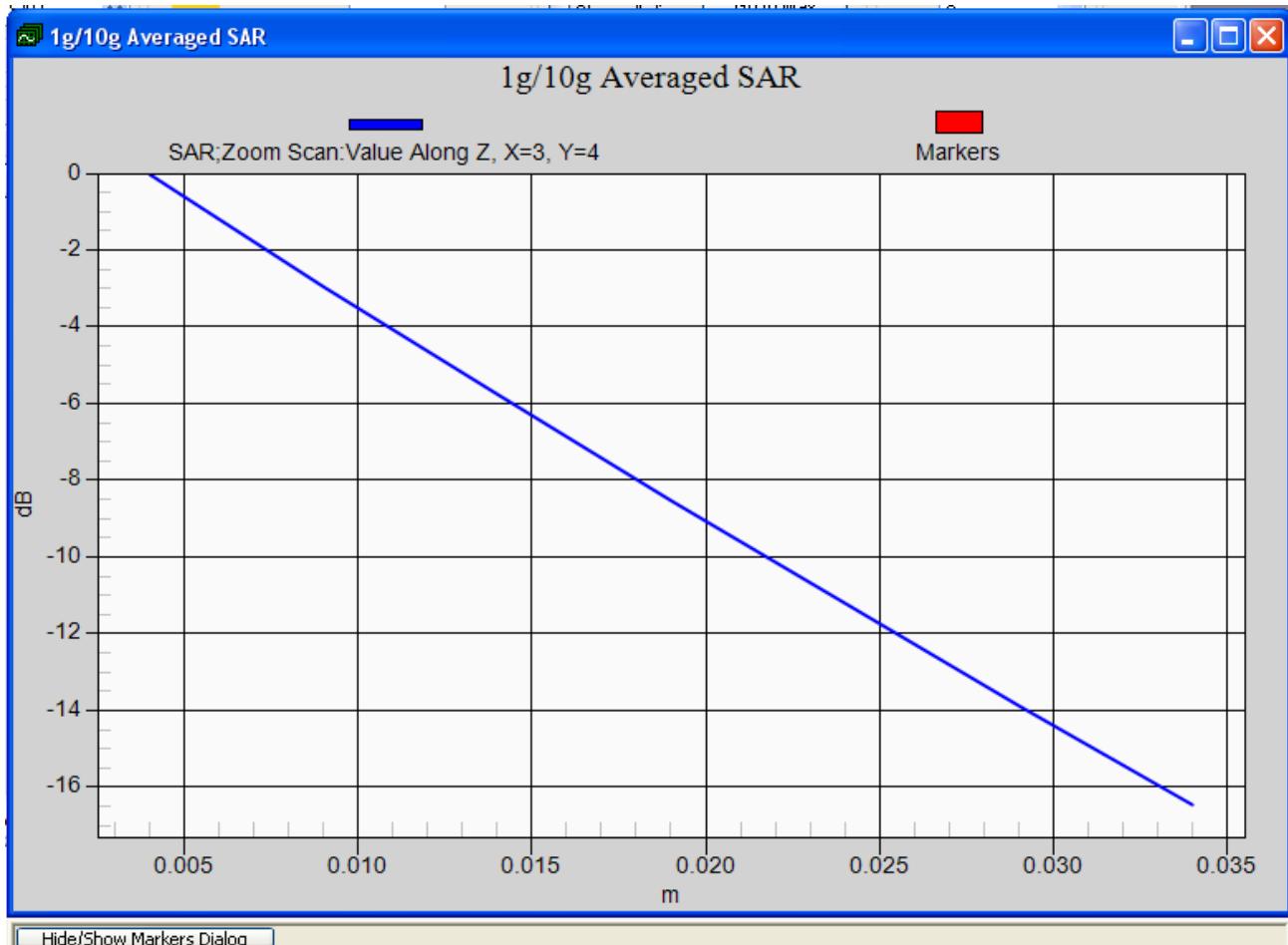
Configuration/Body_2450/Area Scan (41x61x1):

Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 15.019 mW/g

Configuration/Body_2450/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 85.862 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 25.9060

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.92 mW/g

Maximum value of SAR (measured) = 14.440 mW/g

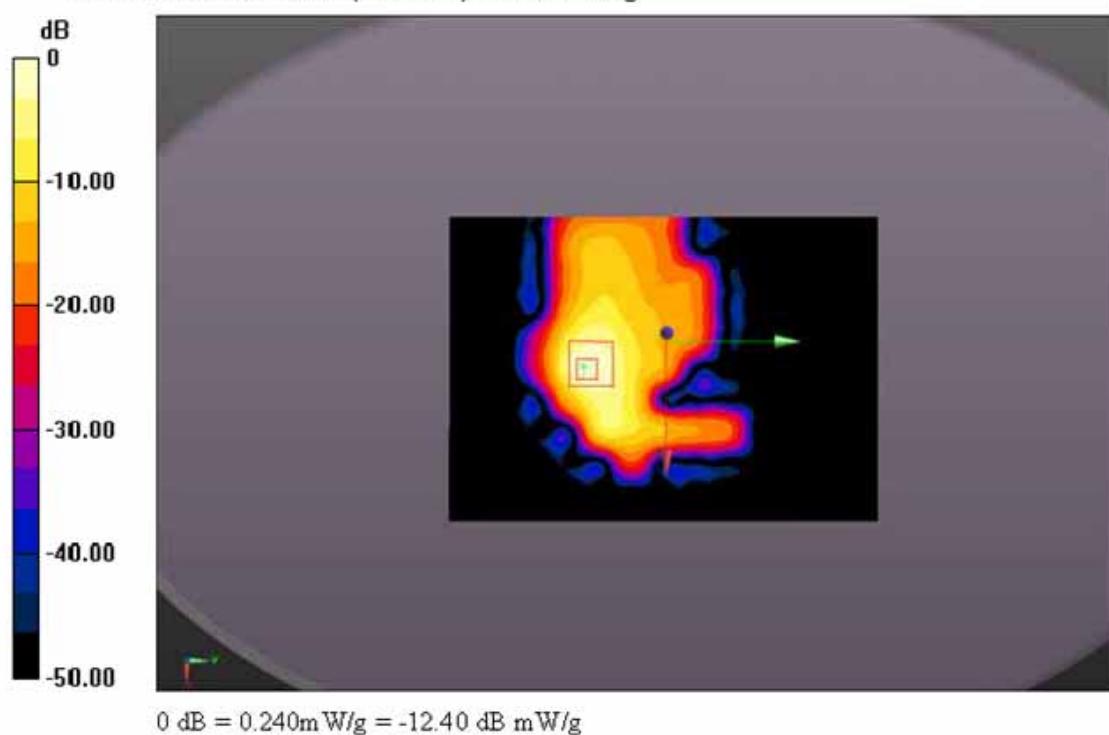
9. ANNEX B: GRAPH RESULTS WITH BANDS OF WATCH

Front_CH1

DUT: VINCI Learning Tablet M/N: ViNCi Tab Date: 20/08/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2412 MHz; Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.968$ mho/m; $\epsilon_r = 50.861$; $\rho = 1000$ kg/m³; Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Front_CH1/Area Scan (101x141x1):

Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.247 mW/g

Configuration/Front_CH1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 1.767 V/m; Power Drift = 0.19 dB
Peak SAR (extrapolated) = 0.6140
SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.102 mW/g
Maximum value of SAR (measured) = 0.344 mW/g

Front_CH6

DUT: VINCI Learning Tablet M/N: ViNCi Tab

Date: 20/08/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 2.048$ mho/m; $\epsilon_r = 50.622$; $\rho = 1000$ kg/m³; Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

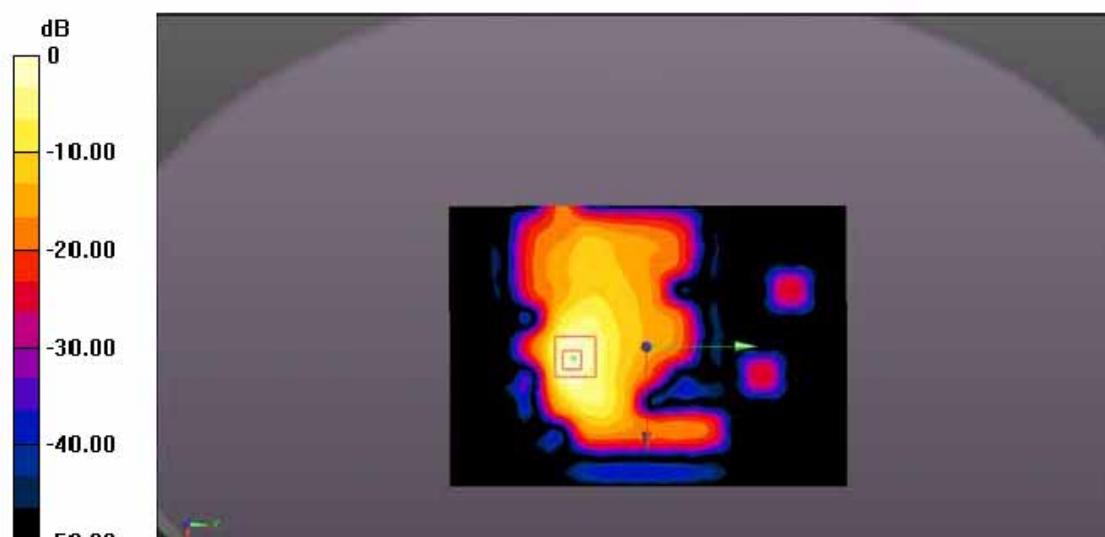
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Front_CH6/Area Scan (101x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.216 mW/g

