

## TEST REPORT

**APPLICANT** : NTT Advanced Technology Corporation  
**ADDRESS** : 2-1-1, Nishi-shinjuku, Shinjuku-ku, Tokyo, 163-0431, Japan

**PRODUCTS** : Audio Conferencing System

**MODEL NO.** : R-Talk 800EX

**SERIAL NO.** : No.2  
No.1

**FCC ID** : OC9-RT800EX001

**TEST STANDARD** : CFR 47 FCC Rules and Regulations Part 15

**TESTING LOCATION** : Japan Quality Assurance Organization  
KITA-KANSAI Testing Center  
1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

**TEST RESULTS** : Passed

**DATE OF TEST** : April 4 ~ May 3, 2012



**VLAC**  
Lab Accreditation  
VLAC-001-2

Kousei Shibata  
Manager  
Japan Quality Assurance Organization  
KITA-KANSAI Testing Center  
SAITO EMC Branch  
7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

---

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

TABLE OF CONTENTS

|                                                         | Page      |
|---------------------------------------------------------|-----------|
| <b>Documentation</b> .....                              | <b>3</b>  |
| 1   Test Regulation.....                                | 3         |
| 2   Test Location.....                                  | 3         |
| 3   Recognition of Test Laboratory.....                 | 3         |
| 4   Description of the Equipment Under Test.....        | 4         |
| 5   Test Condition.....                                 | 5         |
| 6   Preliminary Test and Test Setup .....               | 7         |
| 7   Equipment Under Test Modification.....              | 14        |
| 8   Responsible Party .....                             | 14        |
| 9   Deviation from Standard.....                        | 14        |
| 10   Test Results.....                                  | 15        |
| 11   Summary.....                                       | 18        |
| 12   Operating Condition.....                           | 19        |
| 13   Test Configuration.....                            | 20        |
| 14   Equipment Under Test Arrangement (Drawings) .....  | 21        |
| <b>Appendix A: Test Data</b> .....                      | <b>22</b> |
| <b>Appendix B: Test Arrangement (Photographs)</b> ..... | <b>60</b> |
| <b>Appendix C: Test Instruments</b> .....               | <b>64</b> |

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

|            |                        |            |                                  |
|------------|------------------------|------------|----------------------------------|
| <b>EUT</b> | : Equipment Under Test | <b>EMC</b> | : Electromagnetic Compatibility  |
| <b>AE</b>  | : Associated Equipment | <b>EMI</b> | : Electromagnetic Interference   |
| <b>N/A</b> | : Not Applicable       | <b>EMS</b> | : Electromagnetic Susceptibility |
| <b>N/T</b> | : Not Tested           |            |                                  |

- indicates that the listed condition, standard or equipment is applicable for this report.  
 - indicates that the listed condition, standard or equipment is not applicable for this report.

## Documentation

### 1 Test Regulation

Applied Standard : CFR 47 FCC Rules and Regulations Part 15  
Subpart C – Intentional Radiators

Test Requirements : §15.247, §15.207 and §15.209

Test Procedure : ANSI C63.4-2003

The tests were performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000.  
The test set-up was made in accordance to the general provisions of ANSI C63.4-2003.

### 2 Test Location

Japan Quality Assurance Organization (JQA)  
KITA-KANSAI Testing Center SAITO EMC Branch  
7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan  
MINOH Test Site (KITA-KANSAI Testing Center)  
7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan  
KAMEOKA EMC Branch  
9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto, 621-0126, Japan

### 3 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility of Testing Division is registered by the following bodies.

VLAC Code : VLAC-001-2 (Effective through : March 30, 2014)  
VCCI Registration No. : A-0002 (Expiry date : March 30, 2014)  
BSMI Recognition No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006  
(Effective through : September 14, 2013)  
IC Registration No. : 2079E-3, 2079E-4 (Effective through : July 20, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI.  
(Effective through : February 22, 2013)

## 4 Description of the Equipment Under Test

### 4.1 General Information

1. Manufacturer : NTT Advanced Technology Corporation  
2-1-1, Nishi-shinjuku, Shinjuku-ku, Tokyo, 163-0431, Japan
2. Products : Audio Conferencing System
3. Model No. : R-Talk 800EX
4. Serial No. : No.2  
: No.1
5. Product Type : Pre-production
6. Date of Manufacture : February, 2012
7. Transmitting Frequency : 2402.0 MHz(00CH) –2480.0MHz(78CH)
8. Receiving Frequency : 2402.0 MHz(00CH) –2480.0MHz(78CH)
9. Max. RF Output Power : -4.36dBm(Measured Value)
10. Power Rating : 5 VDC (for AC Adapter)  
Model: SA103L-05, Input: 100-240 VAC 50/60Hz, Output: 5VDC  
6 VDC (for Battery)
11. EUT Grounding : None
12. Category : Spread Spectrum Transmitter(FHSS).
13. Modulation Type : Bluetooth 2.0 + EDR  
GFSK,  $\pi/4$ DQPSK and 8DPSK
14. Antenna Type : Chip Antenna (Integral)
15. Antenna Gain : 2.0 dBi
16. EUT Authorization : Certification
17. Receive Date of EUT : April 2, 2012

### 4.2 Channel Plan

The carrier spacing is 1 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

$$\begin{aligned}\text{Transmitting Frequency (in MHz)} &= 2402.0 + n \\ \text{Receiving Frequency (in MHz)} &= 2402.0 + n \\ \text{where, } n &: \text{channel number } (0 \leq n \leq 78)\end{aligned}$$

## 5 Test Condition

### 5.1 Channel Separation

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.2 Minimum Hopping Channel

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.3 Occupied Bandwidth

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.4 Dwell Time

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.5 Peak Output Power (Conduction)

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.6 Spurious Emission (Conduction)

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                               |                                                          |
|-------------------|-----------------------------------------------|----------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Shielded room (S1) | <input type="checkbox"/> - Shielded room (S2)            |
|                   | <input type="checkbox"/> - Shielded room (S3) | <input checked="" type="checkbox"/> - Shielded room (S4) |
| MINOH             | <input type="checkbox"/> - Shielded room      |                                                          |
| KAMEOKA           | <input type="checkbox"/> - Shielded room      | <input type="checkbox"/> - Conducted emission facility   |

Test instruments : Refer to Appendix C.

### 5.7 AC Powerline Conducted Emission

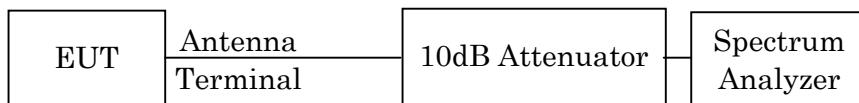
The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

|                   |                                                             |                                                        |
|-------------------|-------------------------------------------------------------|--------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Anechoic chamber (A1)            | <input type="checkbox"/> - Measurement room (M1)       |
|                   | <input checked="" type="checkbox"/> - Measurement room (M2) | <input type="checkbox"/> - Measurement room (M3)       |
|                   | <input type="checkbox"/> - Shielded room (S1)               | <input type="checkbox"/> - Shielded room (S2)          |
| MINOH             | <input type="checkbox"/> - Shielded room                    |                                                        |
|                   | <input type="checkbox"/> - Anechoic chamber                 |                                                        |
| KAMEOKA           | <input type="checkbox"/> - Shielded room                    | <input type="checkbox"/> - Conducted emission facility |
|                   | <input type="checkbox"/> - 1st open site                    |                                                        |

Test instruments : Refer to Appendix C.

### 5.8 Field Strength of Spurious Radiation

The requirements are  - Applicable  - Tested.  - Not tested by applicant request.]  
 - Not Applicable

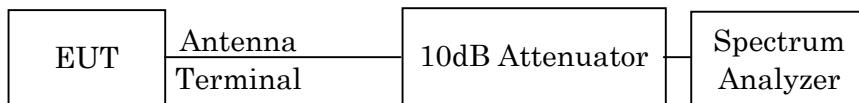

|                   |                                                  |                                                             |
|-------------------|--------------------------------------------------|-------------------------------------------------------------|
| Test site : SAITO | <input type="checkbox"/> - Anechoic chamber (A1) | <input checked="" type="checkbox"/> - Anechoic chamber (A2) |
| KAMEOKA           | <input type="checkbox"/> - 1st open site         |                                                             |

Test instruments : Refer to Appendix C.

## 6 Preliminary Test and Test Setup

### 6.1 Channel Separation

The test system is shown as follows:

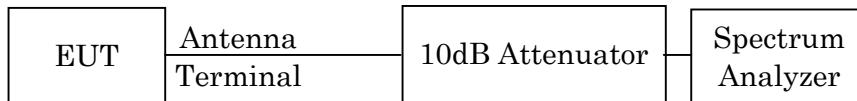



The setting of the spectrum analyzer are shown as follows:

|                 |               |
|-----------------|---------------|
| Res. Bandwidth  | 100 kHz       |
| Video Bandwidth | 300 kHz       |
| Span            | 3 MHz / 5 MHz |
| Sweep Time      | AUTO          |
| Trace           | Maxhold       |

### 6.2 Minimum Hopping Channel

The test system is shown as follows:

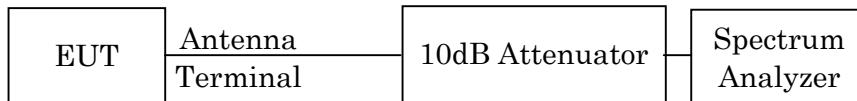



The setting of the spectrum analyzer are shown as follows:

|                 |         |
|-----------------|---------|
| Res. Bandwidth  | 300 kHz |
| Video Bandwidth | 300 kHz |
| Span            | 30 MHz  |
| Sweep Time      | AUTO    |
| Trace           | Maxhold |

### 6.3 Occupied Bandwidth

The test system is shown as follows:

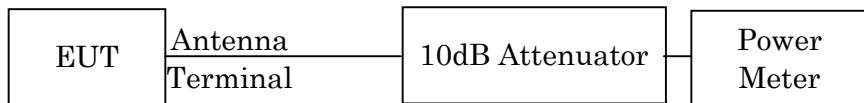



The setting of the spectrum analyzer are shown as follows:

|                 |         |
|-----------------|---------|
| Res. Bandwidth  | 10 kHz  |
| Video Bandwidth | 30 kHz  |
| Span            | 3 MHz   |
| Sweep Time      | AUTO    |
| Trace           | Maxhold |

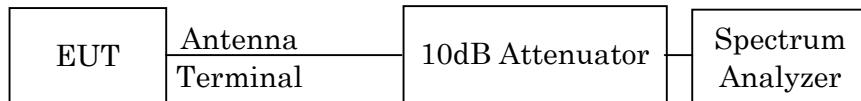
### 6.4 Dwell Time

The test system is shown as follows:




The setting of the spectrum analyzer are shown as follows:

|                 |           |
|-----------------|-----------|
| Res. Bandwidth  | 1 MHz     |
| Video Bandwidth | 1 MHz     |
| Span            | Zero Span |


## 6.5 Peak Output Power

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.



## 6.6 Spurious Emission(Conduction)

The test system is shown as follows:



The setting of the spectrum analyzer are shown as follows:

| Frequency Range | 30 MHz - 25 GHz | Band-Edge |
|-----------------|-----------------|-----------|
| Res. Bandwidth  | 100 kHz         | 100 kHz   |
| Video Bandwidth | 300 kHz         | 300 kHz   |
| Sweep Time      | AUTO            | AUTO      |
| Trace           | Maxhold         | Maxhold   |


## 6.7 AC Powerline Conducted Emission

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

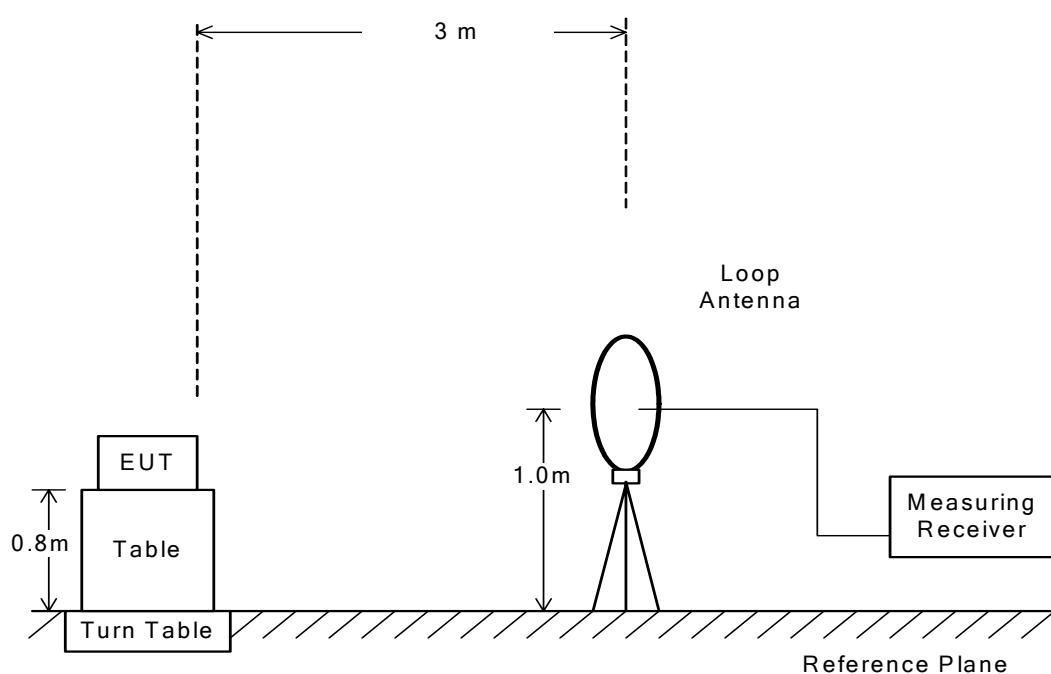
– Side View –



### NOTE

AMN : Artificial Mains Network

## 6.8 Field Strength of Spurious Emission


### 6.8.1 Field Strength of Spurious Emission 9 kHz – 30 MHz

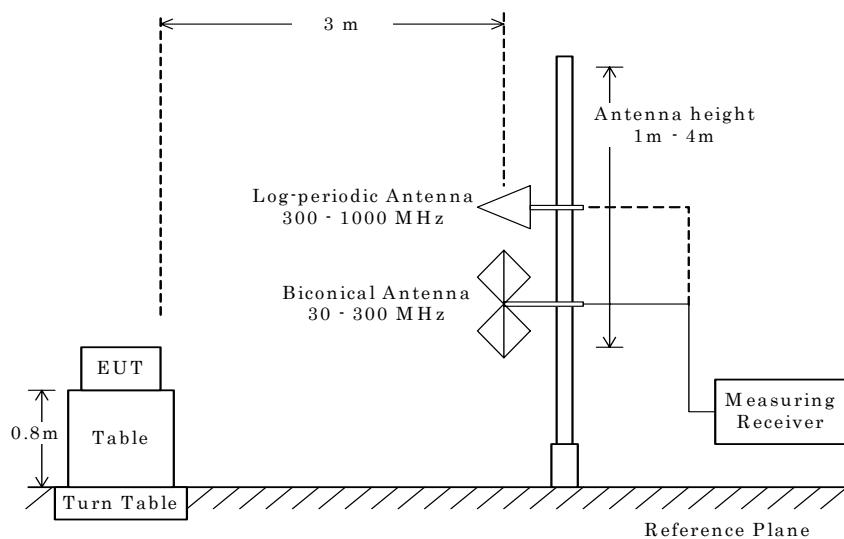
The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

– Side View –




### 6.8.2 Field Strength of Spurious Emission 30 MHz – 1000 MHz

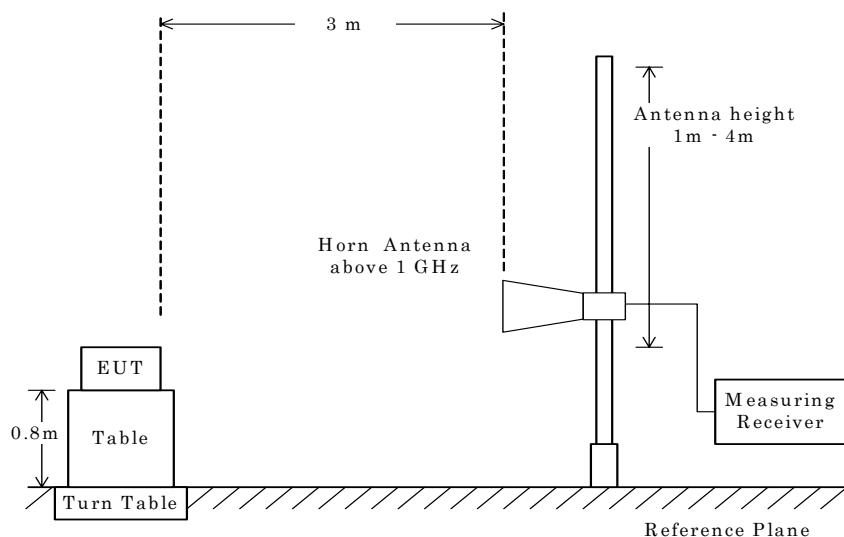
The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

– Side View –




### 6.8.3 Field Strength of Spurious Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

– Side View –



#### NOTE

The antenna height is scanned depending on the EUT's size and mounting height.

