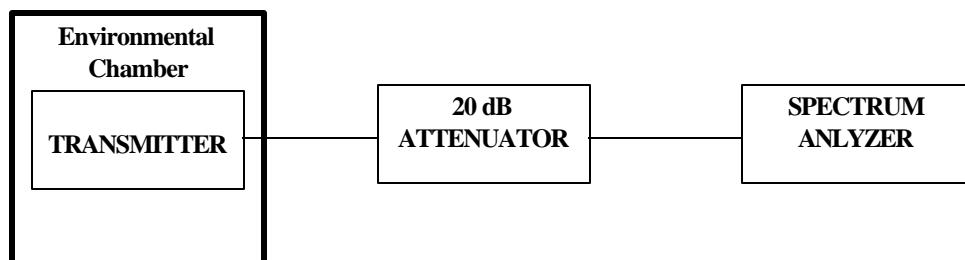


6.8. FREQUENCY STABILITY @ FCC §15.225(C)

6.8.1. Limits

The frequency tolerance of the carrier signal shall be maintained within <plus-minus>0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery


6.8.2. Method of Measurements

Refer to FCC § 2.1055 and Exhibit 8, Section 8.4 of this report for detailed test procedures.

6.8.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird	DC – 22 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40° to +60 ° C range

6.8.4. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.8.5. Test Data

Frequency Band:	13.553 - 13.567 MHz
Center Frequency:	13.56 MHz
Full Power Level:	50.7 dBuV/m at 10meters
Frequency Tolerance Limit:	$\pm 0.01\%$ or 1356 Hz
Max. Frequency Tolerance Measured:	-183 Hz or 0.0013%
Input Voltage Rating:	12 Vdc

Ambient Temperature (°C)	Center Frequency & RF Power Output Variation		
	Supply Voltage (Nominal)	Supply Voltage (85 % of lowest rating)	Supply Voltage (115% of highest rating)
	12 Vdc	6.8 Vdc	13.8 Vdc
-30	-183	N/A	N/A
-20	-60	N/A	N/A
-10	-9	N/A	N/A
0	+66	N/A	N/A
+10	+31	N/A	N/A
+20	0	+3	+3
+30	-6	N/A	N/A
+40	-9	N/A	N/A
+50	-14	N/A	N/A

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.9. AC POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPART B, PARA.15.207

6.9.1. Limits

The equipment shall meet the limits of the following table:

CISPR 22/EN 55022 CLASS B LIMITS			
Test Frequency Range (MHz)	Quasi-Peak (dB mV)	Average* (dB mV)	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average

* Decreasing linearly with logarithm of frequency

6.9.2. Method of Measurements

Refer to Sec. 8.2 in Exhibit 8 of this test report & ANSI C63.4:1992

6.9.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz 50 Ohms / 50 μ H
12'x16'x12' RF Shielded Chamber	RF Shielding

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.9.4. Test Data

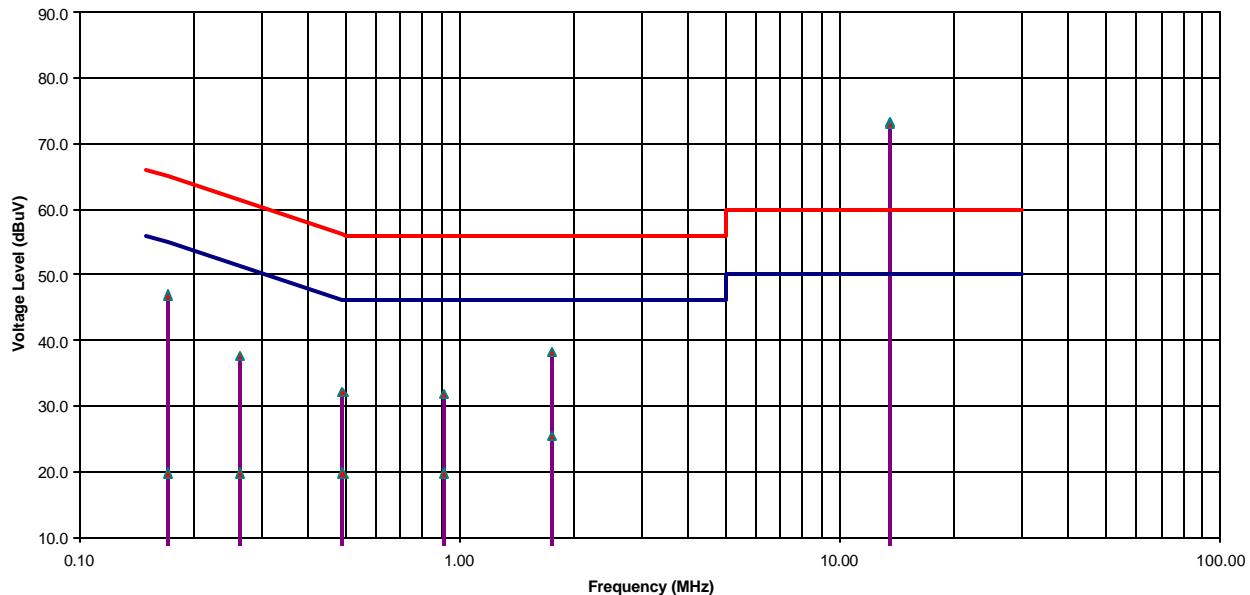
The emissions were scanned from 150 kHz to 30 MHz at AC mains Terminal via a LISN, and all emissions less than 30 dB below the limits were recorded.