Configuration/Front_CH6/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.612 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.4400

SAR(1 g) = 0.357 mW/g, SAR(10 g) = 0.109 mW/g

Maximum value of SAR (measured) = 0.382 mW/g

0 dB = 0.180 mW/g = -14.89 dB mW/g

Front_CH11

DUT: VINCI Learning Tablet M/N: ViNCi Tab

Date: 20/08/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used (interpolated): $f = 2462$ MHz; $\sigma = 2.048$ mho/m; $\epsilon_r = 50.622$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

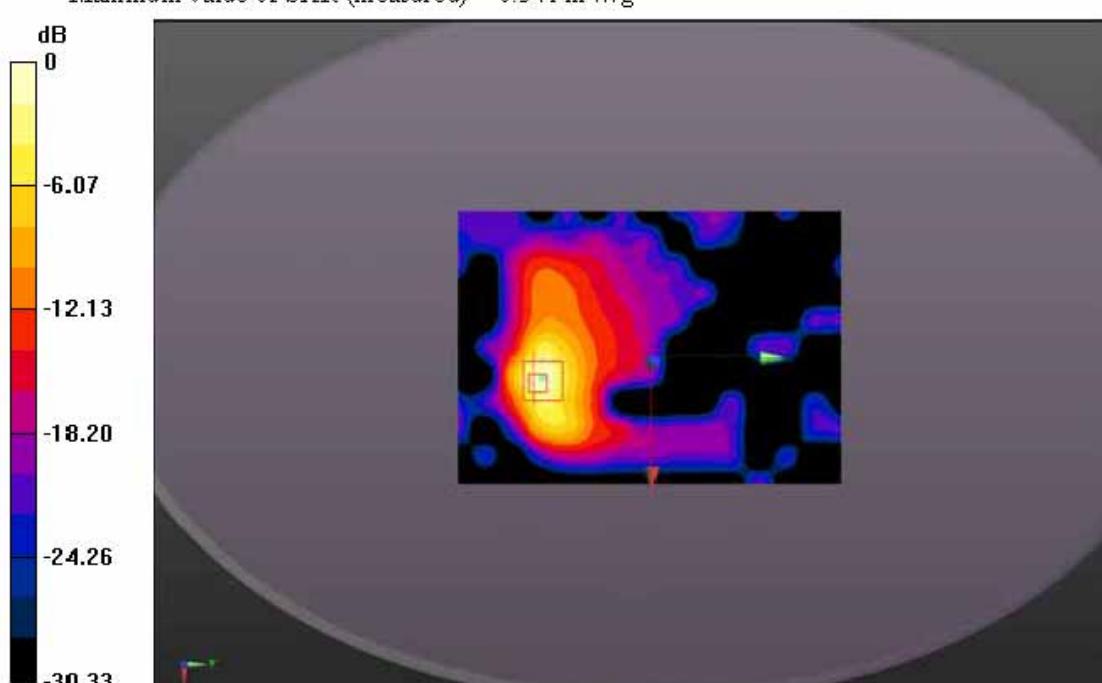
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Front_CH11/Area Scan (101x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.226 mW/g

Configuration/Front_CH11/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.136 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.5790

SAR(1 g) = 0.309 mW/g; SAR(10 g) = 0.124 mW/g

Maximum value of SAR (measured) = 0.341 mW/g

0 dB = 0.240 mW/g = -12.40 dB mW/g

Back_CH1

DUT: VINCI Learning Tablet M/N: ViNCi Tab

Date: 27/07/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2412 MHz; Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.968$ mho/m; $\epsilon_r = 50.861$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

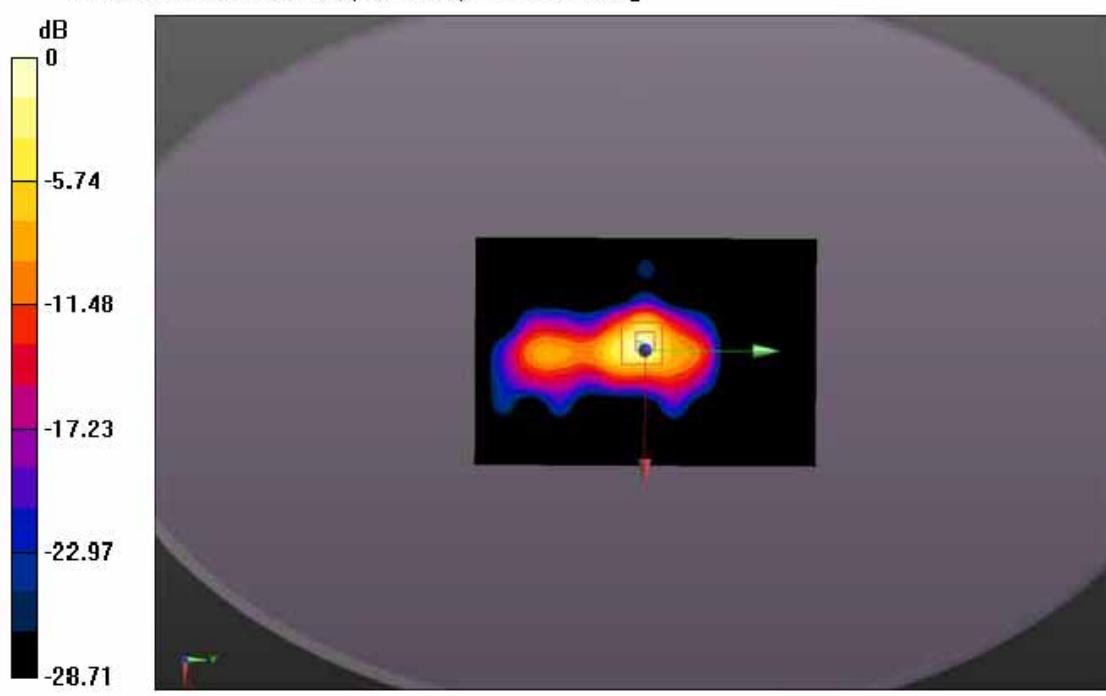
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Back_CH1/Area Scan (81x121x1):Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (interpolated) = 0.445 mW/g


Configuration/Back_CH1/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 13.548 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.4250

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.165 mW/g

Maximum value of SAR (measured) = 0.5643 mW/g

0 dB = 0.568 mW/g = 4.91 dB mW/g

Back_CH6

DUT: VINCI Learning Tablet M/N: ViNCi Tab

Date: 27/07/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.719$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

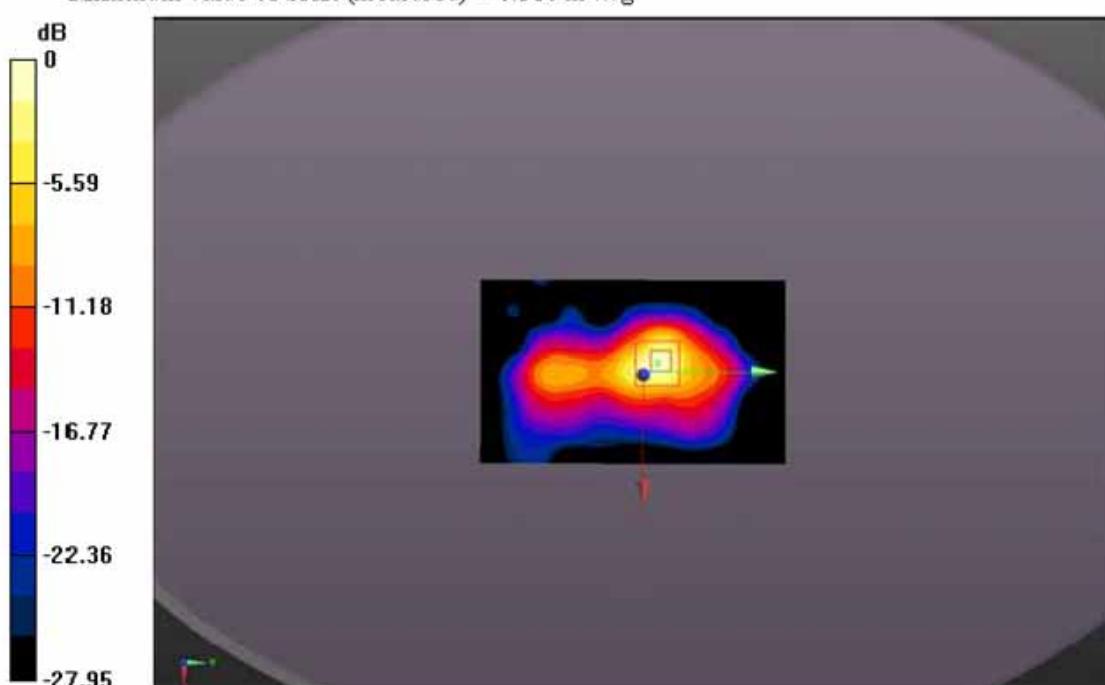
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Back_CH6/Area Scan (61x101x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.505 mW/g

Configuration/Back_CH6/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.313 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.4300

SAR(1 g) = 0.486 mW/g; SAR(10 g) = 0.172 mW/g

Maximum value of SAR (measured) = 0.580 mW/g

0 dB = 0.580 mW/g = -4.73 dB mW/g

Back_CH11

DUT: VINCI Learning Tablet M/N: ViNCi Tab

Date: 27/07/2012

Communication System: IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2462 MHz; Medium parameters used (interpolated): $f = 2462$ MHz; $\sigma = 2.048$ mho/m; $\epsilon_r = 50.622$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