**7 Equipment Under Test Modification**

- No modifications were conducted by JQA to achieve compliance to the limitations.  
 - To achieve compliance to the limitations, the following changes were made by JQA during the compliance test.

The modifications will be implemented in all production models of this equipment.

Applicant : Not Applicable  
Date : Not Applicable  
Typed Name : Not Applicable  
Position : Not Applicable

Signatory : Not Applicable

**8 Responsible Party**Responsible Party of Test Item (Product)

Responsible Party :

Contact Person :

\_\_\_\_\_  
Signatory

**9 Deviation from Standard**

- No deviations from the standard described in clause 1.  
 - The following deviations were employed from the standard described in clause 1.

---

## 10 Test Results

### 10.1 RF Power Output (§2.1046)

#### 10.1.1 Channel Separation

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

Channel Separation is 1.002 MHz

Uncertainty of Measurement Results +/-0.9 %(2 $\sigma$ )

Remarks : \_\_\_\_\_

#### 10.1.2 Minimum Hopping Channel

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

Number of Channel is 79  
Number of Channel (AFH) is 20

Remarks : \_\_\_\_\_

#### 10.1.3 Occupied Bandwidth

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

The 99% Bandwidth is 1207.4 kHz at 2402.0 MHz  
The 20dB Bandwidth is 1306.0 kHz at 2402.0 MHz

Uncertainty of Measurement Results +/-0.9 %(2 $\sigma$ )

Remarks : \_\_\_\_\_

**10.1.4 Dwell Time**

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

Dwell Time is 309.0 msec  
Dwell Time (AFH) is 309.0 msec

Uncertainty of Measurement Results +/-0.6 %(2 $\sigma$ )

Remarks : \_\_\_\_\_

**10.1.5 Peak Output Power(Conduction)**

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

Transmitter Power is -4.36 dBm at 2402.0 MHz

Uncertainty of Measurement Results at Amplitude +/-0.8 dB(2 $\sigma$ )

Remarks : \_\_\_\_\_

**10.1.6 Spurious Emissions(Conduction)**

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

Uncertainty of Measurement Results  
9 kHz – 1GHz +/-1.0 dB(2 $\sigma$ )  
1GHz – 18GHz +/-1.2 dB(2 $\sigma$ )  
18GHz – 40GHz +/-1.6 dB(2 $\sigma$ )

Remarks : \_\_\_\_\_

**10.1.7 AC Powerline Conducted Emission**

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

Min. Limit Margin (Quasi-Peak) 10.8 dB at 0.50 MHz

Max. Limit Exceeding (Quasi-Peak)            dB at            MHz

Uncertainty of Measurement Results +/-2.7 dB(2 $\sigma$ )

Remarks : \_\_\_\_\_

**10.1.8 Field Strength of Spurious Emission**

The requirements are  - Applicable [ - Tested.  - Not tested by applicant request.]  
 - Not Applicable

- Passed  - Failed  - Not judged

Min. Limit Margin (Average) 2.1 dB at 1602.0 MHz

Max. Limit Exceeding (Average)            dB at            MHz

|                                    |                    |                               |
|------------------------------------|--------------------|-------------------------------|
| Uncertainty of Measurement Results | 9 kHz – 30 MHz     | <u>+/-1.9</u> dB(2 $\sigma$ ) |
|                                    | 30 MHz – 300 MHz   | <u>+/-4.3</u> dB(2 $\sigma$ ) |
|                                    | 300 MHz – 1000 MHz | <u>+/-5.4</u> dB(2 $\sigma$ ) |
|                                    | 1 GHz – 6 GHz      | <u>+/-4.6</u> dB(2 $\sigma$ ) |
|                                    | 6 GHz – 18 GHz     | <u>+/-5.2</u> dB(2 $\sigma$ ) |
|                                    | 18 GHz – 40 GHz    | <u>+/-5.4</u> dB(2 $\sigma$ ) |

Remarks : The measurement result is within the range of measurement uncertainty.

## 11 Summary

### General Remarks :

The EUT was tested according to the requirements of the following standard.

CFR 47 FCC Rules and Regulations Part 15

The test configuration is shown in clause 12 to 14.

The conclusion for the test items of which are required by the applied regulation is indicated under the test results.

Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

### Test Results :

The "as received" sample;

- fulfill the test requirements of the regulation mentioned on clause 1.
- doesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:



Shigeru Kinoshita  
Deputy Manager  
JQA KITA-KANSAI Testing Center  
SAITO EMC Branch

Tested by:



Shigeru Osawa  
Deputy Manager  
JQA KITA-KANSAI Testing Center  
SAITO EMC Branch

## 12 Operating Condition

Test Voltage : 6VDC (for Battery)  
230 VAC, 50Hz (For AC Adapter)  
USB Bus Power

Operation Mode :

The EUT is set with the test mode, the specification of the test mode is as followings.

- (1) Tx Mode (0ch : 2402MHz)
- (2) Tx Mode (39ch : 2441MHz)
- (3) Tx Mode (78ch : 2480MHz)
- (4) Hopping Mode
- (5) Rx Mode

Modulation Type

- 1.DH1, DH3, DH5(Modulation Type : GFSK)
- 2.2DH1, 2DH3, 2DH5(Modulation Type : pi/4-DQPSK)
- 3.3DH1, 3DH3, 3DH5(Modulation Type : 8DPSK)

Used application to controlled: The test mode is instructed by the applicant.

RF Test tool for Bluetooth Device Ver. 1.2.4

Unless otherwise stated this test report, the worst case testing settings for each mode is determined as follows, it is based on preliminary tests .(This was confirmed through separated measurement.)

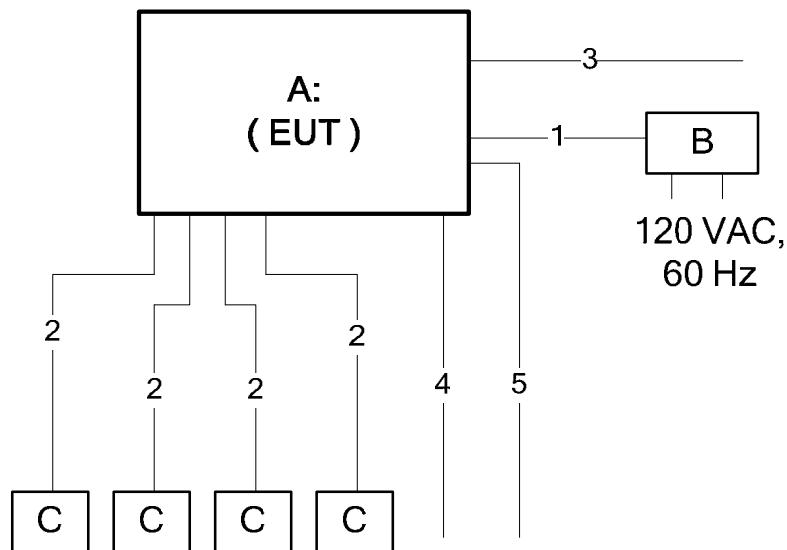
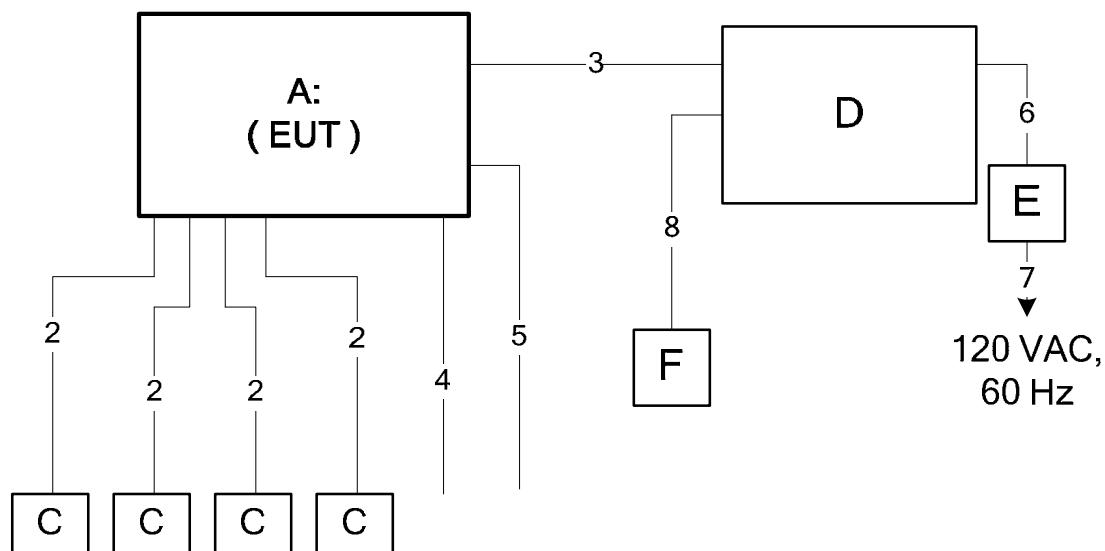
EUT with temporary antenna port was used in conducted measurement.

### 13 Test Configuration

The equipment under test (EUT) consists of :

|   | Item                      | Manufacturer                        | Model No.    | Serial No.         | FCC ID         |
|---|---------------------------|-------------------------------------|--------------|--------------------|----------------|
| A | Audio Conferencing System | NTT Advanced Technology Corporation | R-Talk 800EX | No.2*1)<br>No.1*2) | OC9-RT800EX001 |

\*1) Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission



\*2) Used for Antenna Conducted Emission

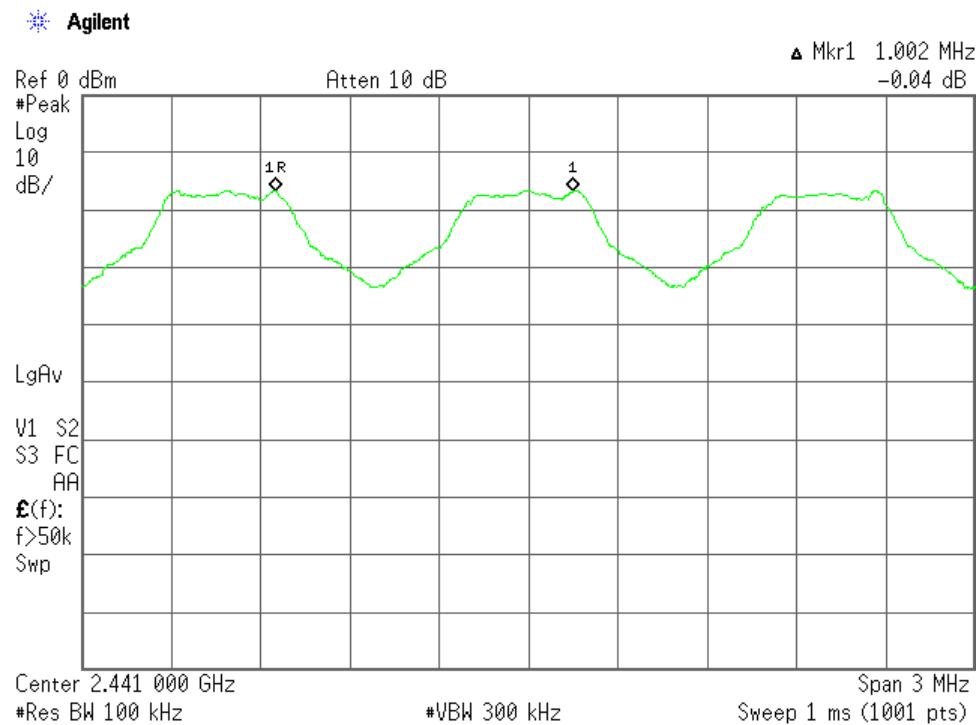
The auxiliary equipment used for testing :

|   | Item              | Manufacturer                         | Model No.                    | Serial No.      |
|---|-------------------|--------------------------------------|------------------------------|-----------------|
| B | AC Adapter        | NTT Advanced Technology Corporation. | SA103L-05                    | --              |
| C | Microphone Unit   | NTT Advanced Technology Corporation  | RT-OPT-MIC1                  | --              |
| D | Personal Computer | Hewlett-Packard Company              | HP ProBook 4520S             | 2CE1101BZP      |
| E | AC Adapter        | Hewlett-Packard Company              | HP 65W Slim Smart AC Adapter | F12921102213858 |
| F | Computer Mouse    | Hewlett-Packard Company              | M-UAE96                      | --              |

Type of Cable:

| No. | Description          | Identification (Manu. etc.) | Connector Shielded | Cable Shielded | Ferrite Core | Length (m) |
|-----|----------------------|-----------------------------|--------------------|----------------|--------------|------------|
| 1   | DC Power Cable       | --                          | --                 | No             | No           | 2.0        |
| 2   | Mic Cable            | --                          | --                 | No             | No           | 2.0        |
| 3   | USB Cable            | --                          | Yes                | Yes            | No           | 3.0        |
| 4   | Handset Cable        | --                          | --                 | No             | No           | 3.0        |
| 5   | Cellular Phone Cable | --                          | --                 | No             | No           | 1.2        |
| 6   | DC Power Cable       | --                          | --                 | No             | No           | 1.7        |
| 7   | AC Power Cable       | --                          | --                 | No             | No           | 1.7        |
| 8   | Mouse Cable          | --                          | YES                | YES            | No           | 1.8        |