FREQUENCY (MHz)	RF LEVEL (dBuV)	RECEIVER DETECTOR (P/QP/AVG)	QP LIMIT (dBuV)	AVG LIMIT (dBuV)	MARGIN (dB)	PASS/ FAIL	LINE TESTED (L1/L2)
0.17	46.9	QP	64.9	54.9	-18.0	PASS	L1
0.17	19.8	AVG	64.9	54.9	-35.1	PASS	L1
0.26	37.7	QP	61.3	51.3	-23.6	PASS	L1
0.26	19.8	AVG	61.3	51.3	-31.5	PASS	L1
0.49	32.1	QP	56.1	46.1	-24.1	PASS	L1
0.49	19.8	AVG	56.1	46.1	-26.3	PASS	L1
0.91	31.8	QP	56.0	46.0	-24.2	PASS	L1
0.91	19.8	AVG	56.0	46.0	-26.2	PASS	L1
1.75	38.2	QP	56.0	46.0	-17.8	PASS	L1
1.75	25.5	AVG	56.0	46.0	-20.6	PASS	L1
13.59	73.4	QP	No Limit for Tx Carrier	No Limit for Tx Carrier	--	PASS	L1
<hr/>							
0.18	51.3	QP	64.7	54.7	-13.5	PASS	L2
0.18	31.5	AVG	64.7	54.7	-23.3	PASS	L2
0.22	46.8	QP	62.7	52.7	-15.9	PASS	L2
0.22	29.8	AVG	62.7	52.7	-22.9	PASS	L2
0.35	34.6	QP	58.9	48.9	-24.3	PASS	L2
0.35	24.6	AVG	58.9	48.9	-24.4	PASS	L2
0.40	34.8	QP	57.8	47.8	-23.0	PASS	L2
0.40	27.7	AVG	57.8	47.8	-20.1	PASS	L2
0.87	19.8	QP	56.0	46.0	-36.2	PASS	L2
0.87	19.8	AVG	56.0	46.0	-26.2	PASS	L2
2.08	33.2	QP	56.0	46.0	-22.8	PASS	L2
2.08	26.1	AVG	56.0	46.0	-19.9	PASS	L2
13.59	73.8	QP	No Limit for Tx Carrier	No Limit for Tx Carrier	--	PASS	L2

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>


File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

CANSEC SYSTEMS LTD.
ZODIAC SMARTCARD, Model ZODRCS
AC Conducted Emissions - Line #1 (Hot)

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

CANSEC SYSTEMS LTD.
ZODIAC SMARTCARD, Model: ZODRCS
AC Conducted Emissions - Line #2 (Neutral)