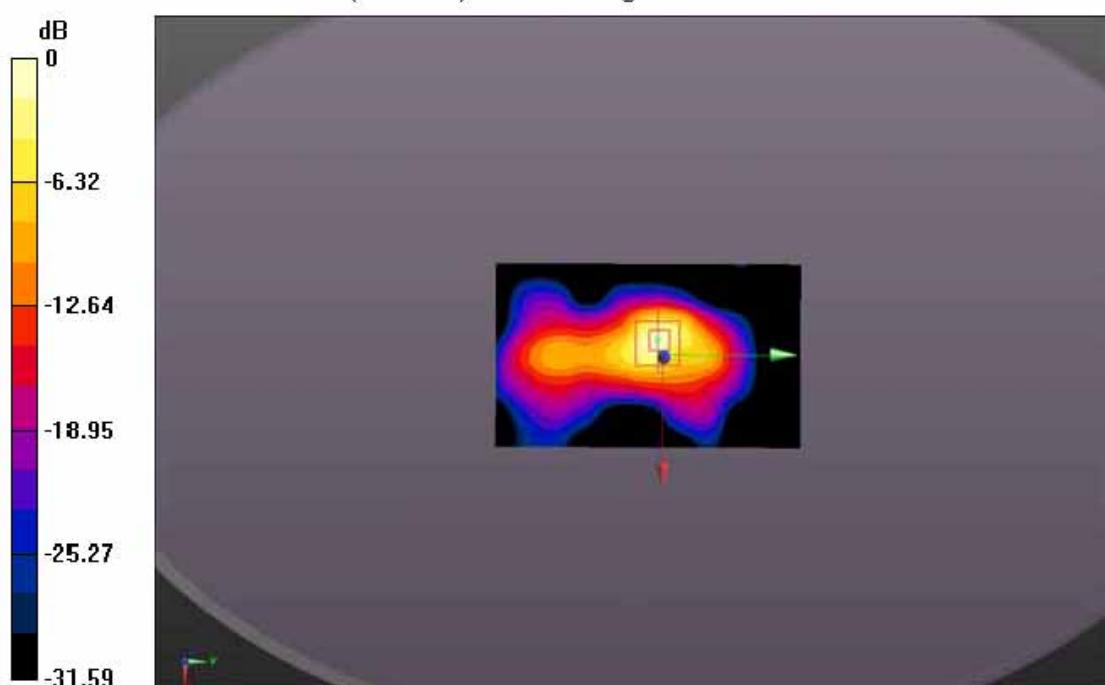
- Probe: EX3DV4 - SN3753; ConvF(7.03, 7.03, 7.03); Calibrated: 04/01/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn914; Calibrated: 08/12/2011
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration/Back_CH11/Area Scan (61x101x1):

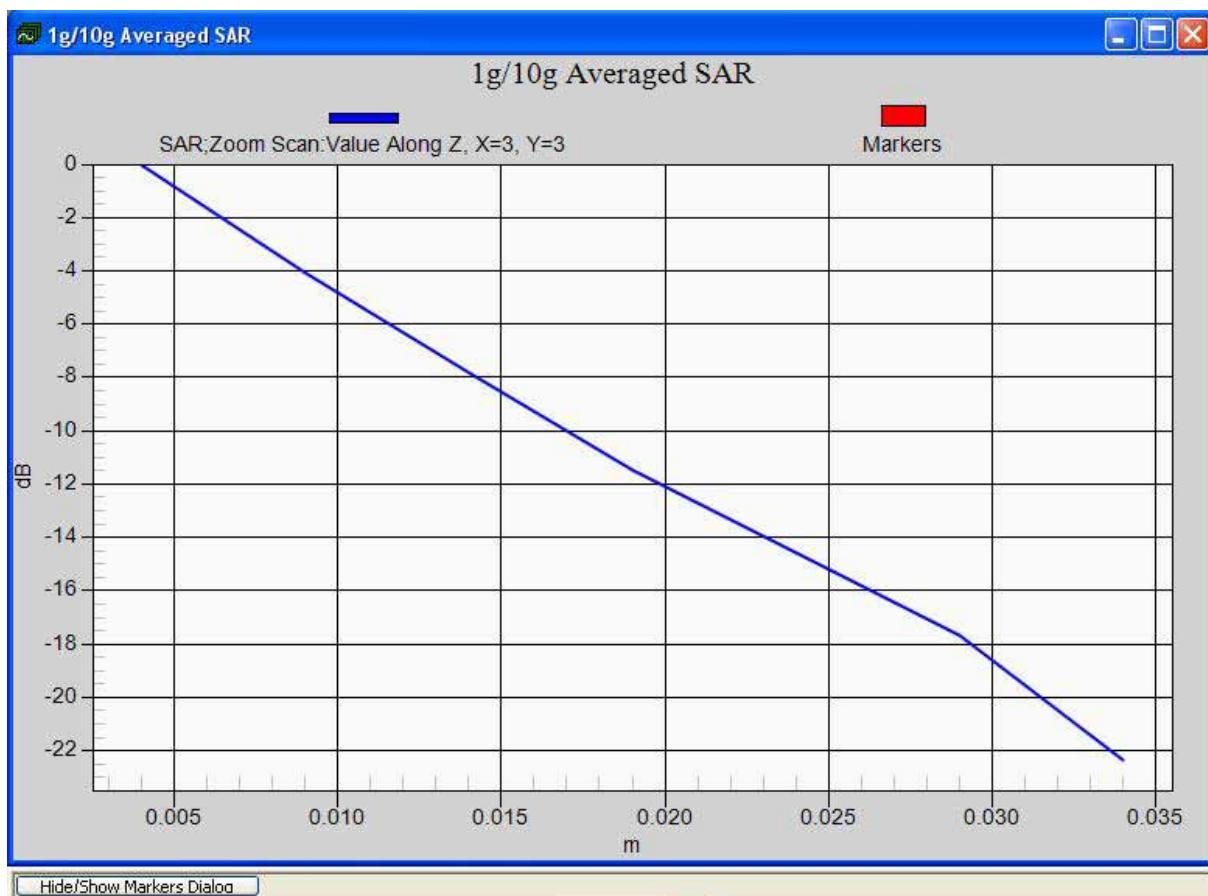
Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.512 mW/g

Configuration/Back_CH11/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.097 V/m; Power Drift = -0.19 dB


Peak SAR (extrapolated) = 1.4960

SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.173 mW/g

Maximum value of SAR (measured) = 0.616 mW/g

0 dB = 0.620 mW/g = -4.15 dB mW/g

10. ANNEX C: DASY CABLIBRATION CERTIFICATE

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zürich, Switzerland
Phone +41 44 243 9720, Fax +41 44 246 0778
info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw; over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This anti static bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and oil accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MΩ is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client: **Auden**

Certificate No: **DAE4-914 Dec11**

CALIBRATION CERTIFICATE

Object: **DAE4 - SD 000 D04 BK - SN: 914**

Calibration procedure(s): **QA CAL-06.v23**
 Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **December 8, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurement (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the clean laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (MSE) (critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Kathley Multimeter Type 2001	SN: CR17074	25-Sep-11 (NIST11/50)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check)	in house check Jun-12

Calibrated by:	Name	Function	Signature
	Dominique Stärke	Technician	

Approved by:	Name	Function	Signature
	Fin Bowditch	R&D Director	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: December 8, 2011

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 48, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with Inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information: Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 0.1mV, full range = -100...+300 mV

Low Range: 1LSB = 0.1mV, full range = -1...+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.430 \pm 0.1\% \text{ (k=2)}$	$404.471 \pm 0.1\% \text{ (k=2)}$	$403.724 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.99253 \pm 0.7\% \text{ (k=2)}$	$3.95785 \pm 0.7\% \text{ (k=2)}$	$3.98845 \pm 0.7\% \text{ (k=2)}$

Connector AngleConnector Angle to be used in DASY system: 65.0 ° + 1 °

Appendix**1. DC Voltage Linearity**

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200001.0	-0.18	-0.00
Channel X + Input	19998.80	-1.00	-0.00
Channel X - Input	-19987.28	2.34	-0.01
Channel Y + Input	200007.4	-1.98	-0.00
Channel Y + Input	19994.57	5.03	-0.03
Channel Y - Input	-20001.73	-2.50	0.01
Channel Z + Input	200005.3	-3.10	-0.00
Channel Z + Input	19998.23	-3.17	-0.02
Channel Z - Input	-20002.05	-2.85	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1998.8	-1.15	-0.06
Channel X + Input	199.72	0.18	-0.09
Channel X - Input	-199.88	0.17	-0.08
Channel Y + Input	1999.3	-0.71	-0.04
Channel Y + Input	199.51	-0.49	-0.25
Channel Y - Input	-201.93	-2.03	1.01
Channel Z + Input	2000.1	-0.03	-0.00
Channel Z + Input	199.84	-0.96	-0.48
Channel Z - Input	-201.32	-1.32	0.66

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-0.86	-2.25
	-200	3.38	1.61
Channel Y	200	-5.83	-6.18
	-200	4.37	4.28
Channel Z	200	-15.57	-15.83
	-200	14.89	14.73

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	4.13	0.73
Channel Y	200	9.79	-	5.89
Channel Z	200	2.87	-2.21	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	160115	130113
Channel Y	15882	15204
Channel Z	16146	16142

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-1.48	-2.38	-0.31	0.40
Channel Y	-0.09	-1.61	0.82	0.47
Channel Z	-0.45	-1.09	0.81	0.49