**14 Equipment Under Test Arrangement (Drawings)****14.1 Powered form AC Adapter****14.2 Powered form USB Bus Power**

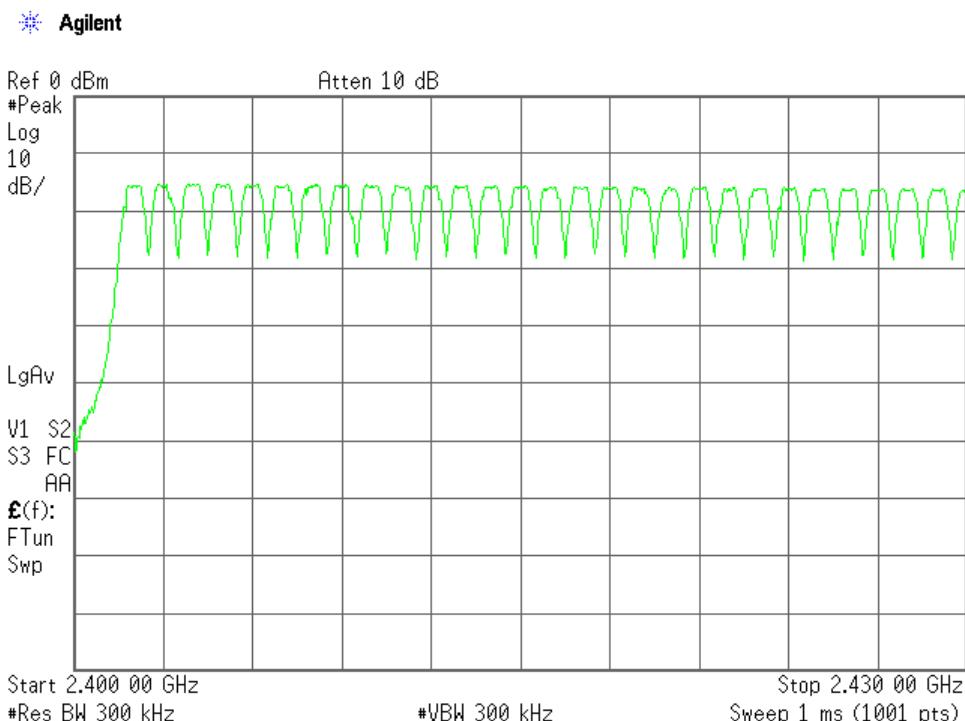

**Appendix A: Test Data**

Test Date : April 4, 2012  
Temp.:23°C, Humi:23%

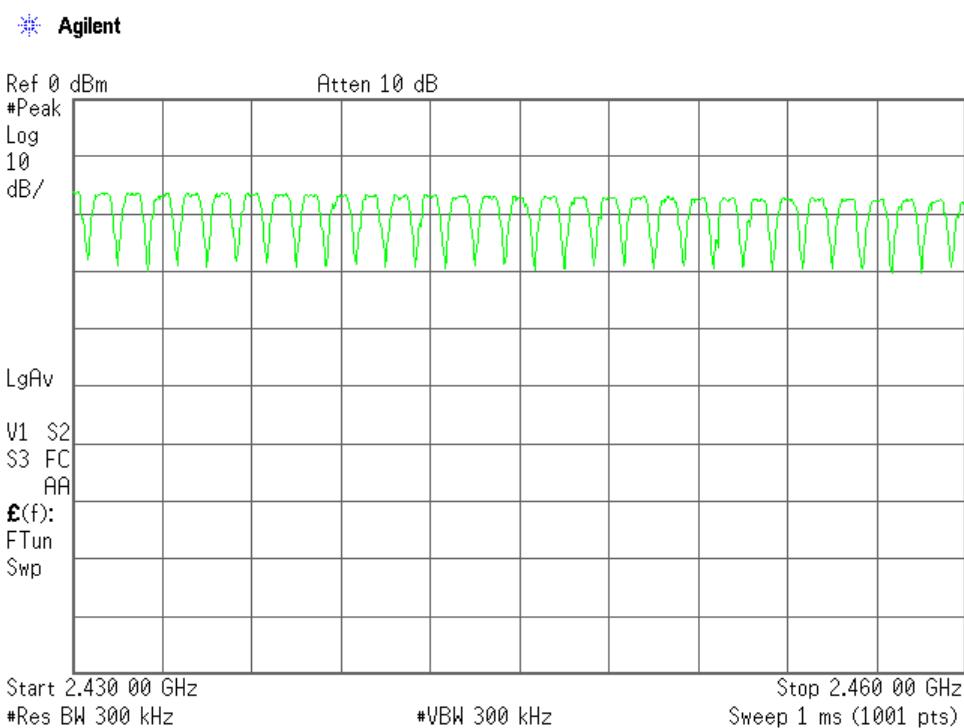
**A.1 Channel Separation**

| Mode of EUT | Channel Separation (MHz) |
|-------------|--------------------------|
| Hopping     | 1.002                    |

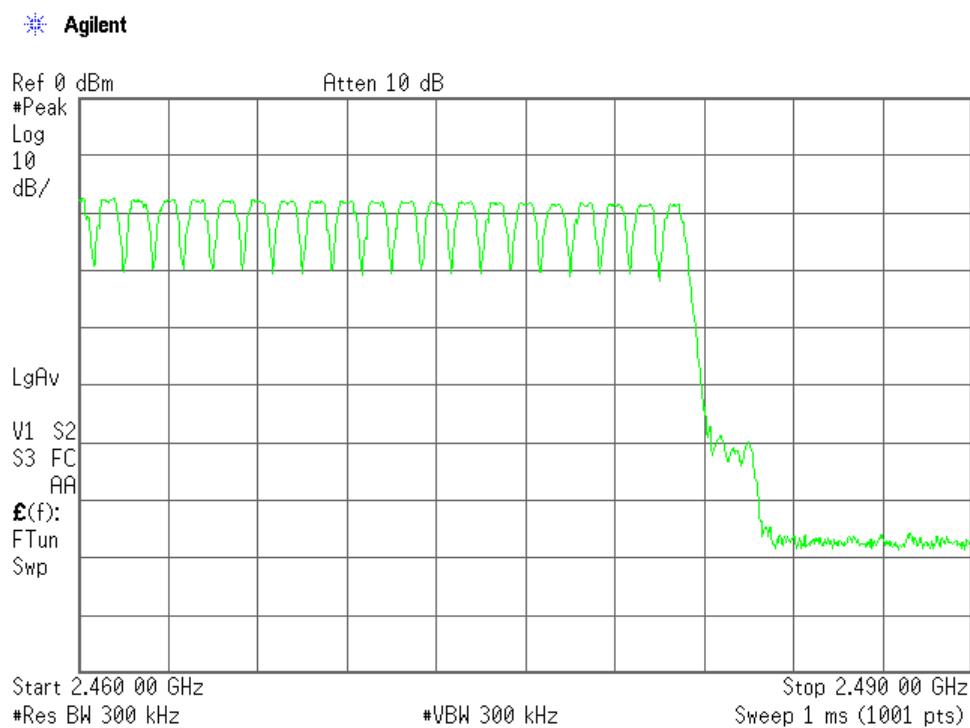
Mode of EUT : Hopping



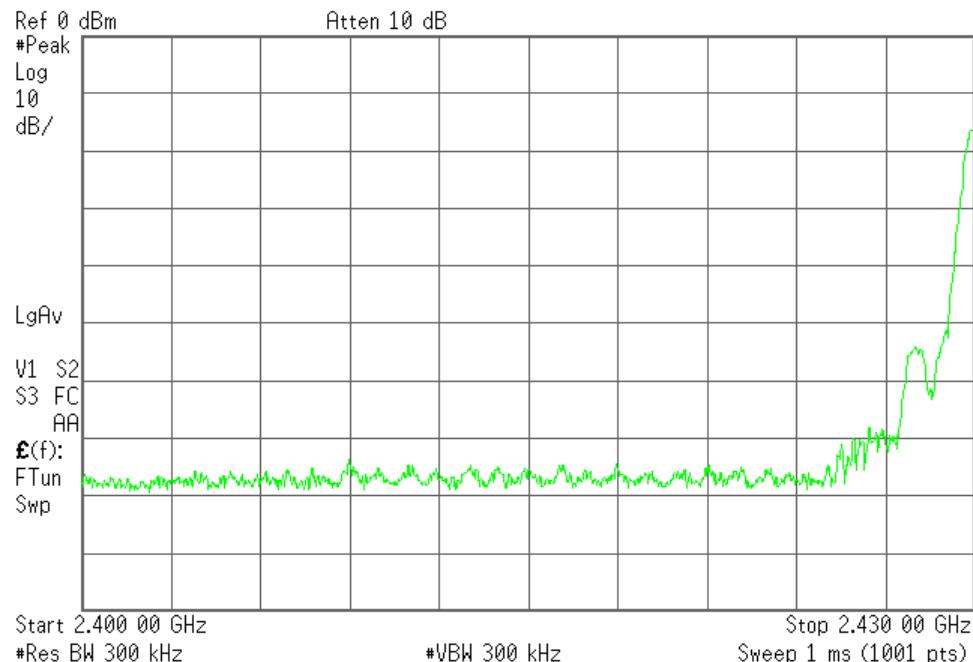

**A.2 Minimum Hopping Channel**


Test Date : April 4, 2012  
Temp.:23°C, Humi:23%

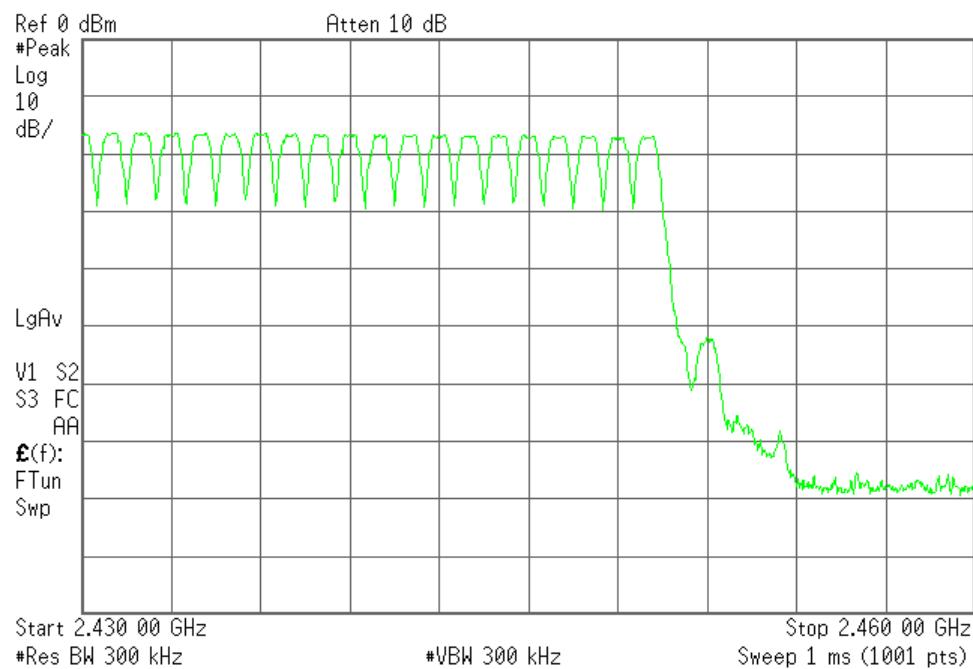
| Mode of EUT  | Minimum Hopping Channel |
|--------------|-------------------------|
| Hopping      | 79                      |
| AFH(minimum) | 20                      |


Mode of EUT : Hopping(1/3)

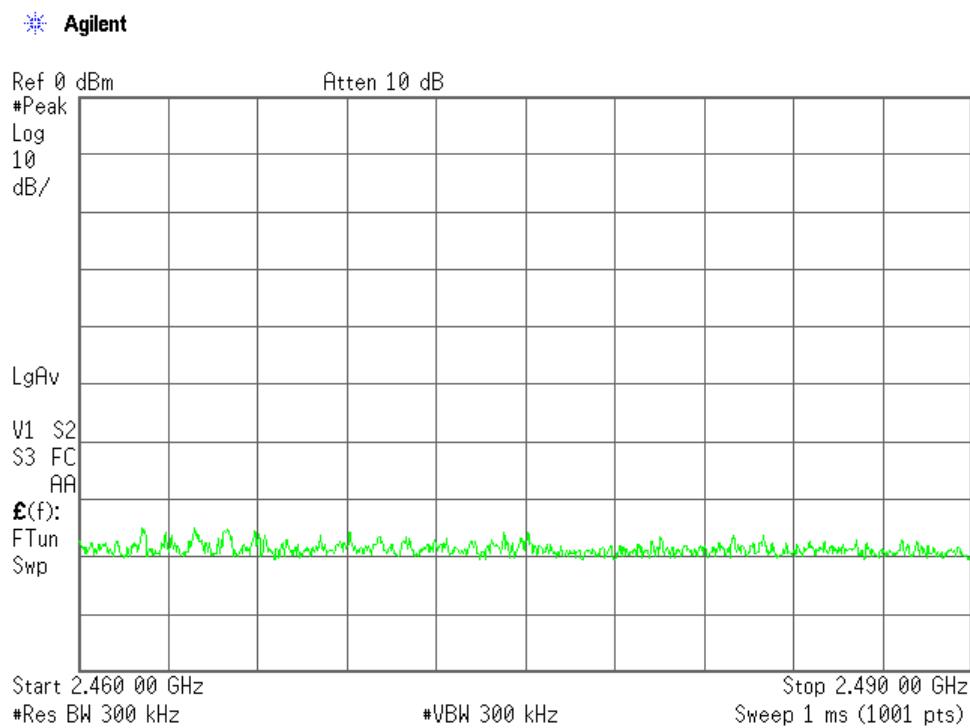



Mode of EUT : Hopping(2/3)




Mode of EUT : Hopping(3/3)




Mode of EUT : AFH(minimum)(1/3)

 **Agilent**

Mode of EUT : AFH(minimum)(2/3)

 **Agilent**

Mode of EUT : AFH(minimum)(3/3)

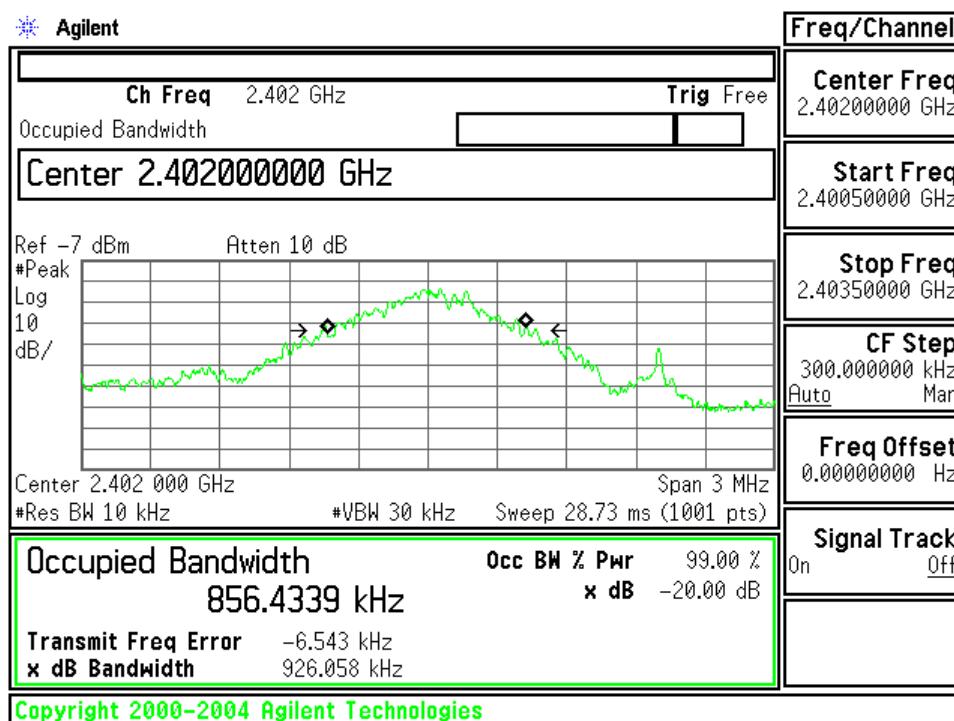


**A.3 Occupied Bandwidth**

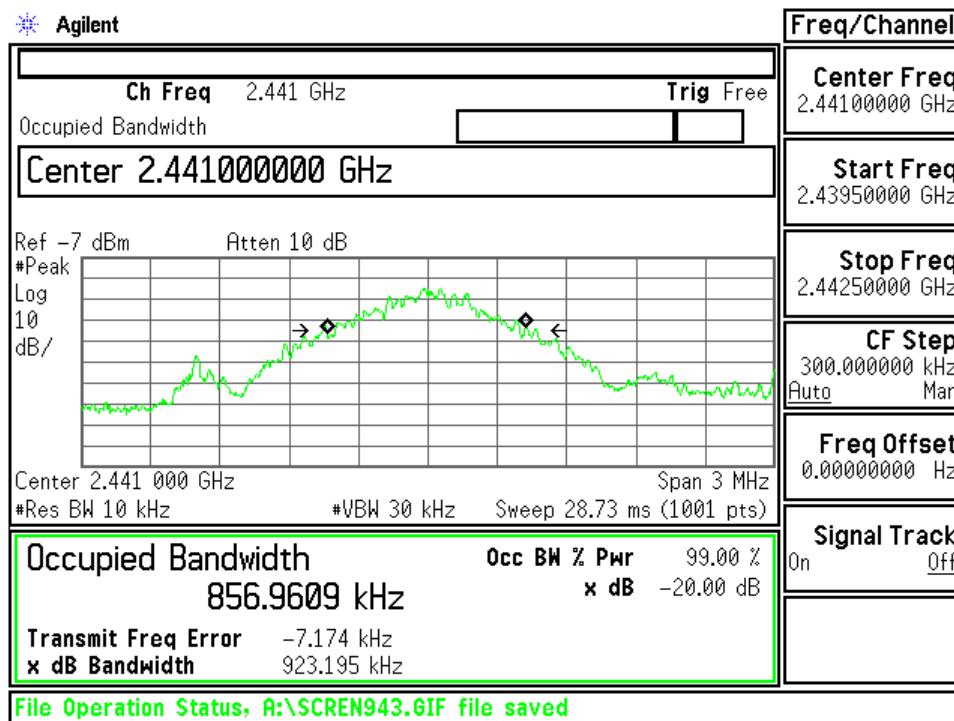
Test Date : April 4, 2012  
Temp.:23°C, Humi:23%