ULTRATECH GROUP OF LABS

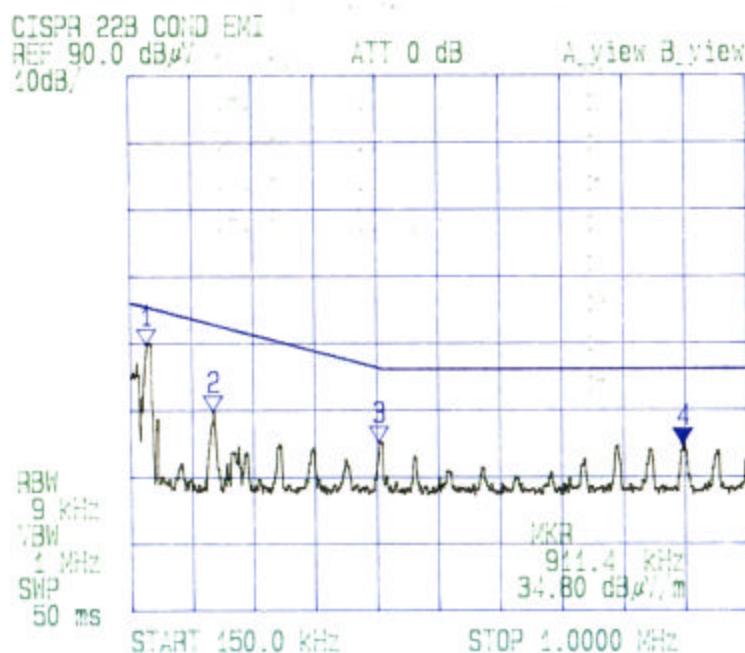
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


UltraTech Group of Labs

Applicant: Cansec
Product: Fingerprint Reader
Model:

AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector: PEAK QUASI-PEAK AVERAGE Temp: 20°C Humidity: 27%
Line Tested: 61 136V Test Tech: Wayne Test Date: Nov 26 2002
Comments: FCC15-B

Plot #1

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

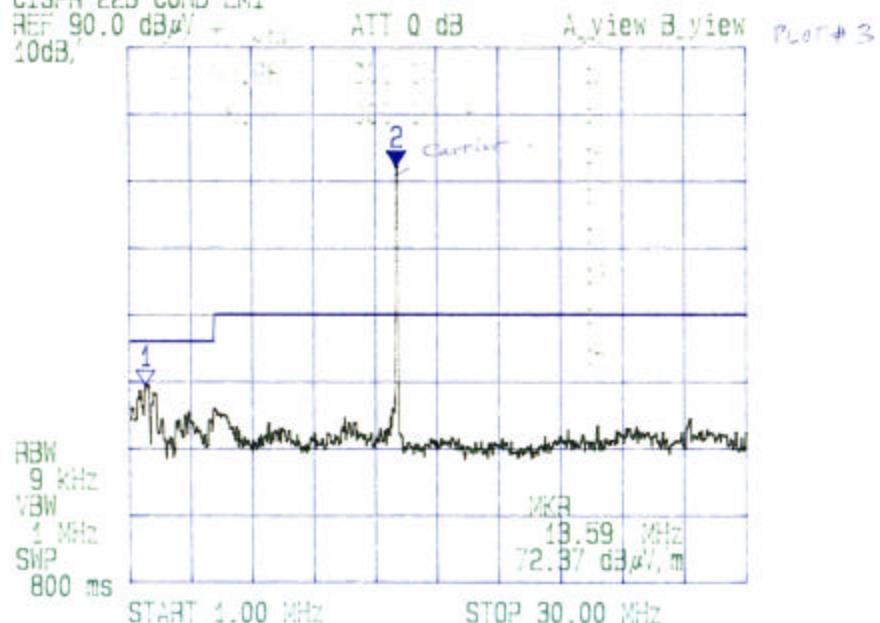
File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

UltraTech Group of Labs

Applicant: Cansoc
Product: ZODIAC Fingerprint Reader
Model:

AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

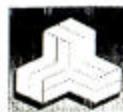

Detector: PEAK QUASI-PEAK AVERAGE Temp: 20°C Humidity: 27%

Line Tested: 4 120V Test Tech: Wayne Test Date: Nov 21 2002

Comments: Test B

Plot # 2.