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kΩ)	Measuring (MΩ)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.0

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'établissement
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Auden

Certificate No: EX3-3753 Jan12

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3753					
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes					
Calibration date:	January 4, 2012					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurement (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the clean air laboratory facility; environment: temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.						
Calibrator, Equipment used (MSTF entries for calibration)						
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter C44190	GB41230R72	31-Mar-11 (No. 217-01372)	Apr-12			
Power sensor C4412A	NY414880R7	31-Mar-11 (No. 217-01372)	Apr-12			
Reference 3 dB Attenuator	SN: 56054 (1a)	29-Mar-11 (No. 217-01369)	Apr-12			
Reference 20 dB Attenuator	SN: 56006 (2a)	29-Mar-11 (No. 217-01367)	Apr-12			
Reference 30 dB Attenuator	SN: 56129 (3a)	29-Mar-11 (No. 217-01370)	Apr-12			
Antenna Probe ESSDWC	SN: 2013	28-Jun-11 (No. P83-3213, Dec11)	Dec-12			
37484	SN: 254	3-May-11 (No. DA84-054, May11)	May-12			
Secondary Standards	ID	Check Date (in house)	Scheduled Check			
RF generator HP 8548C	J85642U01700	4-Aug-09 (in house check Apr 11)	In house check: Apr-13			
Network Analyzer HP 8753E	J857390535	19-Oct-01 (in house check Oct 11)	In house check: Oct-12			
Calibrated by:	Name	Function	Signature			
	Johann Kastner	Laboratory Technician				
Approved by:	Name	Function	Signature			
	Katica Pakovic	Technical Manager				

Issued: January 4, 2012

This calibration certificate shall not be reproduced, except in full, without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x, y, z	sensitivity in "free space"
ConvF	sensitivity in TSL / NORM x, y, z
DCP	diode compression point
CF	crest factor (1/0.1uy_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., $\beta = 0$ is normal to probe axis

Calibration Is Performed According to the Following Standards:

- IEEE Std 1520-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx, y, z$: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx, y, z$ are only intermediate values, i.e., the uncertainties of $NORMx, y, z$ does not affect the E-field uncertainty inside TSL (see below ConvF).
- $NORMf(x, y, z) = NORMx, y, z * \text{frequency response}$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z$: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same set-ups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx, y, z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY versions 4.4 and higher which allows extending the validity from ± 100 MHz to ± 1100 MHz.
- Spherical Isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 SN:3753

January 4, 2012

Probe EX3DV4

SN:3753

Manufactured: March 16, 2010
Calibrated: January 4, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4 SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (uV(V/m)) ⁴	0.33	0.49	0.53	± 10.1 %
DCP (mV) ⁵	103.0	96.0	100.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A	B	C	VR	Unc ⁶ (k=2)
10033	DW	0.00	X	0.00	0.00	1.00	119.0	±2.7 %
			Y	0.00	0.00	1.00	119.7	
			Z	0.00	0.00	1.00	116.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁴ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty in table TSL (see: Pages 5 and 6).

⁵ Numerical linearization parameter: uncertainty not required.

⁶ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Calibration Parameter Determined In Head Tissue Simulating Media

f (MHz) ^a	Relative Permittivity ^b	Conductivity (S/m) ^b	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unc. (k=2)
760	41.8	0.89	0.43	0.43	0.43	0.38	0.87	± 12.0 %
635	41.5	0.90	0.02	0.02	0.02	0.39	0.79	± 12.0 %
1750	40.1	1.37	0.37	0.37	0.37	0.10	1.14	± 12.0 %
1900	40.0	1.40	0.05	0.05	0.05	0.54	0.70	± 12.0 %
2000	40.0	1.40	7.94	7.94	7.94	0.10	0.80	± 12.0 %
2450	39.2	1.80	6.89	6.89	6.89	0.34	0.90	± 12.0 %
5200	36.0	4.06	4.83	4.83	4.83	0.36	1.00	± 13.1 %
5300	35.9	4.76	4.58	4.58	4.58	0.40	1.80	± 13.1 %
5500	35.6	4.98	4.63	4.63	4.63	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.23	4.23	4.23	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.26	4.26	4.26	0.50	1.80	± 13.1 %

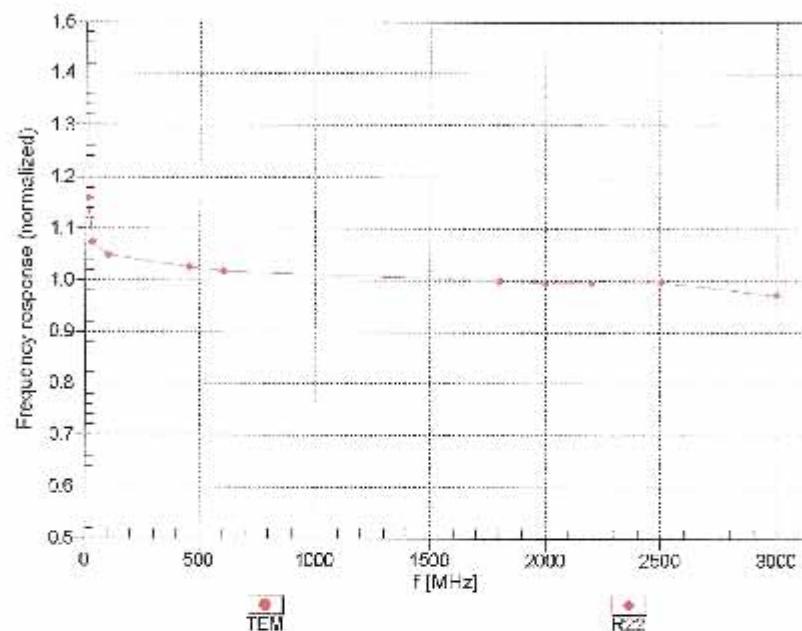
^a Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2); else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^b At frequencies below 3 GHz, the validity of tissue parameters (ϵ_r and σ) can be reduced to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ_r and σ) is maintained to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4 - SN:3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753**Calibration Parameter Determined In Body Tissue Simulating Media**

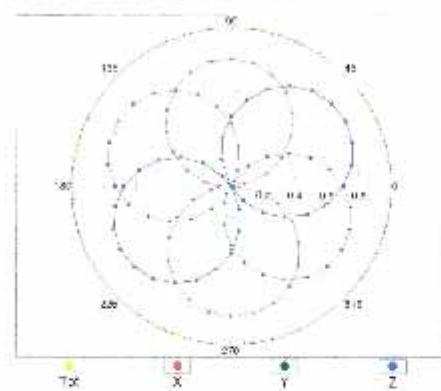

F(MHz) ^a	Relative Permittivity	Conductivity (S/m) ^b	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Uncert. (k=2)
750	55.5	0.56	9.29	9.29	9.29	0.30	1.11	± 12.0 %
835	55.2	1.57	9.18	9.18	9.18	0.47	0.85	± 12.0 %
1750	53.4	1.49	8.00	8.00	8.00	0.62	0.69	± 12.0 %
1900	53.3	1.62	7.57	7.57	7.57	0.31	0.93	± 12.0 %
2000	53.3	1.52	7.52	7.52	7.52	0.48	0.78	± 12.0 %
2300	52.9	1.81	7.20	7.20	7.20	0.49	0.75	± 12.0 %
2450	52.7	1.95	7.03	7.03	7.03	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.75	6.75	6.75	0.80	0.50	± 12.0 %
3300	51.3	3.31	6.04	6.04	6.04	0.20	1.45	± 13.1 %
5200	49.0	5.30	4.30	4.30	4.30	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.96	3.96	3.96	0.60	1.90	± 13.1 %
5500	48.6	5.65	3.67	3.67	3.67	0.60	1.90	± 13.1 %
5800	48.5	5.77	3.36	3.36	3.36	0.70	1.90	± 13.1 %
5800	48.2	6.00	3.06	3.06	3.06	0.60	1.90	± 13.1 %

^a Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF Uncertainty at calibrator frequency and the uncertainty for the indicated Frequency band.

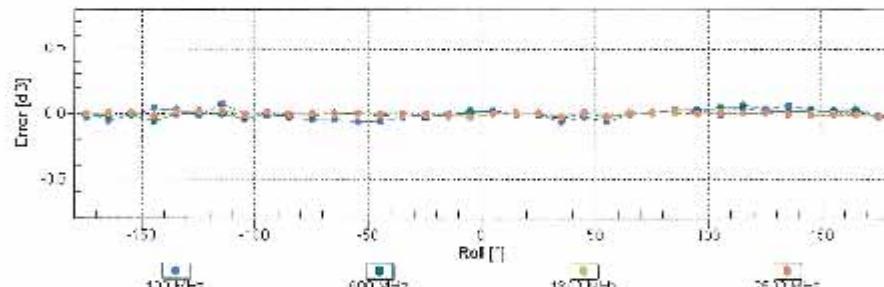
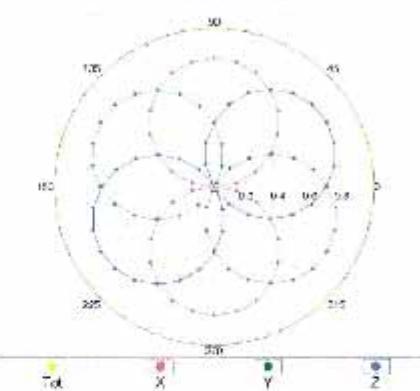
^b At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF Uncertainty for indicated target tissue parameters.