The resolution bandwidth was set to about 1% of emission bandwidth, -20dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

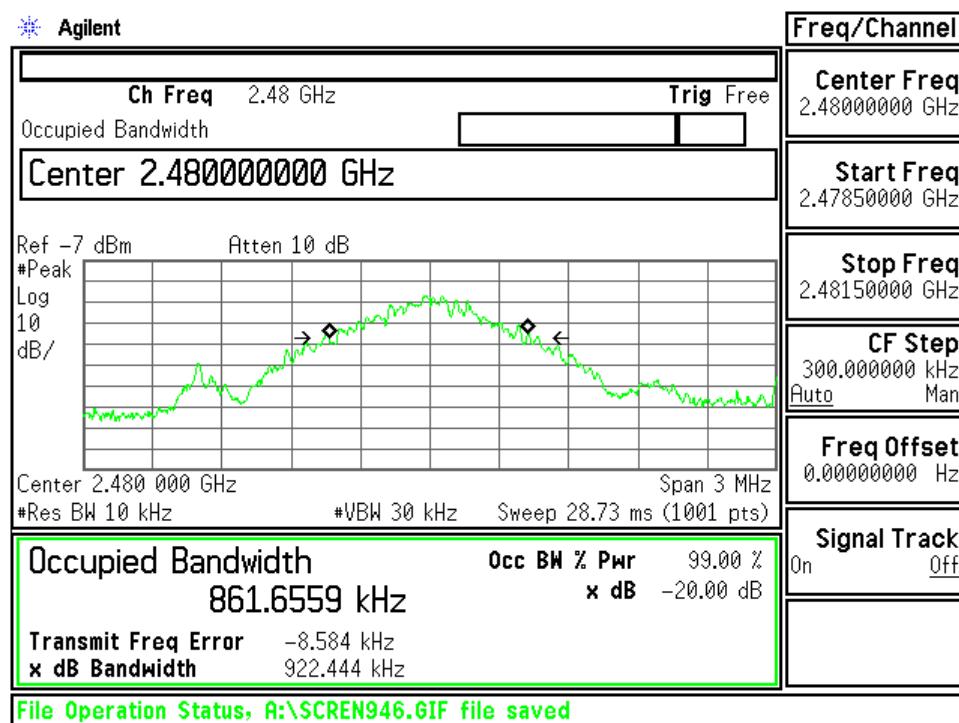
## 1)Packet Setting : DH5(Modulation type : GFSK)


| Channel | Frequency (MHz) | 99% Bandwidth (kHz) | -20dBc Bandwidth (kHz) |
|---------|-----------------|---------------------|------------------------|
| 00      | 2402.0          | 856.4               | 926.1                  |
| 39      | 2441.0          | 857.0               | 923.2                  |
| 78      | 2480.0          | 861.7               | 922.4                  |

## 2)Packet Setting : 2DH5(Modulation type : pi/4-DQPSK)

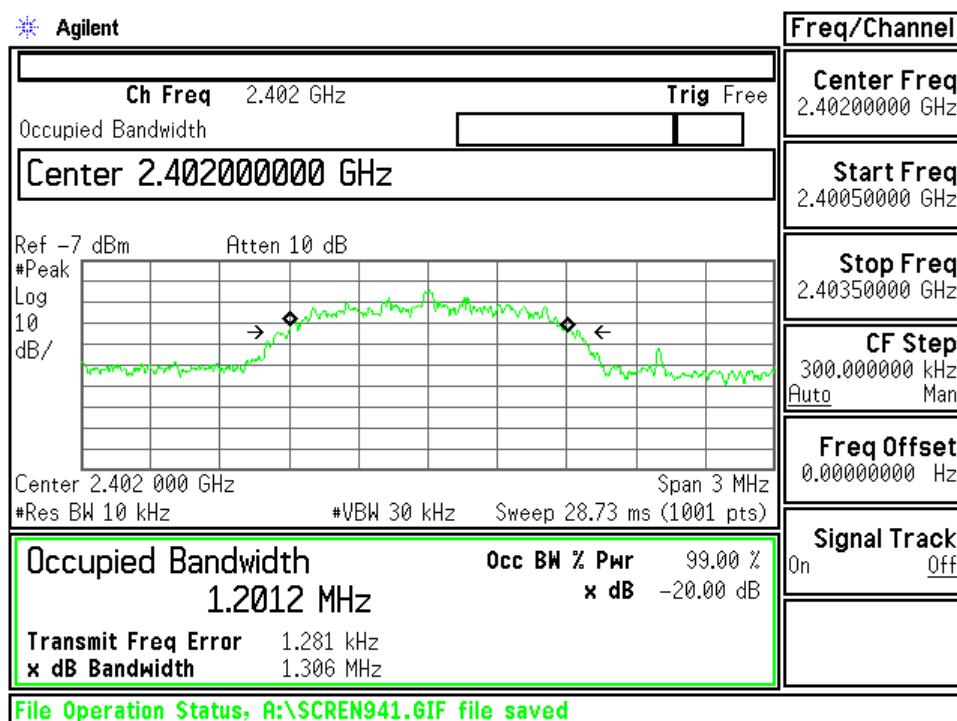

| Channel | Frequency (MHz) | 99% Bandwidth (kHz) | -20dBc Bandwidth (kHz) |
|---------|-----------------|---------------------|------------------------|
| 00      | 2402.0          | 1201.2              | 1306.0                 |
| 39      | 2441.0          | 1189.6              | 1219.0                 |
| 78      | 2480.0          | 1177.4              | 1246.0                 |

## 3)Packet Setting : 3 DH5(Modulation type : 8DPSK)

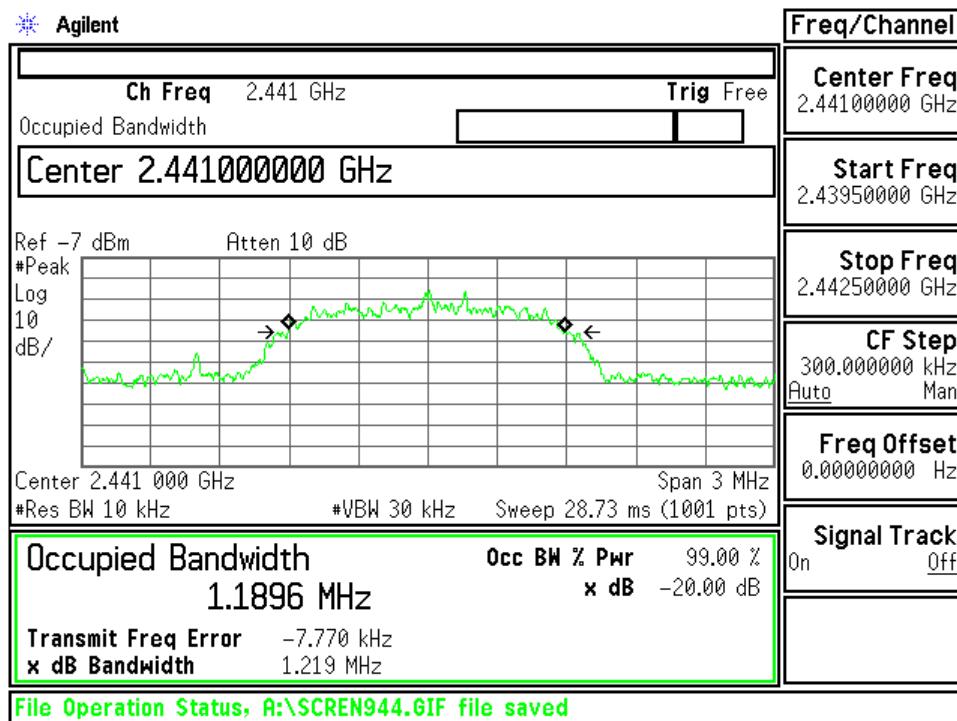

| Channel | Frequency (MHz) | 99% Bandwidth (kHz) | -20dBc Bandwidth (kHz) |
|---------|-----------------|---------------------|------------------------|
| 00      | 2402.0          | 1207.4              | 1256.0                 |
| 39      | 2441.0          | 1194.7              | 1260.0                 |
| 78      | 2480.0          | 1192.4              | 1255.0                 |

1)Packet Setting : DH5(Modulation type : GFSK)  
Low Channel

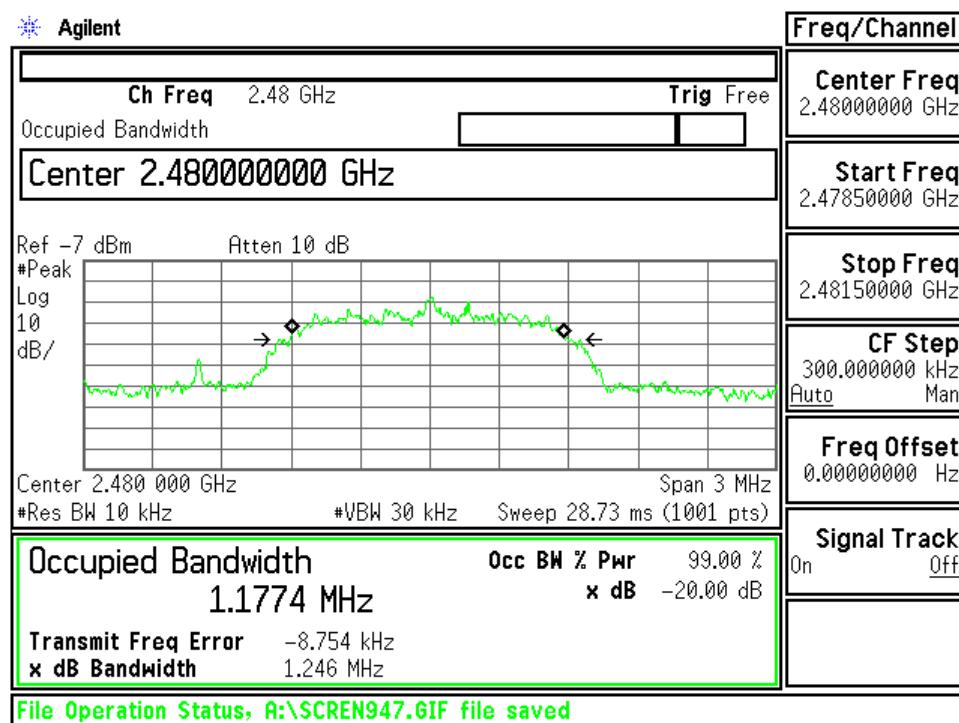
Middle Channel

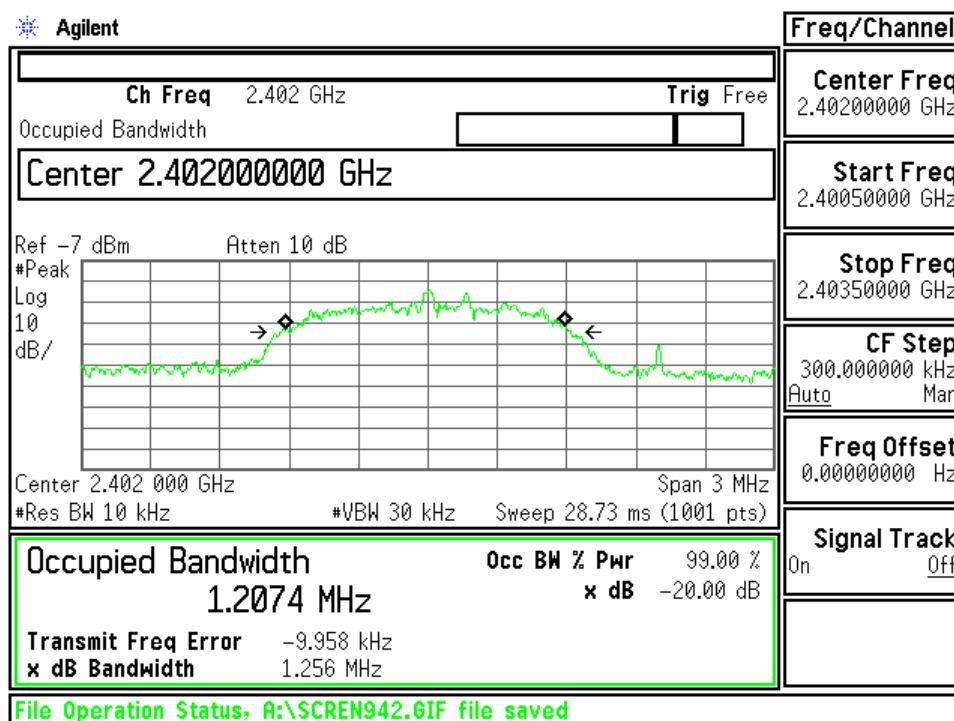



## High Channel

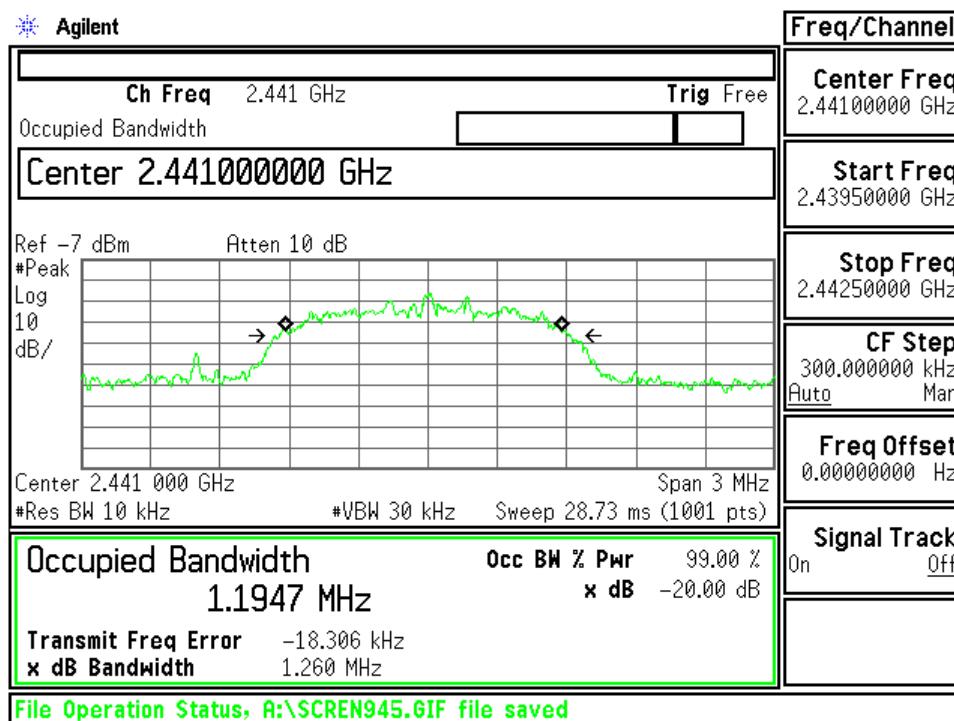



2)Packet Setting : 2DH5(Modulation type : pi/4-DQPSK)