CISPR 22B COND EMI
REF 90.0 dB μ V + 10dB
10dB


ULTRATECH GROUP OF LABS

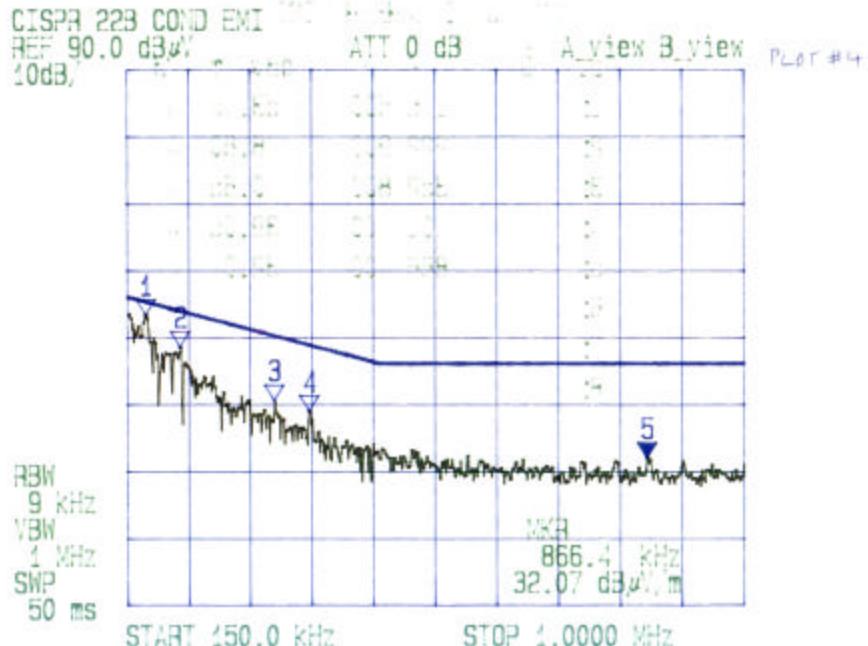
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

UltraTech Group of Labs

Applicant: CanSec
Product: Fingerprint Reader
Model:


AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector: PEAK QUASI-PEAK AVERAGE Temp: 20°C Humidity: 26%

Line Tested: L1 120 V Test Tech: Wayne Test Date: Nov 25 2002

Comments: FCC15 B

Plot #3

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

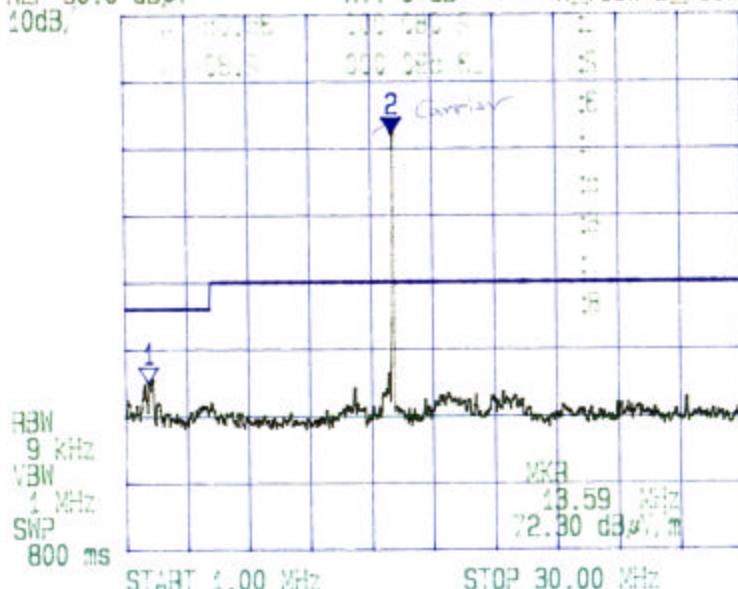
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

UltraTech Group of Labs

Applicant: Cian Sec
Product: Fingerprint Reader
Model:

AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector: <input type="checkbox"/> PEAK <input checked="" type="checkbox"/> QUASI-PEAK <input type="checkbox"/> AVERAGE	Temp: 20°C	Humidity: 25%
Line Tested: L ₁ 120 V	Test Tech: <u>Wayne</u>	Test Date: <u>6/15/2002</u>
Comments: <u>FCC 15</u> <u>B</u>		


Plot #4

CISPR 22B COND. EMT
REF 90.0 dBµV T 10dB
10dB

ATT 0 dB

A_view B_view

PLOT#5


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Line Conducted)	PROBABILITY DISTRIBUTION	UNCERTAINTY (dB)	
		9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	± 1.5	± 1.5
LISN coupling specification	Rectangular	± 1.5	± 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	± 0.3	± 0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	± 0.2	± 0.3
System repeatability	Std. deviation	± 0.2	± 0.05
Repeatability of EUT	--	--	--
Combined standard uncertainty	Normal	± 1.25	± 1.30
Expanded uncertainty U	Normal (k=2)	± 2.50	± 2.60