EX3DV4- SN-3753

January 1, 2012

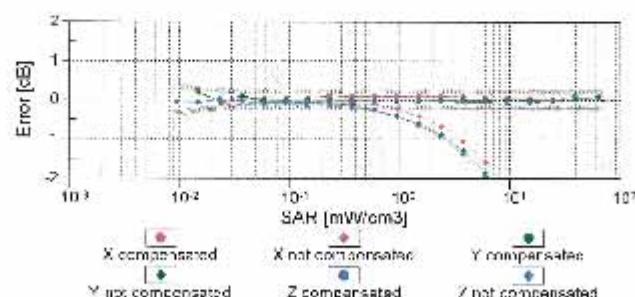
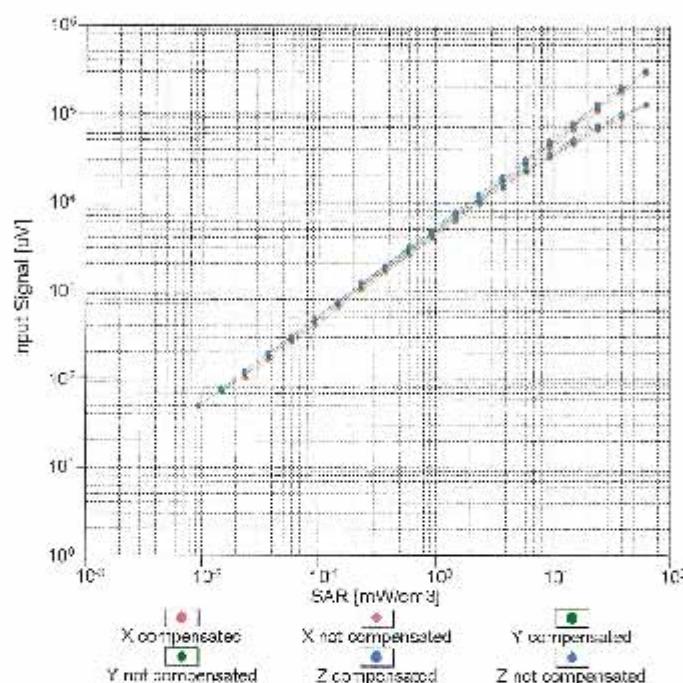

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

EX3DV4-SN:3753



January 4, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

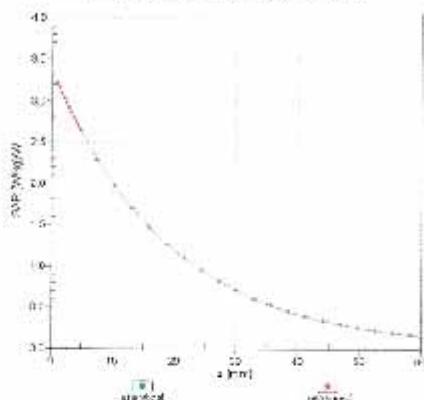
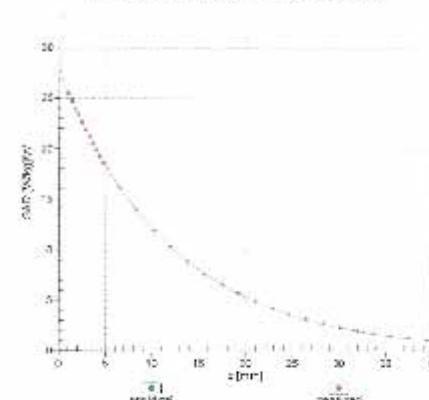


f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

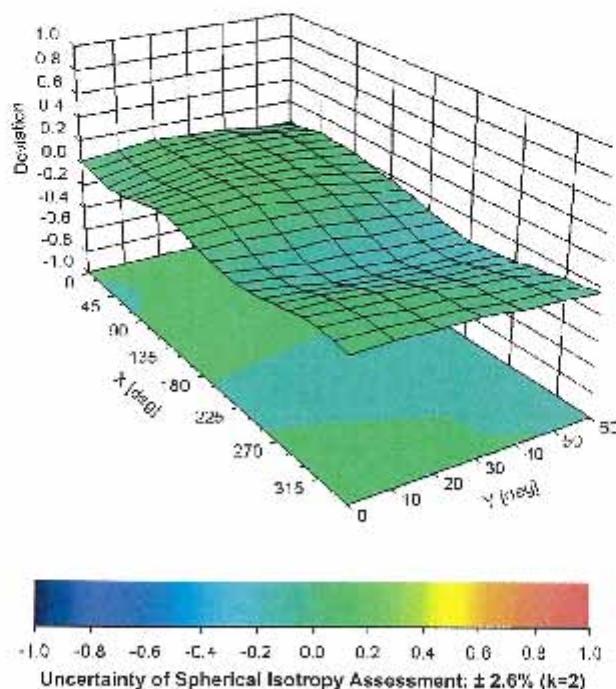
EX3DV4-SN3753

January 4, 2012

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

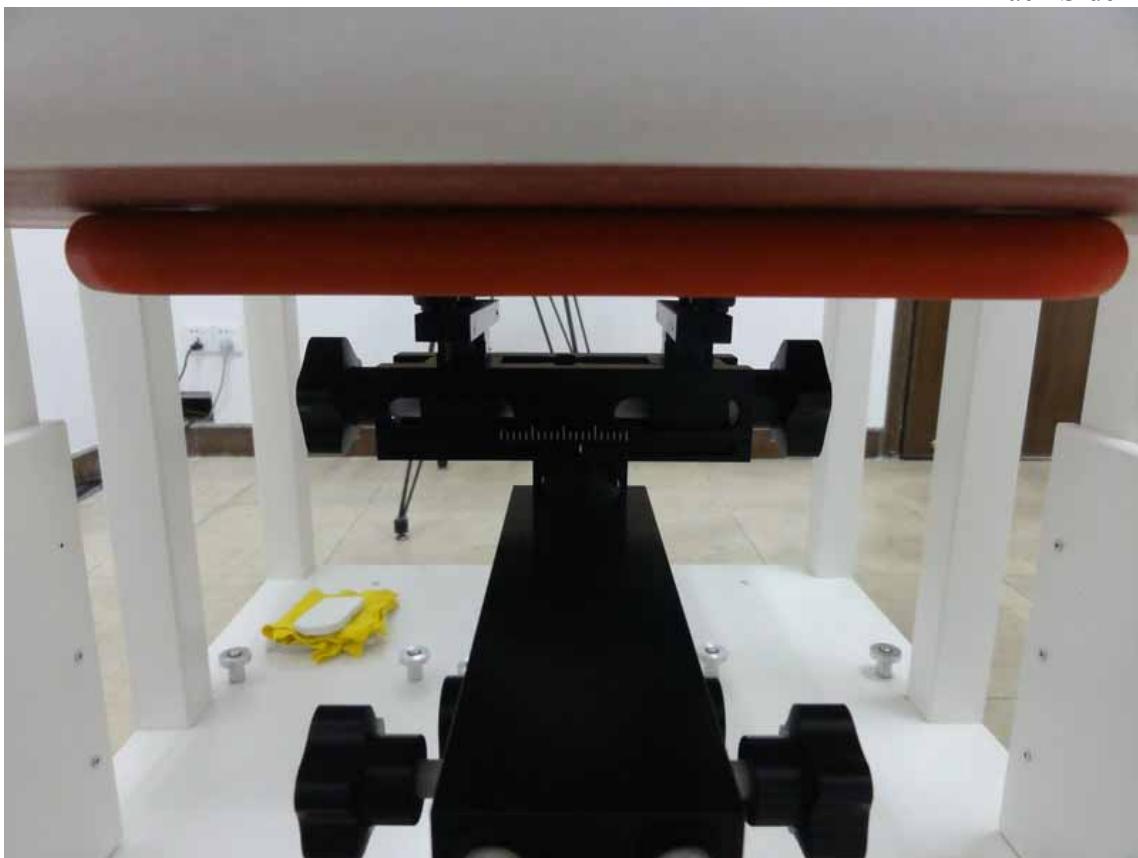

EX3DWL-SN:3753

January 4, 2012

Conversion Factor Assessment

 $f = 835 \text{ MHz}, \text{WGLS R9 (H_convF)}$ $f = 1900 \text{ MHz}, \text{WGLS R22 (H_convF)}$

Deviation from Isotropy in Liquid


Error (ϕ, θ), $f = 900 \text{ MHz}$ Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\% (k=2)$

EX3DV4- SN 3753

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753**Other Probe Parameters**

Sensor Arrangement	Triangular
Connicolor Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip in Sensor X Calibration Point	1 mm
Probe Tip in Sensor Y Calibration Point	1 mm
Probe Tip in Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