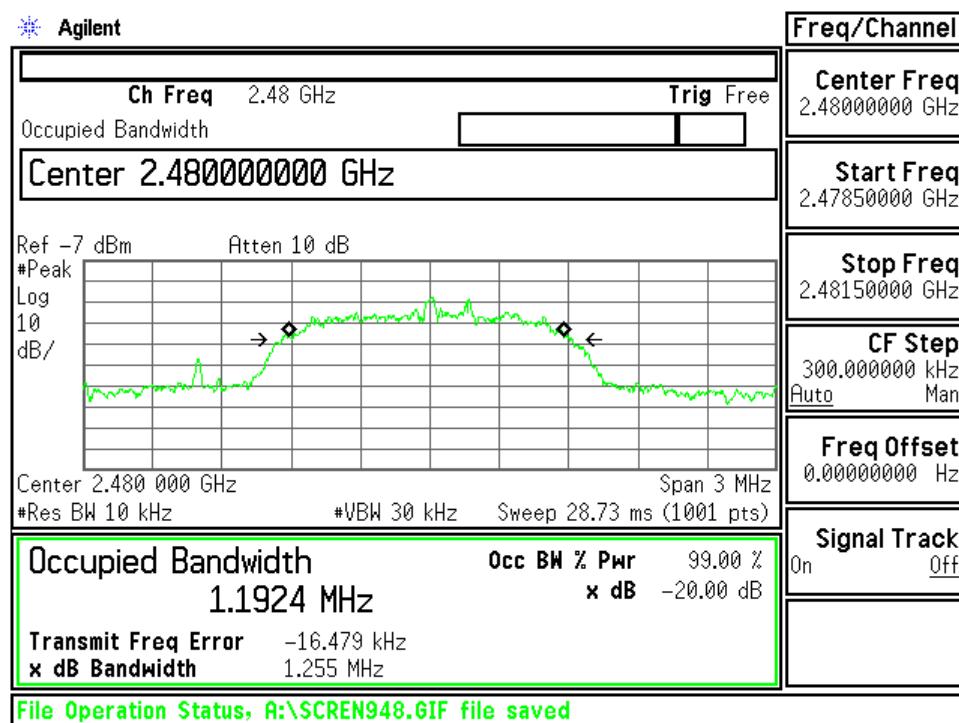

Low Channel




Middle Channel



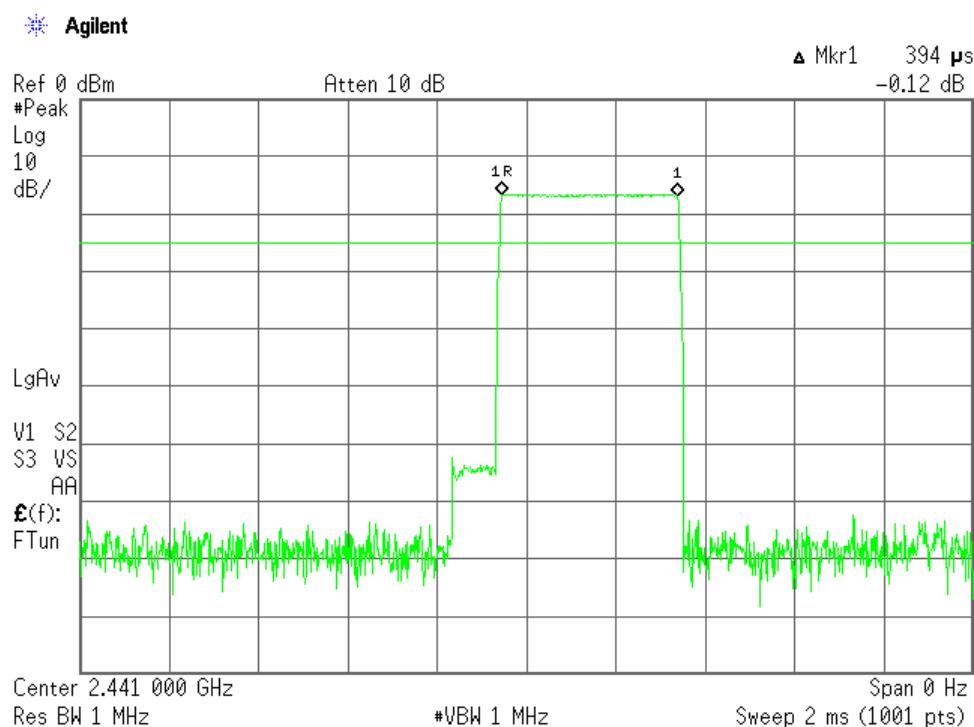

## High Channel




3)Packet Setting : 3 DH5(Modulation type : 8DPSK)  
Low Channel

## Middle Channel



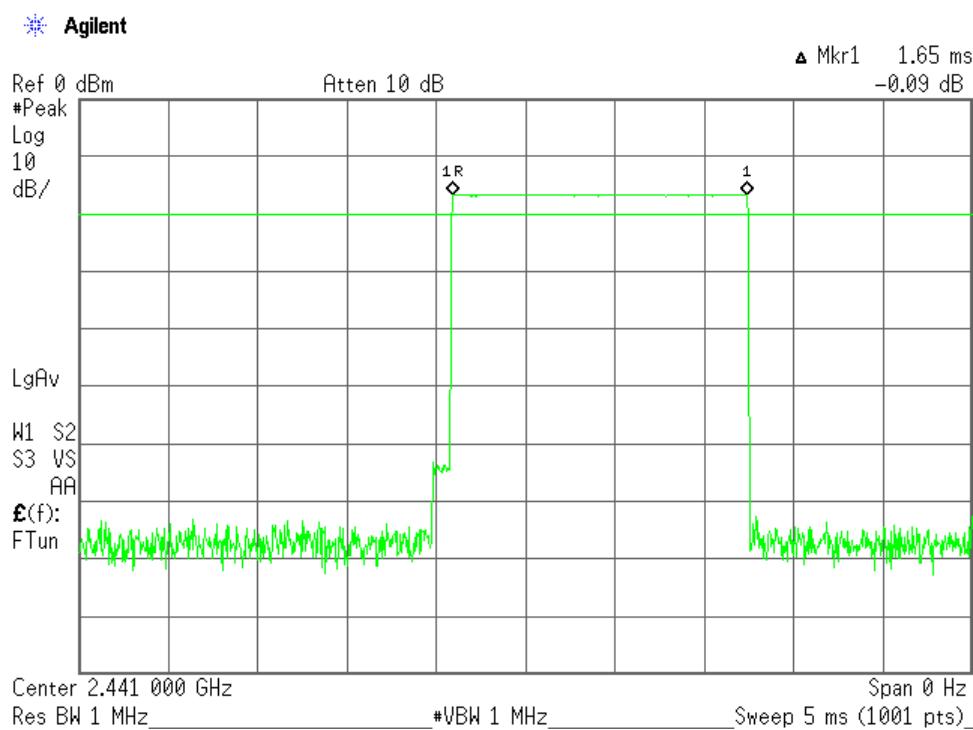

## High Channel



**A.4 Dwell Time**Test Date : April 4, 2012  
Temp.:23°C, Humi:23%

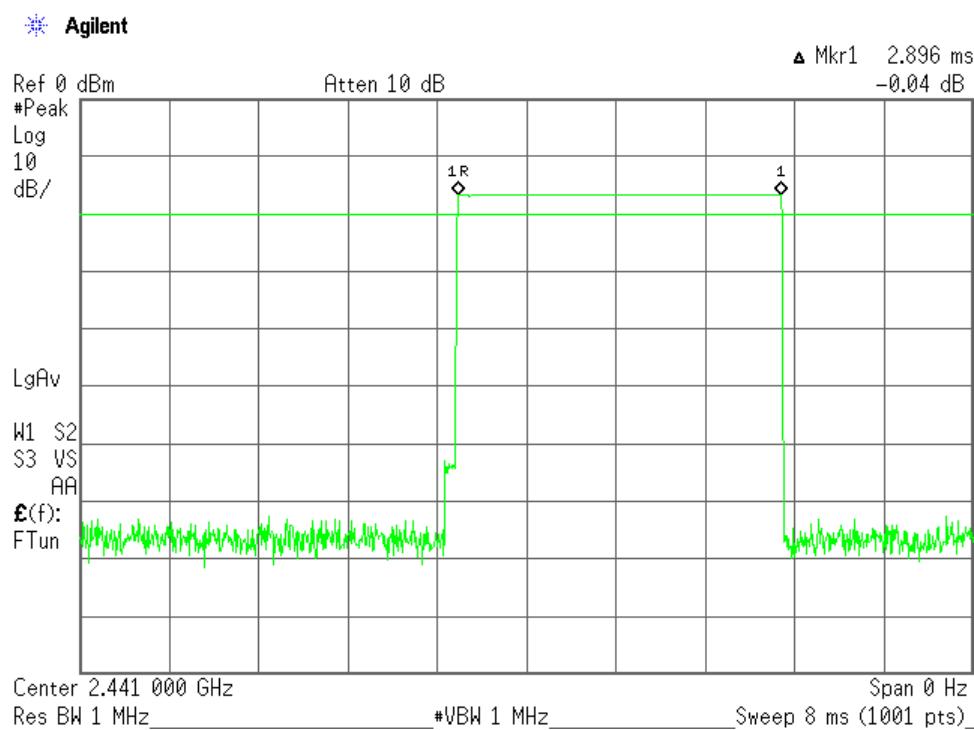
| Mode of EUT | Dwell Time (msec) |
|-------------|-------------------|
| DH1         | 126.1             |
| DH3         | 264.0             |
| DH5         | 309.0             |

DH1(Modulation type : GFSK)




Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625  $\mu$ s with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So the system has each channel 10.1266 times per second and so for 31.6 seconds the system have 320.0 times of appearance.

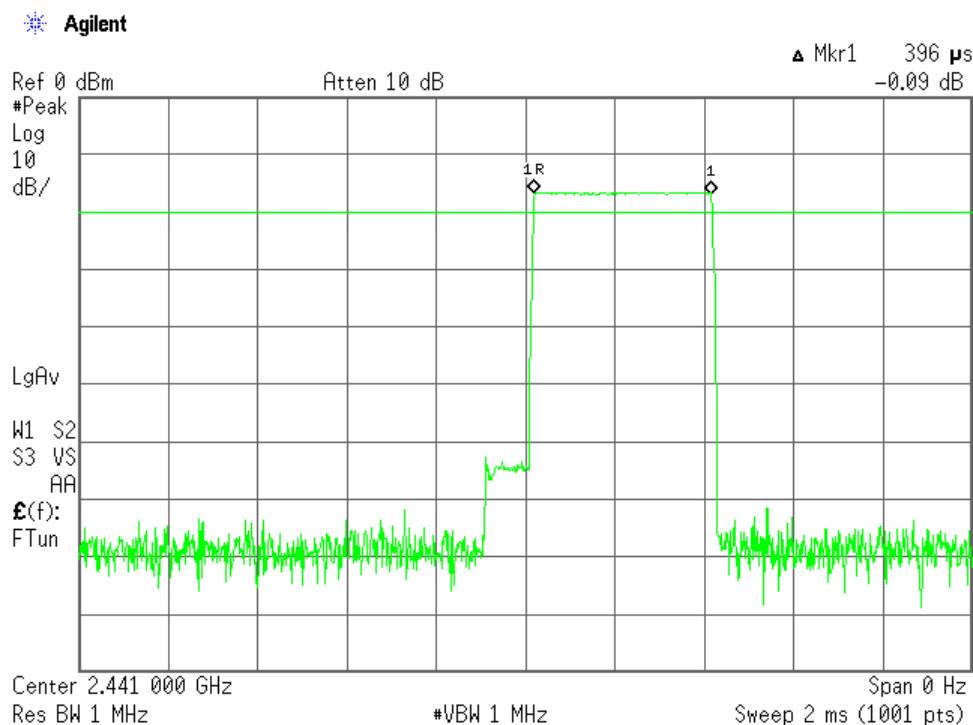
Each tx-time per appearance is 0.394 ms.


Dwell time = 320.0 \* 0.394 = 126.1 ms

DH3(Modulation type : GFSK)



Note : A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 79 channels. So the system have each channel 5.063 times per second and so for 31.6 seconds the system have 160.0 times of appearance. Each tx-time per appearance is 1.650 ms.  
Dwell time =  $160.0 * 1.650 = 264.0$  ms

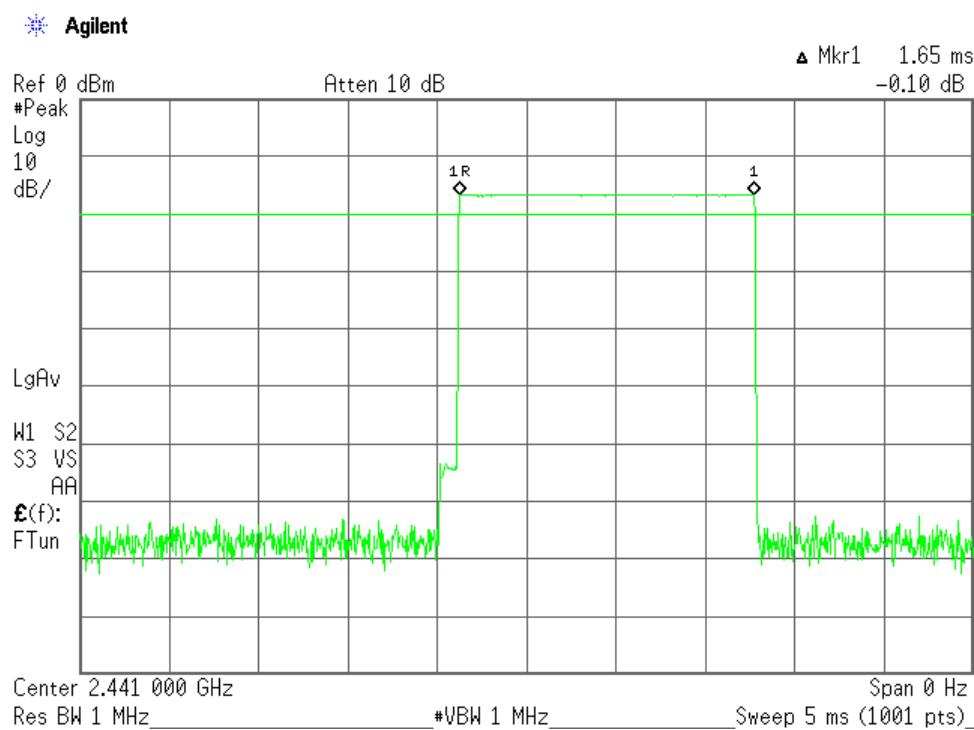

DH5(Modulation type : GFSK)



Note : A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance is 2.896 ms.  
Dwell time =  $106.7 \times 2.896 = 309.0$  ms

| Mode of EUT | Dwell Time (msec) |
|-------------|-------------------|
| DH1(AFH)    | 126.7             |
| DH3(AFH)    | 264.0             |
| DH5(AFH)    | 309.0             |

DH1(AFH mode, Modulation type : GFSK)

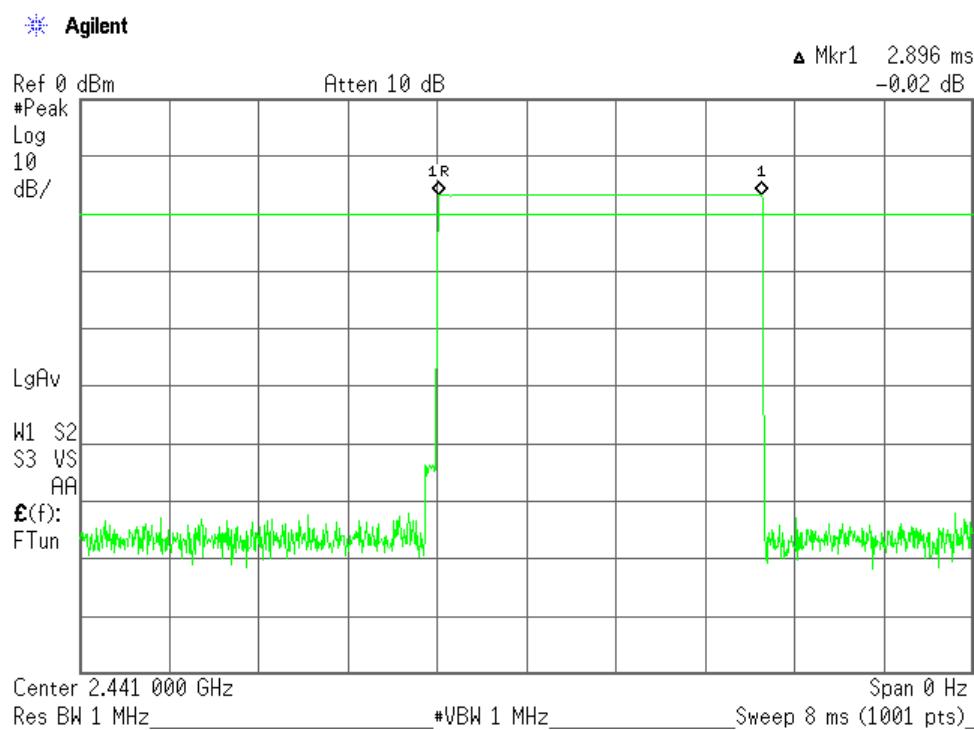



Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625  $\mu$ s with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 20 channels. So the system has each channel 40 times per second and so for 8 seconds the system have 320.0 times of appearance.