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)} = \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} = \pm 1.30 \text{ dB}$$


$$U = 2u_c(y) = \pm 2.6 \text{ dB}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
 Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Radiated Emissions)	PROBABILITY DISTRIBUTION	UNCERTAINTY (\pm dB)	
		3 m	10 m
Antenna Factor Calibration	Normal (k=2)	± 1.0	± 1.0
Cable Loss Calibration	Normal (k=2)	± 0.3	± 0.5
EMI Receiver specification	Rectangular	± 1.5	± 1.5
Antenna Directivity	Rectangular	± 0.5	± 0.5
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase center variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	± 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi) 0.3 (Lp)$ Uncertainty limits $20\log(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	+1.1 -1.25	± 0.5
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 8. MEASUREMENT METHODS

8.1. GENERAL TEST CONDITIONS

The following test conditions shall be applied throughout the tests covered in this report.

8.1.1. Normal temperature and humidity

- Normal temperature: +15°C to +35°C
- Relative Humidity: +20% to 75%

The actual values during tests shall be recorded in the test report.

8.1.2. Normal power source

8.1.2.1. Mains Voltage

The nominal test voltage of the equipment to be connected to mains shall be the nominal mains voltage which is the declared voltage or any of the declared voltages for which the equipment was designed.

The frequency of test power source corresponding to the AC mains shall be between 59 Hz and 61 Hz.

8.1.2.2. Battery Power Source.

For operation from battery power sources, the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

8.1.3. Operating Condition of Equipment under Test

- All tests were carried out while the equipment operated at the following frequencies:
 - The lowest operating frequency,
 - The middle operating frequency and
 - The highest operating frequency
- Modulation were applied using the Test Data sequence
- The transmitter was operated at the highest output power, or in the case the equipment able to operate at more than one power level, at the lowest and highest output powers

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225

Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.2. METHOD OF MEASUREMENTS - AC MAINS CONDUCTED EMISSIONS

- AC Mains conducted emissions measurements were performed in accordance with the standard against appropriate limits for each detector function.
- The test was performed in the shielded room, 16'(L) by 16'(W) by 12'(H).
- The test was performed over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio noise voltage which was conducted from the EUT power-input terminals that were directly connected to a public power network.
- The EUT normally received power from another device that connects to the public utility ac power lines, measurements would be made on that device with the EUT in operation to ensure that the device continues to comply with the appropriate limits while providing the EUT with power.
- If the EUT operates only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines, AC Mains conducted measurements are not required.
- Table-top devices were placed on a platform of nominal size 1 m by 1.5m raised 80 cm above the conducting ground plane.
- The EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the power source. All unused 50-Ohm connectors of the LISN was terminated in 50-ohm when not connected to the measuring instruments.
- The line cord of the EUT connected to one LISN which was connected to the measuring instrument. Those power cords for the units of devices not under measurement were connected to a separate multiple ac outlet. Drawings and photographs of typically conducted emission test setups were shown in the Test Report. Each current-carrying conductor of the EUT shall be individually tested.
- The EUT was normally operated with a ground (safety) connection, the EUT was connected to the ground at the LISN through a conductor provided in the lead from the ac power mains to the LISN.
- The excess length of the power cord was folded back and forth in an 8-shape on a wooden strip with a vertical prong located on the top of the LISN case.
- The EUT was set-up in its typical configuration and operated in its various modes as described in this test report.
- A preliminary scan was made by using spectrum analyzer system with the detector function set to PEAK mode (9 KHz RBW, VBW > RBW), frequency band 450 kHz - 30 MHz.

- The maximum conducted emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1. Monitor the frequency range of interest at a fixed EUT azimuth.
- Step2. Manipulate the system cables and peripheral devices to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3. The effects of various modes of operation is examined. This is done by varying equipment operation modes as step 2 is being performed.
- Step4. After completing step 1 through 3, record EUT and peripheral device configuration, mode of operation, cable configuration, signal levels and frequencies for final test.