11. ANNEX D: TEST SETUP PHOTOS**Back Side**

12. ANNEX E: PHOTOS OF THE DUT**Figure 1**
Appearance of the DUT**Figure 2**
Appearance of the DUT

Figure 3
Appearance of the DUT

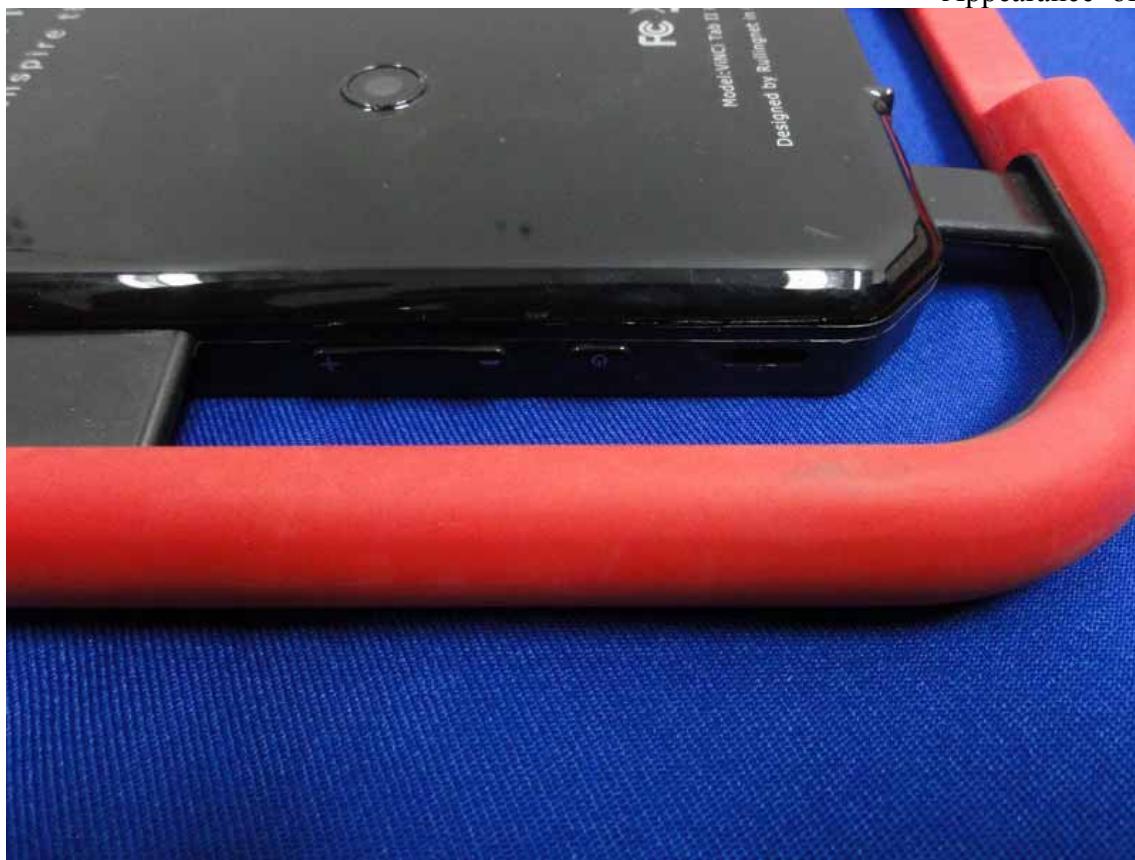

Figure 4
Appearance of the DUT


Figure 5
Appearance of the DUT

Figure 6
Appearance of the DUT

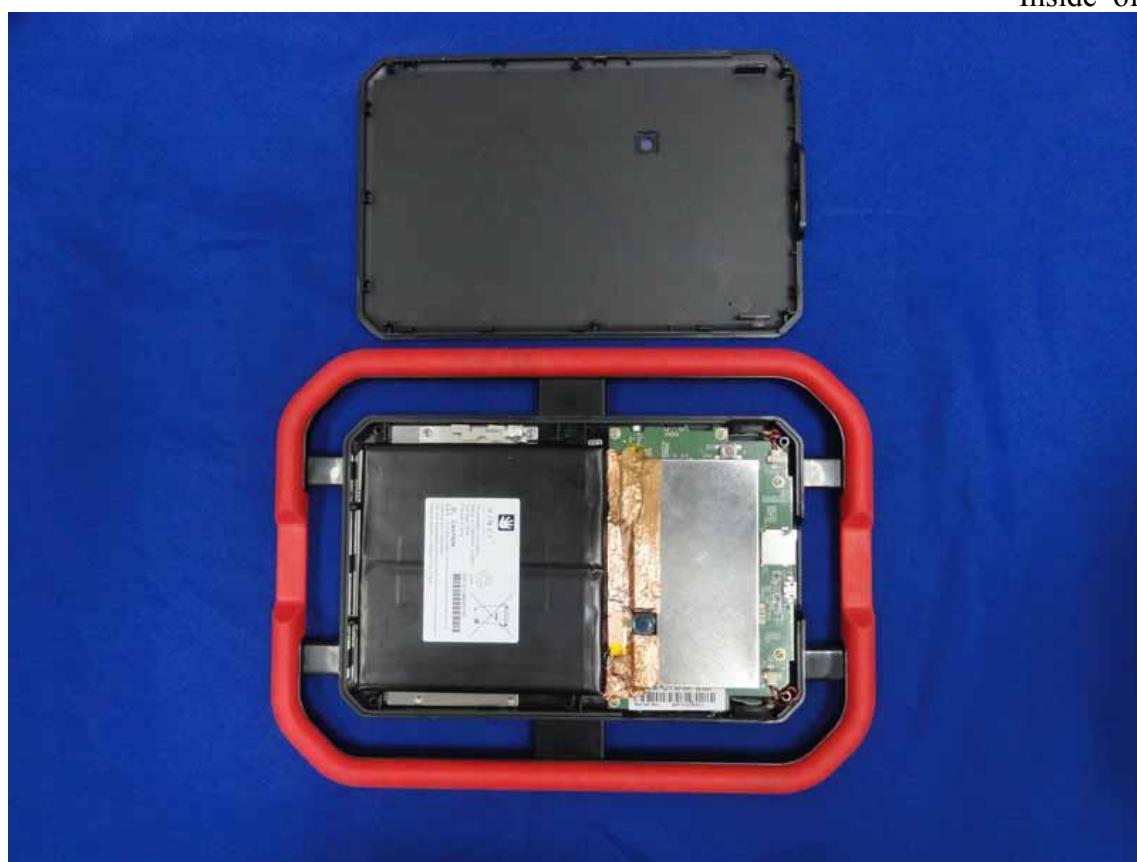
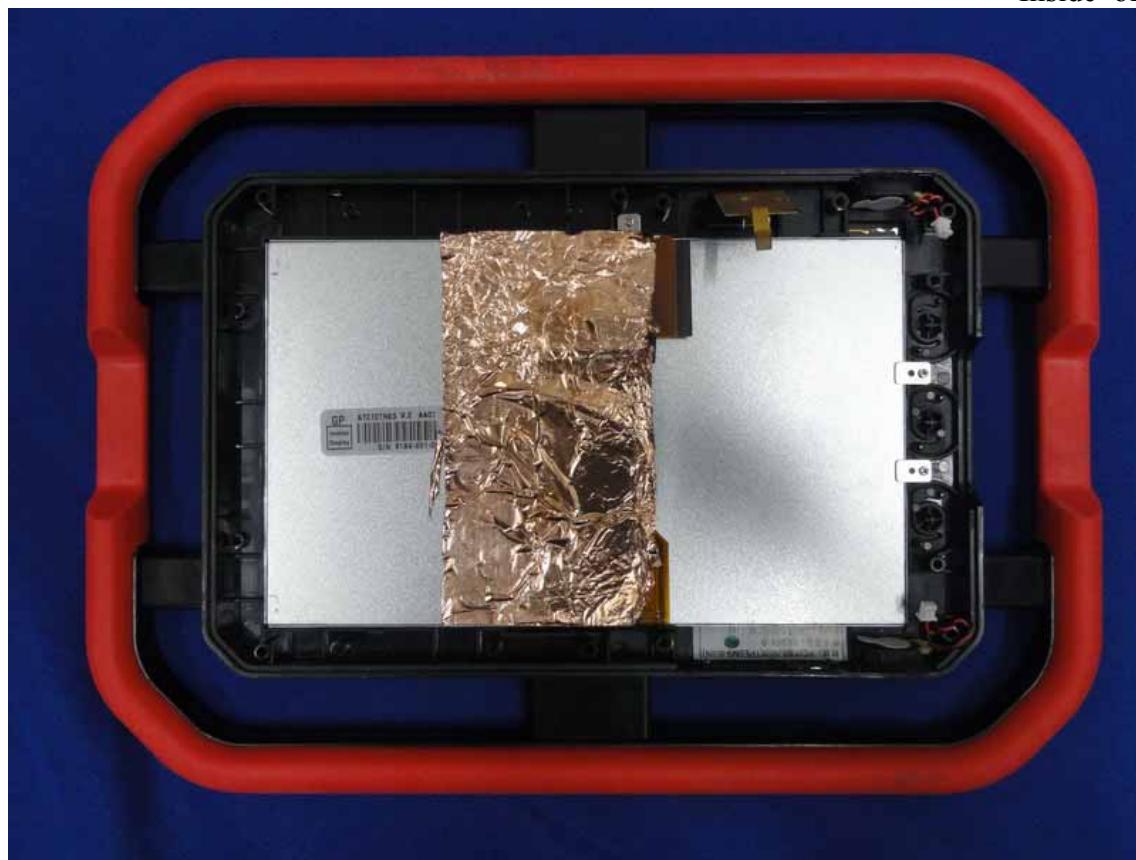