Each tx-time per appearance is 0.396 ms.

Dwell time = 320.0 \* 0.396 = 126.7 ms

DH3(AFH mode, Modulation type : GFSK)




Note : A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 20 channels. So the system have each channel 20 times per second and so for 8 seconds the system have 160.0 times of appearance.

Each tx-time per appearance is 1.650 ms.

Dwell time =  $160.0 * 1.650 = 264.0$  ms

DH5(AFH mode, Modulation type : GFSK)



Note : A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 20 channels. So the system have each channel 13.33335 times per second and so for 8 seconds the system have 106.7 times of appearance. Each tx-time per appearance is 2.896 ms.  
Dwell time =  $106.7 \times 2.896 = 309.0$  ms

**A.5 Peak Output Power(Conduction)**

1) DH5(Modulation type : GFSK)

Test Date: April 4, 2012  
Temp.: 23 °C, Humi: 23 %

| CH | Transmitting Frequency<br>[MHz] | Correction<br>Factor<br>[dB] | Meter Reading<br>[dBm] | Conducted<br>Peak Output Power<br>[dBm] [mW] |                         | Limits<br>[dBm] | Margin<br>[dB] |
|----|---------------------------------|------------------------------|------------------------|----------------------------------------------|-------------------------|-----------------|----------------|
|    |                                 |                              |                        | Peak<br>[dBm]                                | Output<br>Power<br>[mW] |                 |                |
| 00 | 2402                            | 0.90                         | -5.52                  | -4.62                                        | 0.35                    | 20.97           | +25.59         |
| 39 | 2441                            | 0.90                         | -7.36                  | -6.46                                        | 0.23                    | 20.97           | +27.43         |
| 78 | 2480                            | 0.90                         | -9.21                  | -8.31                                        | 0.15                    | 20.97           | +29.28         |

Calculated result at 2402.000 MHz, as the worst point shown on underline:

$$\begin{array}{rcl} \text{Correction Factor} & = & 0.90 \text{ dB} \\ + ) \underline{\text{Meter Reading}} & = & \underline{-5.52 \text{ dBm}} \\ \text{Result} & = & -4.62 \text{ dBm} = 0.35 \text{ mW} \end{array}$$

Minimum Margin:  $20.97 - -4.62 = 25.59$  (dB)**NOTES**

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
2. Setting of measuring instrument(s) :

| Detector Function | Video B.W. |
|-------------------|------------|
| Peak              | Off        |

\*\* Although AC power supply voltage was changed from 102 V to 138V,  
the Peak Output Power did not change.

2)2DH5(Modulation type : pi/4-DQPSK)

Test Date: April 4, 2012  
Temp.: 23 °C, Humi: 23 %

| Transmitting Frequency<br>CH | [MHz] | Correction<br>Factor<br>[dB] | Meter Reading<br>[dBm] | Conducted<br>Peak Output Power |      | Limits<br>[dBm] | Margin<br>[dB] |
|------------------------------|-------|------------------------------|------------------------|--------------------------------|------|-----------------|----------------|
|                              |       |                              |                        | [dBm]                          | [mW] |                 |                |
| 00                           | 2402  | 0.90                         | -5.27                  | -4.37                          | 0.37 | 20.97           | +25.34         |
| 39                           | 2441  | 0.90                         | -7.34                  | -6.44                          | 0.23 | 20.97           | +27.41         |
| 78                           | 2480  | 0.90                         | -9.25                  | -8.35                          | 0.15 | 20.97           | +29.32         |

Calculated result at 2402.000 MHz, as the worst point shown on underline:

$$\begin{array}{rcl} \text{Correction Factor} & = & 0.90 \text{ dB} \\ + ) \underline{\text{Meter Reading}} & = & \underline{-5.27 \text{ dBm}} \\ \text{Result} & = & -4.37 \text{ dBm} = 0.37 \text{ mW} \end{array}$$

Minimum Margin: 20.97 - -4.37 = 25.34 (dB)

## NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
2. Setting of measuring instrument(s) :

| Detector Function | Video B.W. |
|-------------------|------------|
| Peak              | Off        |

\*\* Although AC power supply voltage was changed from 102 V to 138V,  
the Peak Output Power did not change.

3)3DH5(Modulation type : 8DPSK)

Test Date: April 4, 2012  
Temp.: 23 °C, Humi: 23 %

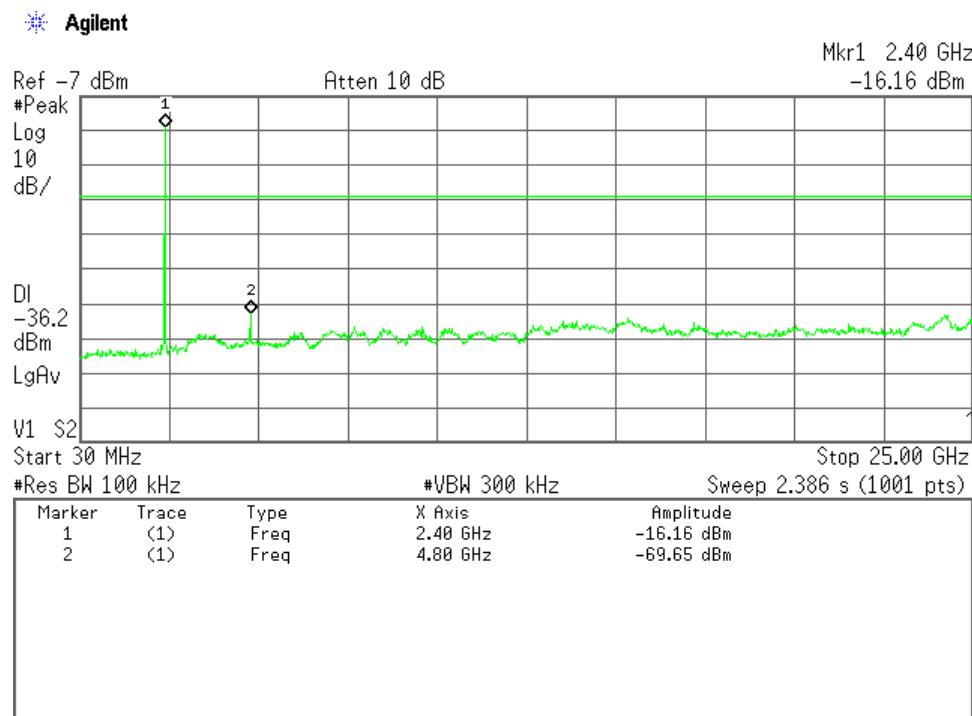
| Transmitting Frequency<br>CH | [MHz] | Correction<br>Factor<br>[dB] | Meter Reading<br>[dBm] | Conducted<br>Peak Output Power |      | Limits<br>[dBm] | Margin<br>[dB] |
|------------------------------|-------|------------------------------|------------------------|--------------------------------|------|-----------------|----------------|
|                              |       |                              |                        | [dBm]                          | [mW] |                 |                |
| 00                           | 2402  | 0.90                         | -5.26                  | -4.36                          | 0.37 | 20.97           | +25.33         |
| 39                           | 2441  | 0.90                         | -7.23                  | -6.33                          | 0.23 | 20.97           | +27.30         |
| 78                           | 2480  | 0.90                         | -9.19                  | -8.29                          | 0.15 | 20.97           | +29.26         |

Calculated result at 2402.000 MHz, as the worst point shown on underline:

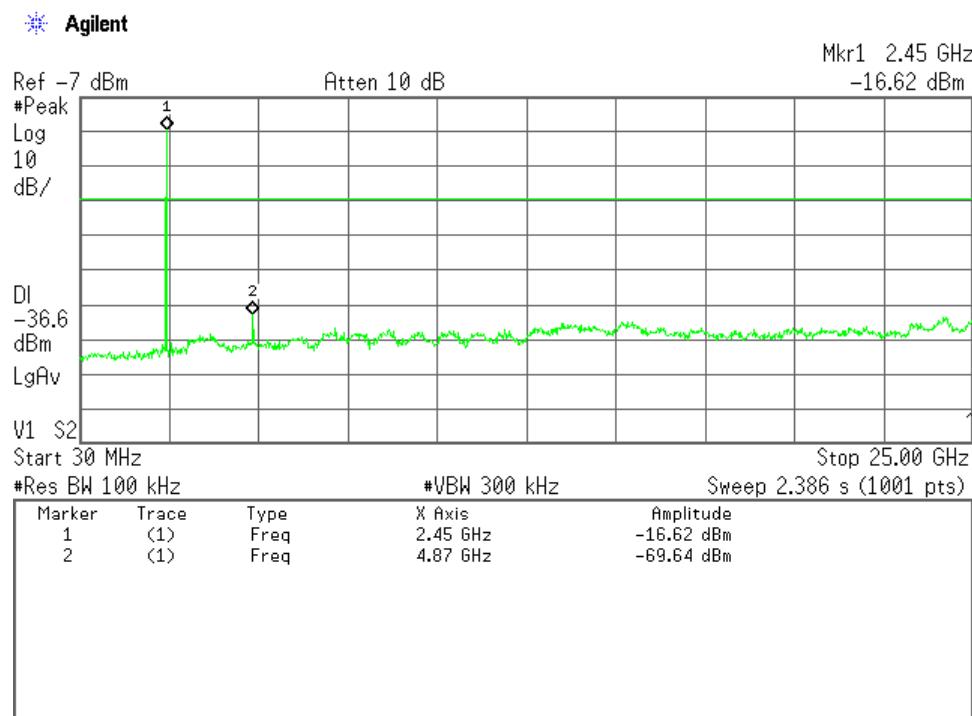
$$\begin{array}{rcl} \text{Correction Factor} & = & 0.90 \text{ dB} \\ + ) \underline{\text{Meter Reading}} & = & \underline{-5.26 \text{ dBm}} \\ \text{Result} & = & -4.36 \text{ dBm} = 0.37 \text{ mW} \end{array}$$

Minimum Margin: 20.97 - -4.36 = 25.33 (dB)

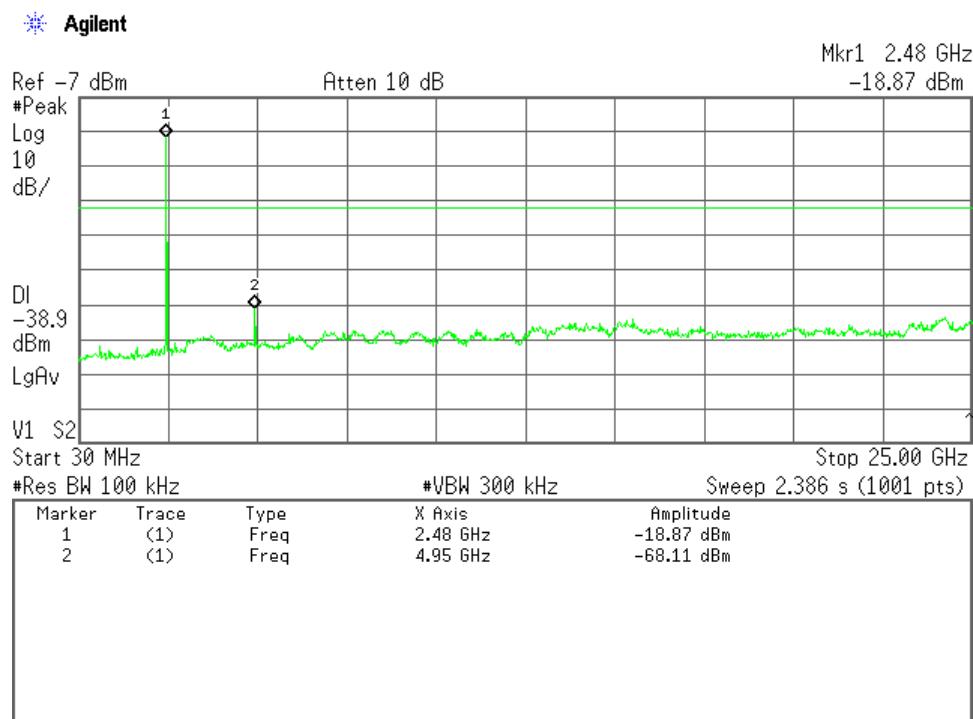
## NOTES


1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
2. Setting of measuring instrument(s) :

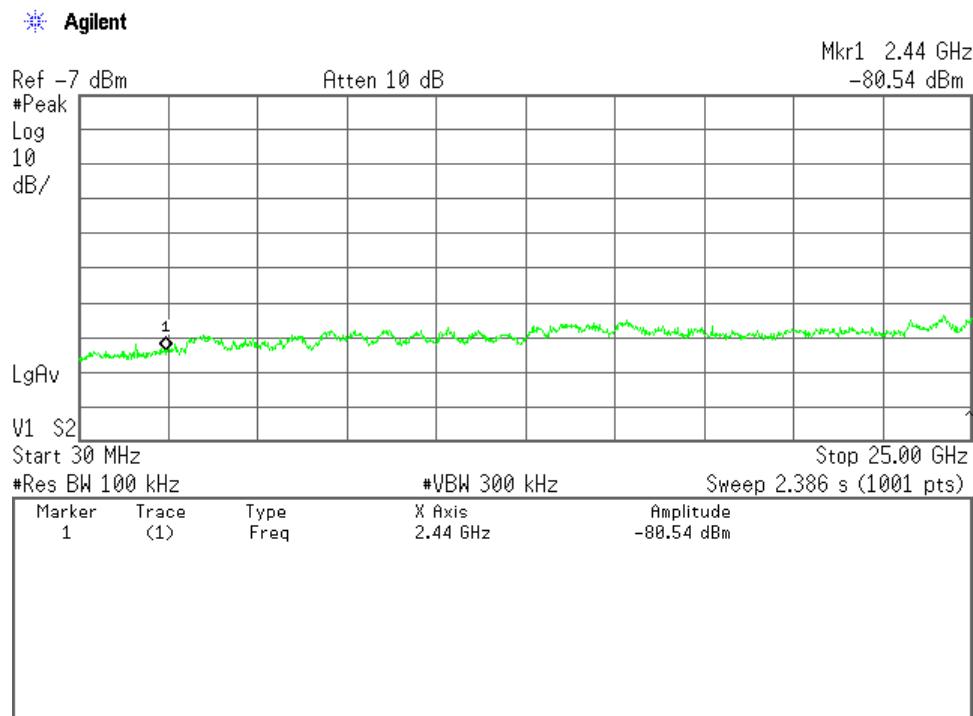
| Detector Function | Video B.W. |
|-------------------|------------|
| Peak              | Off        |


\*\* Although AC power supply voltage was changed from 102 V to 138V,  
the Peak Output Power did not change.