- Each highest signal level at the maximized test configuration was zoomed in a small frequency span on the spectrum analyzer's display (the manipulation of cables and peripheral devices and EUT operation modes might have to be repeated to obtain the highest signal level with the spectrum analyzer set to PEAK detector mode 10 KHz RBW and VBW > RBW). The spectrum analyzer was then set to CISPR QUASI-PEAK detector mode (9 KHz RBW, 1 MHz



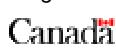
ULTRATECH GROUP OF LABS

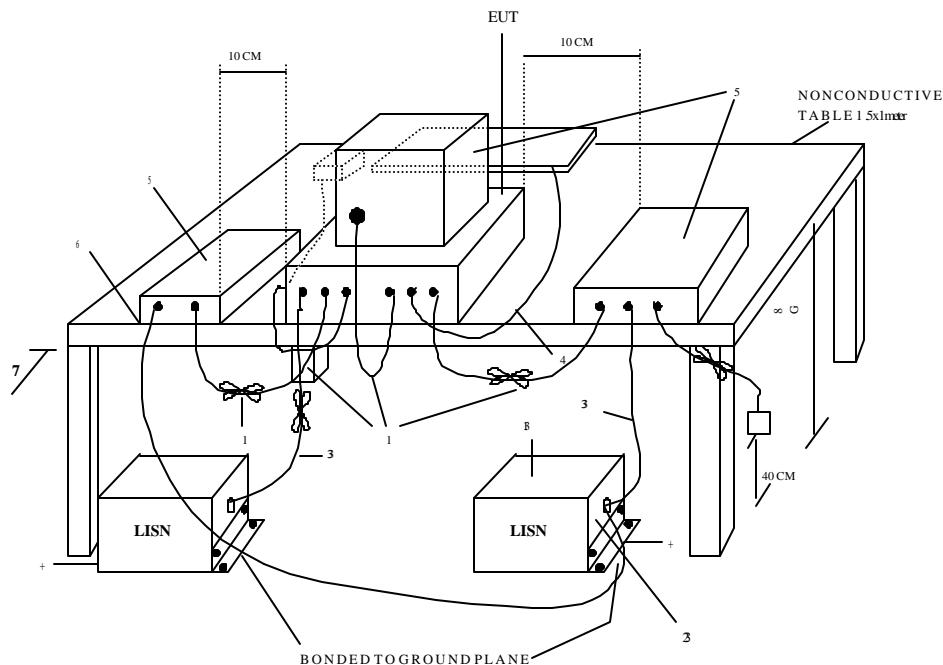
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

VBW) and AVERAGE detector mode (9 kHz RBW, 1 Hz VBW). The final highest RF signal levels and frequencies were record.




ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

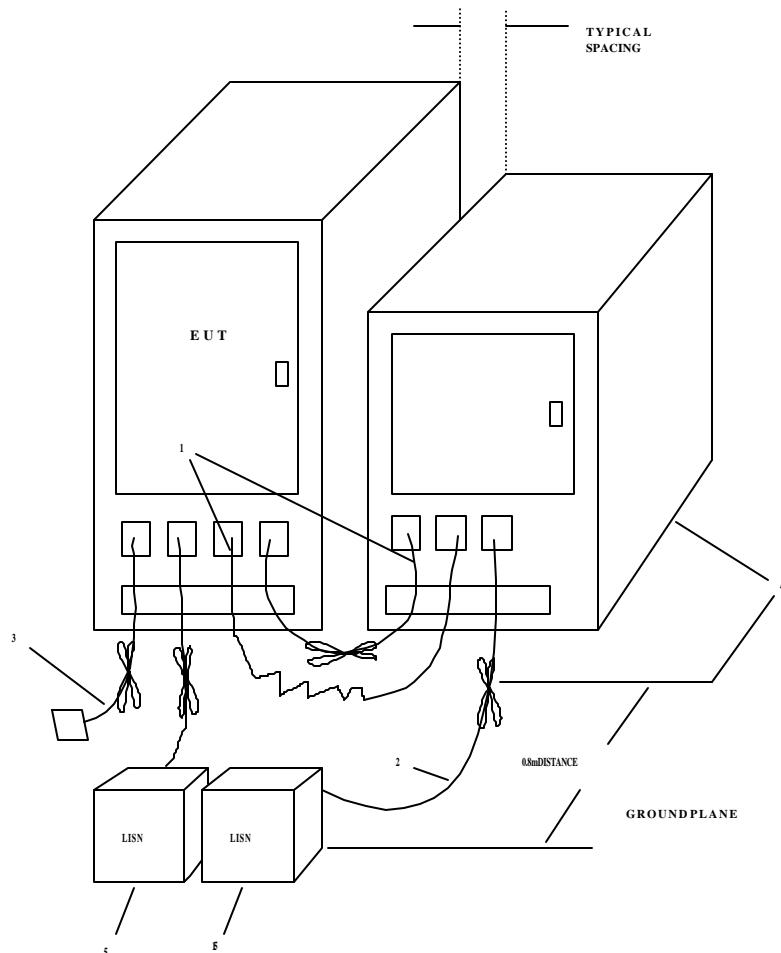
+LISNs may have to be moved to the side to meet 3.3 below