Figure 7
LCD Panel of the DUT

Figure 8
LCD Panel of the DUT

Figure 9
Inside of the DUT


Figure 10
Inside of the DUT

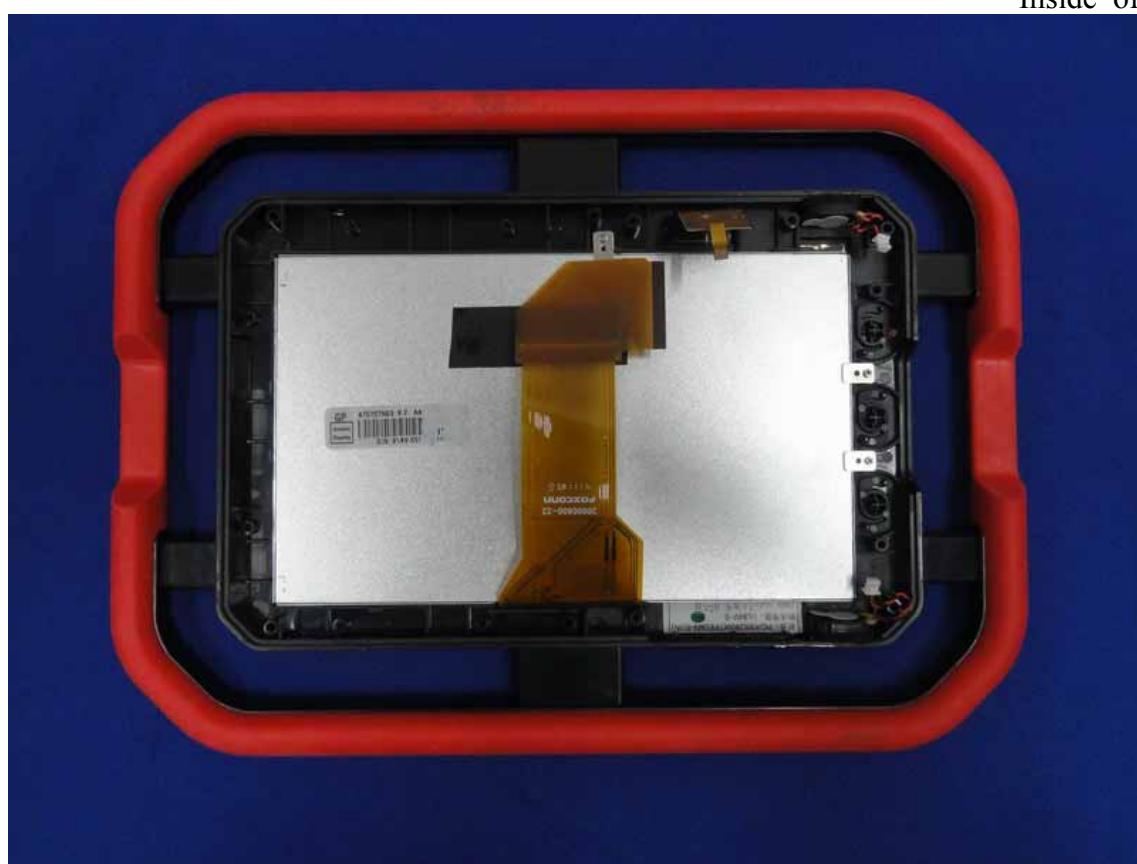
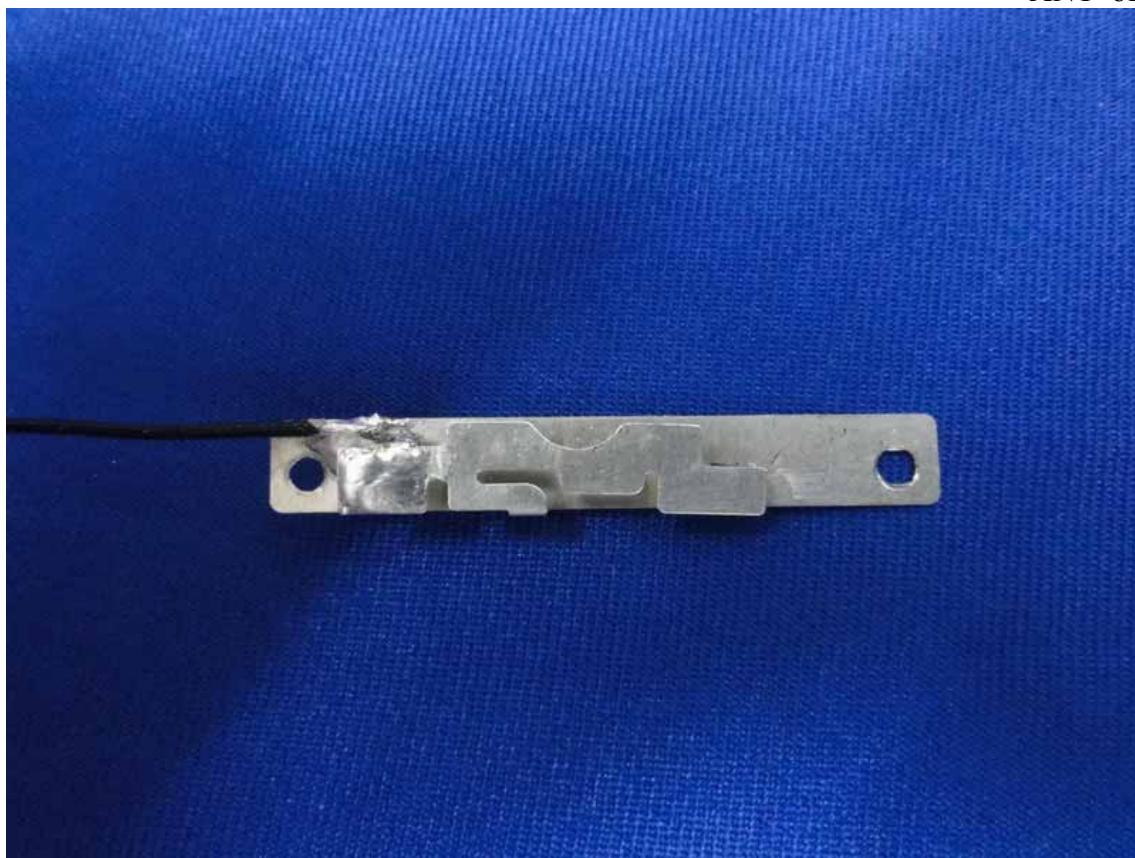