**A.6 Spurious Emission(Conduction)**Test Date : April 4, 2012  
Temp.:23°C, Humi:23%

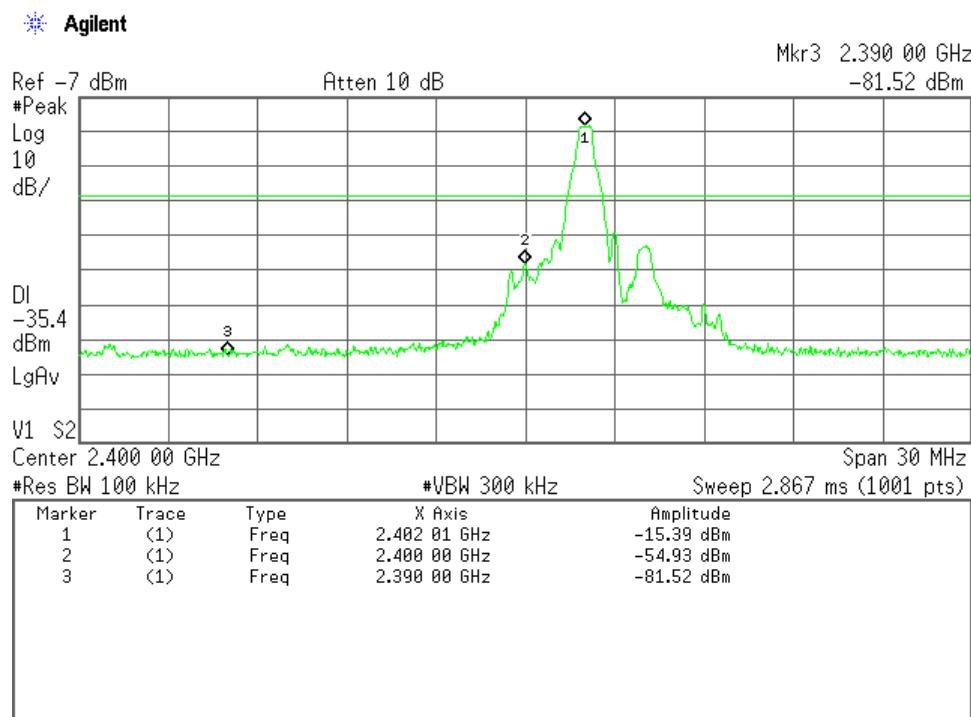

## Low Channel



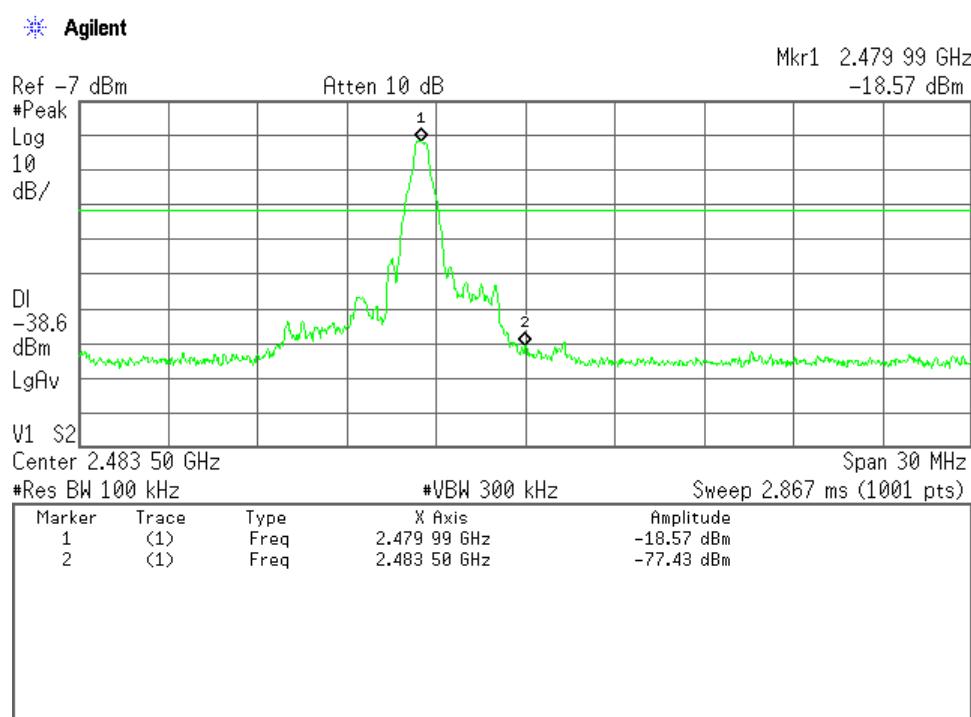

## Middle Channel



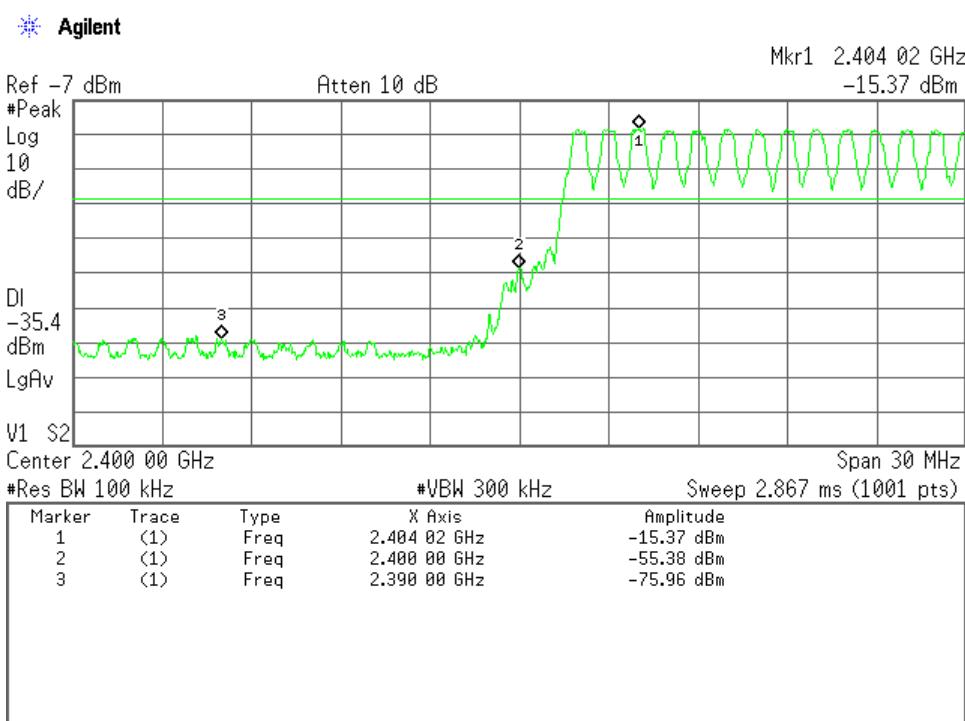
## High Channel



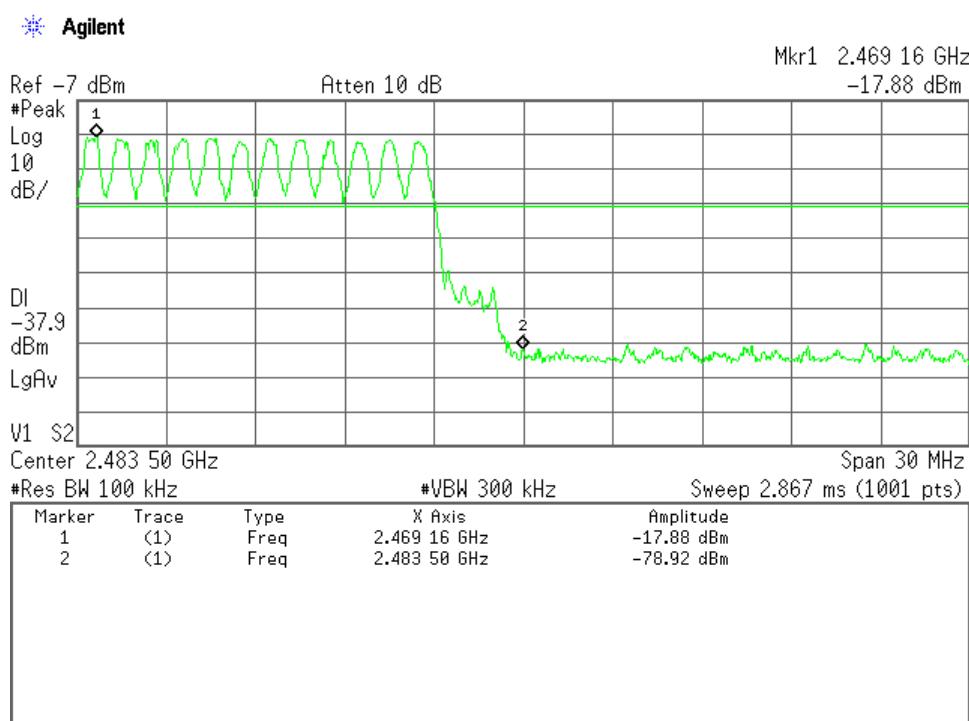

### Receiving(Middle Channel)




**Band-Edge Emission**


## Low Channel(Hopping off), Band-Edge Emission



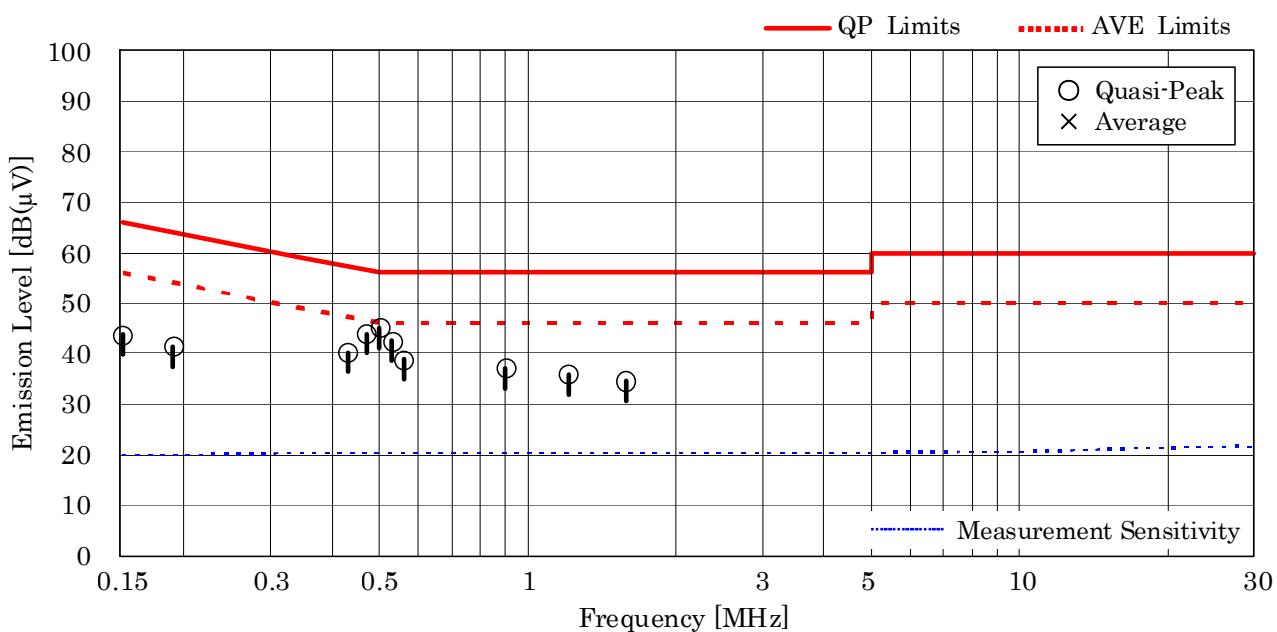

## High Channel(Hopping off), Band-Edge Emission



## Low Channel(Hopping on), Band-Edge Emission



## High Channel(Hopping on), Band-Edge Emission



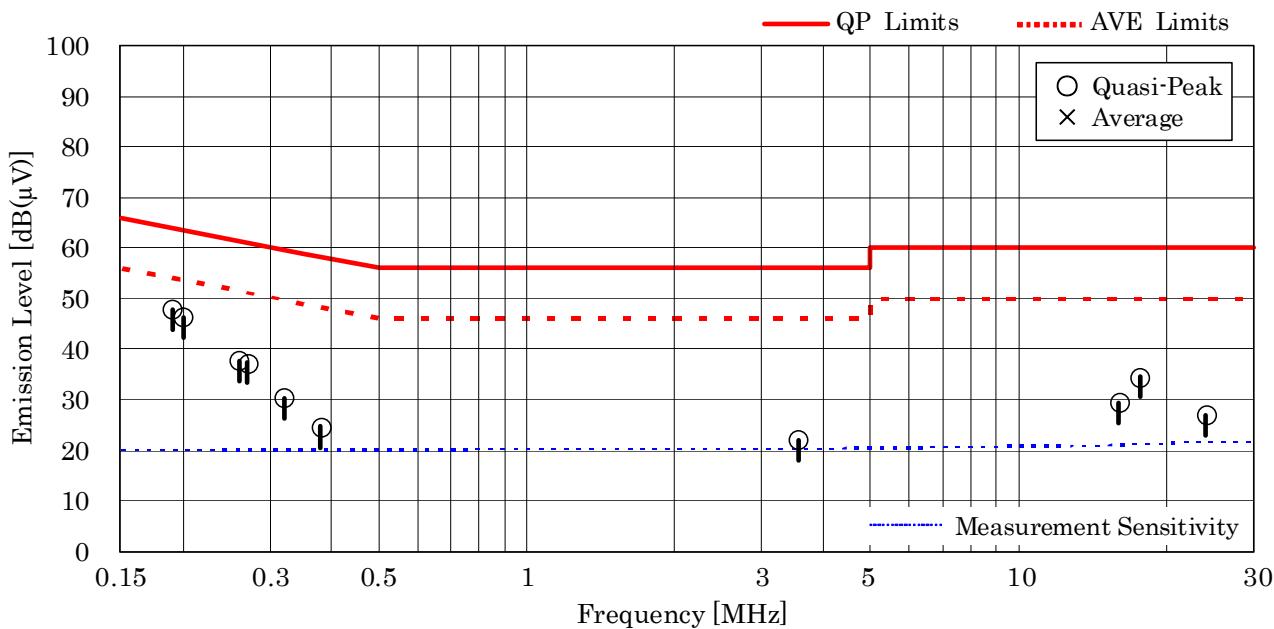

## A.7 AC Powerline Conducted Emission

Test condition : Powered form AC Adapter

Test Date: April 24, 2012  
Temp.: 23 °C, Humi.: 51 %

| Frequency<br>[MHz] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |           |          |           | Limits<br>[dB(μV)] |      | Results<br>[dB(μV)] |     | Margin<br>[dB] | Remarks |
|--------------------|-------------------------|-------------------------|-----------|----------|-----------|--------------------|------|---------------------|-----|----------------|---------|
|                    |                         | VA<br>QP                | VA<br>AVE | VB<br>QP | VB<br>AVE | QP                 | AVE  | QP                  | AVE |                |         |
| 0.15               | 10.1                    | 33.6                    | --        | 33.2     | --        | 66.0               | 56.0 | 43.7                | --  | +22.3          | -       |
| 0.19               | 10.1                    | 30.8                    | --        | 31.3     | --        | 64.0               | 54.0 | 41.4                | --  | +22.6          | -       |
| 0.43               | 10.3                    | 30.0                    | --        | 28.7     | --        | 57.3               | 47.3 | 40.3                | --  | +17.0          | -       |
| 0.47               | 10.3                    | 33.7                    | --        | 32.1     | --        | 56.5               | 46.5 | 44.0                | --  | +12.5          | -       |
| 0.50               | 10.3                    | 34.9                    | --        | 33.7     | --        | 56.0               | 46.0 | 45.2                | --  | +10.8          | -       |
| 0.53               | 10.3                    | 32.2                    | --        | 30.8     | --        | 56.0               | 46.0 | 42.5                | --  | +13.5          | -       |
| 0.56               | 10.3                    | 28.6                    | --        | 27.2     | --        | 56.0               | 46.0 | 38.9                | --  | +17.1          | -       |
| 0.90               | 10.3                    | 26.9                    | --        | 25.9     | --        | 56.0               | 46.0 | 37.2                | --  | +18.8          | -       |
| 1.21               | 10.3                    | 25.7                    | --        | 24.1     | --        | 56.0               | 46.0 | 36.0                | --  | +20.0          | -       |
| 1.58               | 10.3                    | 24.3                    | --        | 22.4     | --        | 56.0               | 46.0 | 34.6                | --  | +21.4          | -       |