LEGEND:

1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back for forming a bundle 30 to 40 cm long, hanging approximately in the middle between ground plane and table.
2. Cables that are connected to a peripheral shall be bundled in center. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.
3. EUT connected to one LISN. Unused LISN connectors shall be terminated in 50 Ohm. LISN can be placed on top of, or immediately beneath, ground plane.
4. All other equipment powered from second LISN.
5. Multiple outlet strip can be used for multiple power cords of EUT equipment.
6. LISN at least 80 cm from nearest part of EUT chassis.
7. Cables of hand-operated devices, such as keyboards, mice, etc., have to be placed as close as possible to the host.
8. Non-EUT components being tested.
9. Rear of EUT, including peripherals, shall be all aligned and flush with rear of EUT.
10. Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 5.2).

Tabletop Equipment Conducted Emissions

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

LEGEND:

1. Excess I/O cables shall be bundled in center. If binding is not possible, the cables shall be arranged in serpentining. Bundling shall not exceed 40 cm in length.

2. Excess power cords shall be bundled in the center or shortened to an appropriate length.

3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using correct terminating impedance. If binding is not possible, the cable shall be arranged in serpentining.

4. EUT and all cables shall be insulated from ground plane by 3 to 12 mm of insulating material.

5. EUT connected to one LISN. LISN can be placed on top of, or immediately beneath, ground plane.
 6. All other equipment powered from second LISN.

Floor-Standing Equipment Conducted Emissions

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
 Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.3. SPURIOUS EMISSIONS

For both conducted and radiated measurements, the spurious emissions were scanned from the lowest frequency generated by the EUT or 10 MHz whichever is lower to 10th harmonic of the highest frequency generated by the EUT.

- The radiated emission measurements were performed at the UltraTech's 10 meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz - 40 GHz).
 3. The test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:
 - RBW = 100 kHz for $f < 1\text{GHz}$ and RBW = 1 MHz for $f \geq 1\text{GHz}$
 - VBW = RBW
 - Sweep = auto
 - Detector function = peak
 - Trace = max hold
 - Follows the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc.. A pre-amp and highpass filter are required for this test, in order to provide the measuring system with sufficient sensitivity.
 - Allow the trace to stabilize.
 - The peak reading of the emission, after being corrected by the antenna correction factor, cable loss, pre-amp gain, etc.... is the peak field strength which comply with the limit specified in Section 15.35(b)

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\boxed{FS = RA + AF + CF - AG}$$

Where	FS	=	Field Strength
	RA	=	Receiver/Analyzer Reading
	AF	=	Antenna Factor
	CF	=	Cable Attenuation Factor
	AG	=	Amplifier Gain

Example: If a receiver reading of 60.0 dBuV is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:
Field Level = $60 + 7.0 + 1.0 - 30 = 38.0\text{ dBuV/m}$.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Field Level = $10^{(38/20)} = 79.43 \text{ uV/m}$.

- Submit this test data
- Now set the VBW to 10Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100ms, then the reading obtained may be further adjusted by a “duty cycle correction factor”, derived from $10\log(\text{dwell time}/100\text{mS})$ in an effort to demonstrate compliance with the 15.209.
- Submit test data

Maximizing The Radiated Emissions:

- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step4: Move the antenna over its full allowable range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.
- Step5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.4. 26 DB BANDWIDTH MEASUREMENTS

- Couple the RF output signal to the spectrum analyzer by means of direct connection or by a receiving antenna.
- The spectrum analyzer shall be set as follows:
 - Span: Minimum span to fully display the entire emission, approximately 3 x emission BW.
 - Resolution RBW: 1% to 3% of the approximate emission BW
 - Video VBW: 3 x RBW
 - EMI Detector: Peak
 - Sweep Time: Coupled or set to a slow rate
 - Trace: Max-hold
- Place the marker at both sides of the emission slope and at -20 dB down from the peak value.
- The difference of frequencies of 2 markers will be the 20 dB bandwidth
- Record and plot the test results.

8.5. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (c) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (d) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements

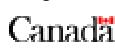
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: CSC-019F15.225
Nov. 29, 2002

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

31040/SIT

C-1376

46390-2049

200093-0

00-034