Figure 11
Inside of the DUT

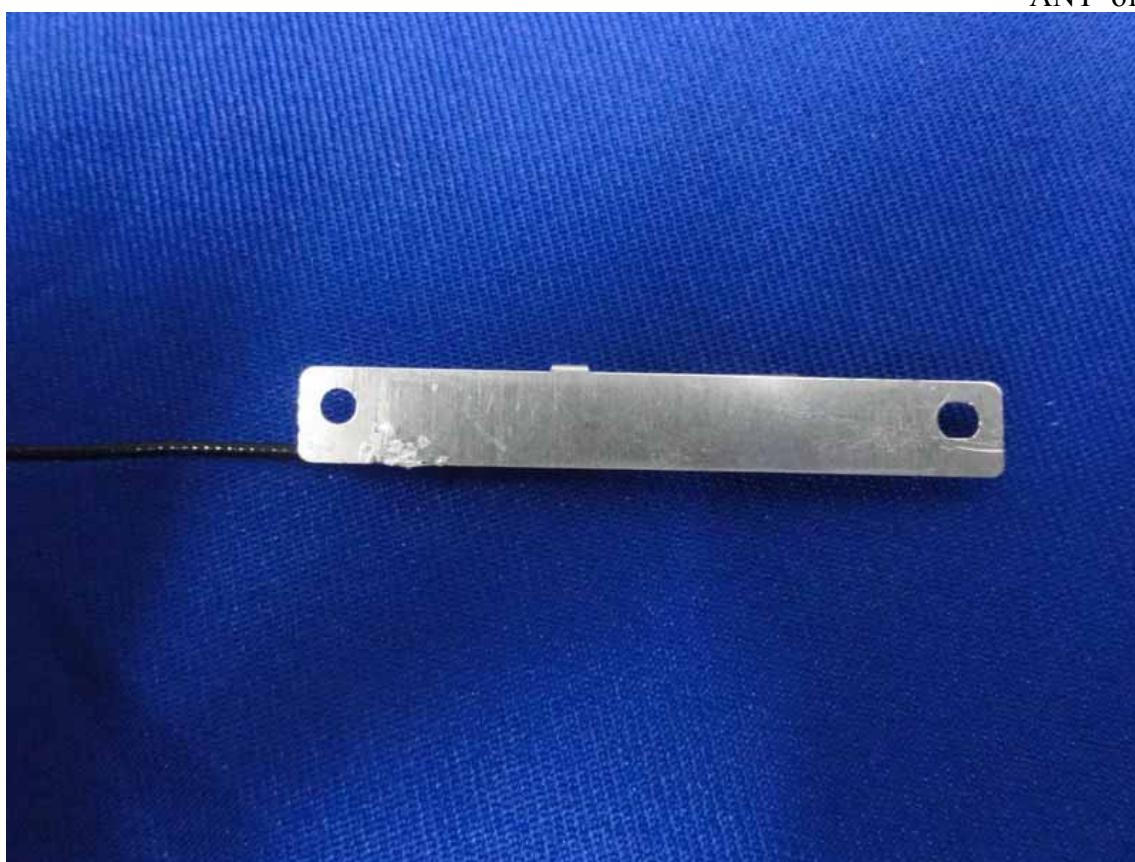
Figure 12
Inside of the DUT

Figure 13
Inside of the DUT

Figure 14
Inside of the DUT

Figure 15
Inside of the DUT


Figure 16
Inside of the DUT


Figure 17
Inside of the DUT

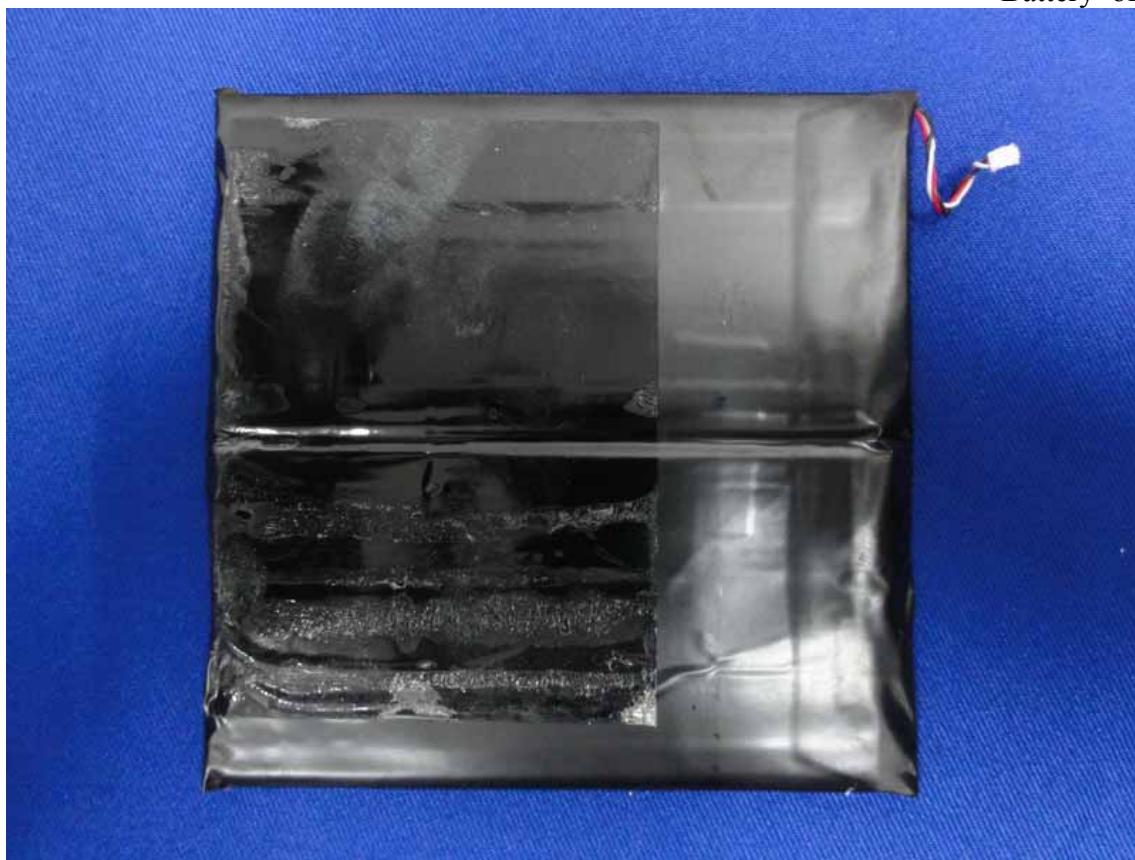
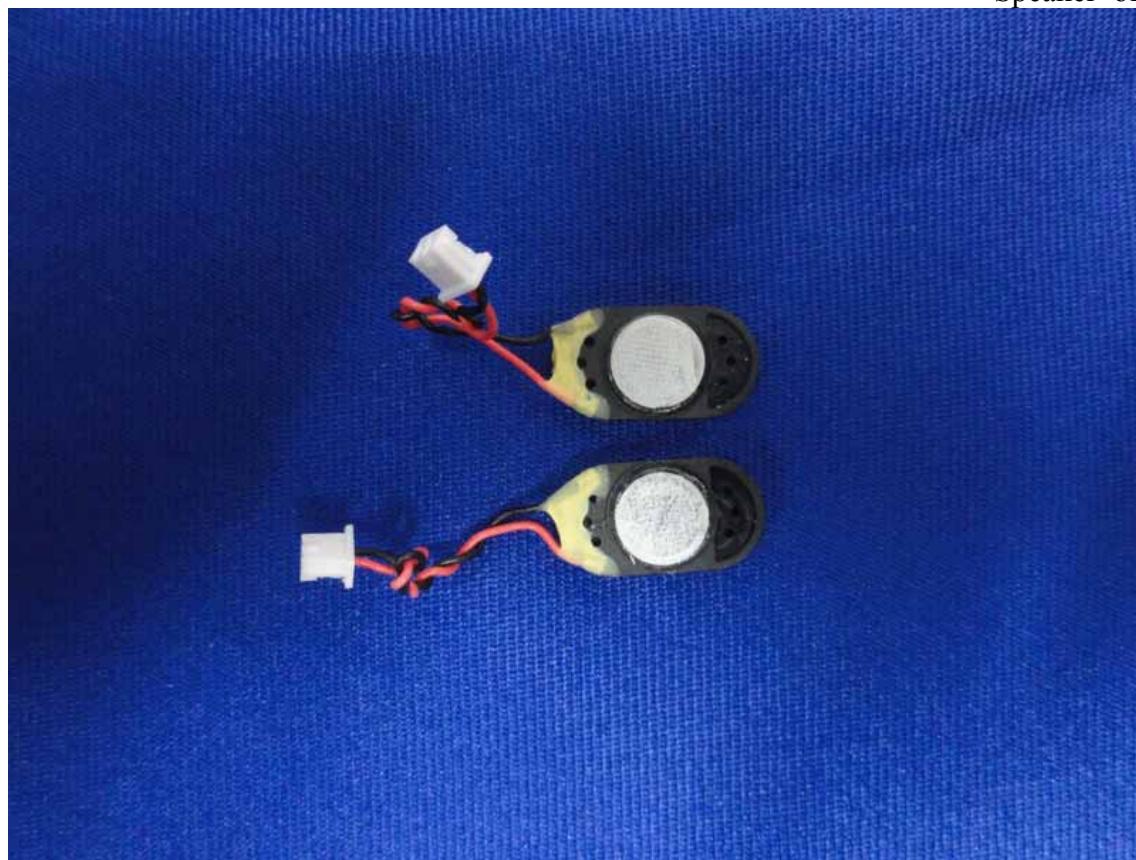

Figure 18
ANT of the DUT

Figure 19
ANT of the DUT


Figure 20
Battery of the DUT

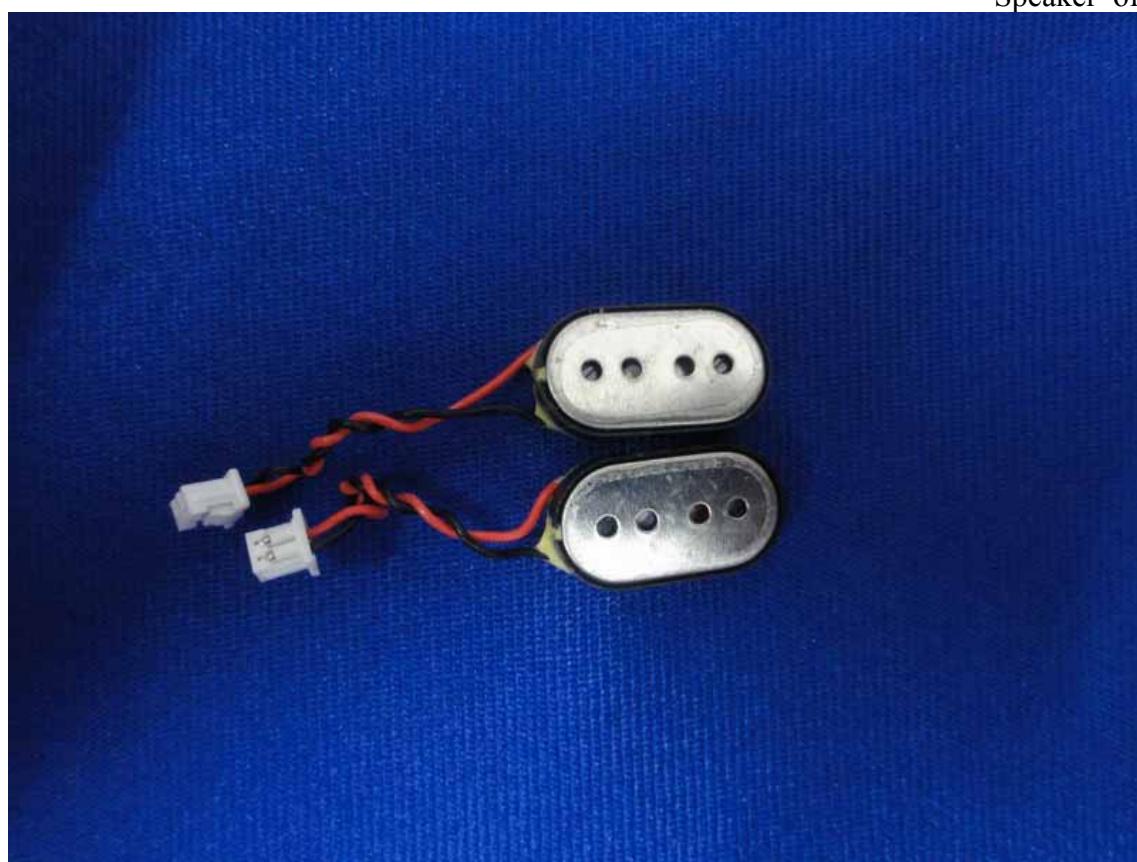

Figure 21
Battery of the DUT

Figure 22
Speaker of the DUT

Figure 23
Speaker of the DUT

Figure 24
USB Cable