## NOTES

1. The spectrum was checked from 0.15 MHz to 30 MHz.
2. The correction factor includes the AMN insertion loss and the cable loss.
3. The symbol of “<” means “or less”.
4. The symbol of “>” means “more than”.
5. The symbol of “--” means “not applicable”.
6. Calculated result at 0.50 MHz, as the worst point shown on underline:  
Correction Factor + Meter Reading = 10.3 + 34.9 = 45.2 dB(μV)
7. QP : Quasi-Peak Detector / AVE : Average Detector
8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Test condition : Powered form USB Bus Power

Test Date: May 3, 2012  
 Temp.: 23 °C, Humi.: 60 %

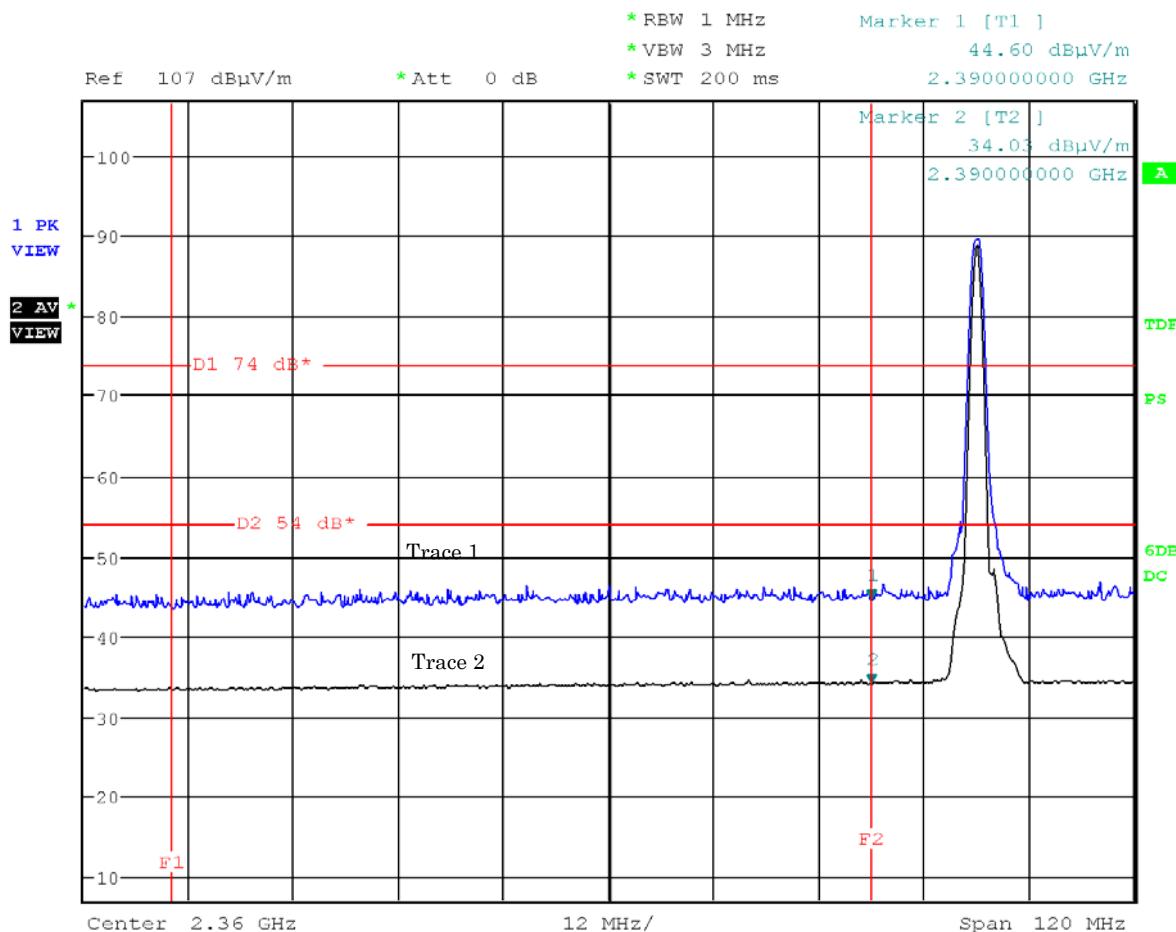
| Frequency<br>[MHz] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |    |      |     | Limits<br>[dB(μV)] |      | Results<br>[dB(μV)] |     | Margin<br>[dB] | Remarks |
|--------------------|-------------------------|-------------------------|----|------|-----|--------------------|------|---------------------|-----|----------------|---------|
|                    |                         | QP                      | VA | QP   | AVE | QP                 | AVE  | QP                  | AVE |                |         |
| 0.19               | 10.1                    | 37.8                    | -- | 36.6 | --  | 64.0               | 54.0 | 47.9                | --  | +16.1          | -       |
| 0.20               | 10.1                    | 35.7                    | -- | 36.2 | --  | 63.6               | 53.6 | 46.3                | --  | +17.3          | -       |
| 0.26               | 10.1                    | 27.7                    | -- | 27.5 | --  | 61.4               | 51.4 | 37.8                | --  | +23.6          | -       |
| 0.27               | 10.1                    | 27.1                    | -- | 27.0 | --  | 61.1               | 51.1 | 37.2                | --  | +23.9          | -       |
| 0.32               | 10.2                    | 20.2                    | -- | 20.1 | --  | 59.7               | 49.7 | 30.4                | --  | +29.3          | -       |
| 0.38               | 10.2                    | 14.3                    | -- | 14.4 | --  | 58.3               | 48.3 | 24.6                | --  | +33.7          | -       |
| 3.57               | 10.3                    | 11.4                    | -- | 11.7 | --  | 56.0               | 46.0 | 22.0                | --  | +34.0          | -       |
| 16.00              | 11.1                    | 17.9                    | -- | 18.3 | --  | 60.0               | 50.0 | 29.4                | --  | +30.6          | -       |
| 17.65              | 11.2                    | 23.3                    | -- | 11.4 | --  | 60.0               | 50.0 | 34.5                | --  | +25.5          | -       |
| 24.08              | 11.6                    | 15.3                    | -- | 14.9 | --  | 60.0               | 50.0 | 26.9                | --  | +33.1          | -       |



## NOTES

1. The spectrum was checked from 0.15 MHz to 30 MHz.
2. The correction factor includes the AMN insertion loss and the cable loss.
3. The symbol of “<” means “or less”.
4. The symbol of “>” means “more than”.
5. The symbol of “-” means “not applicable”.
6. Calculated result at 0.19 MHz, as the worst point shown on underline:  

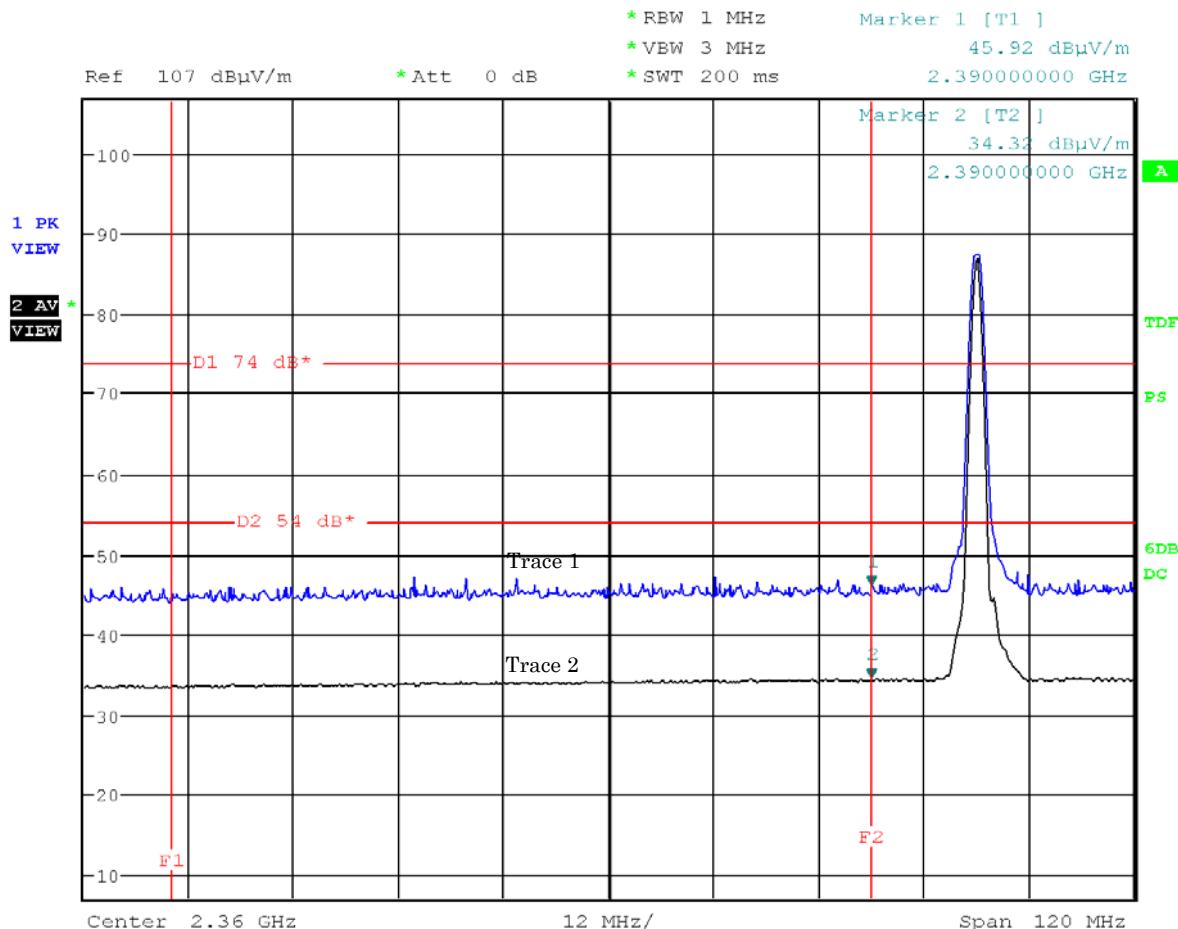
$$\text{Correction Factor} + \text{Meter Reading} = 10.1 + 37.8 = 47.9 \text{ dB}(\mu\text{V})$$
7. QP : Quasi-Peak Detector / AVE : Average Detector
8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz


**A.8 Field Strength of Spurious Radiation****A.8.1 Band-edge Compliance (Powered from AC Adapter and USB Bus Power)**

Test Date : April 23, 2012

Temp.:22°C, Humi:41%

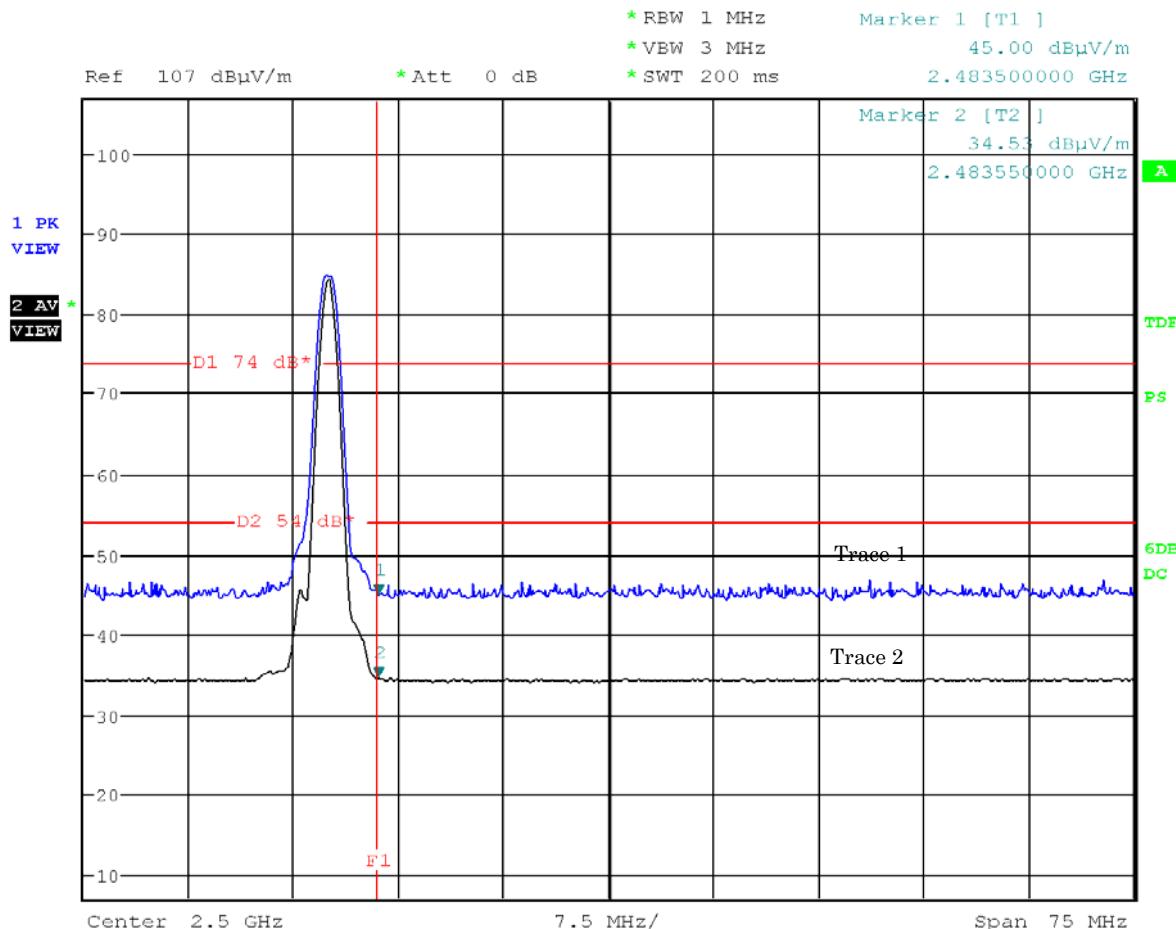
Mode of EUT : Hopping off (0ch: 2402 MHz)


Antenna Polarization : Horizontal



Note: The trace 1 is Peak detection. The trace 2 is Average detection.

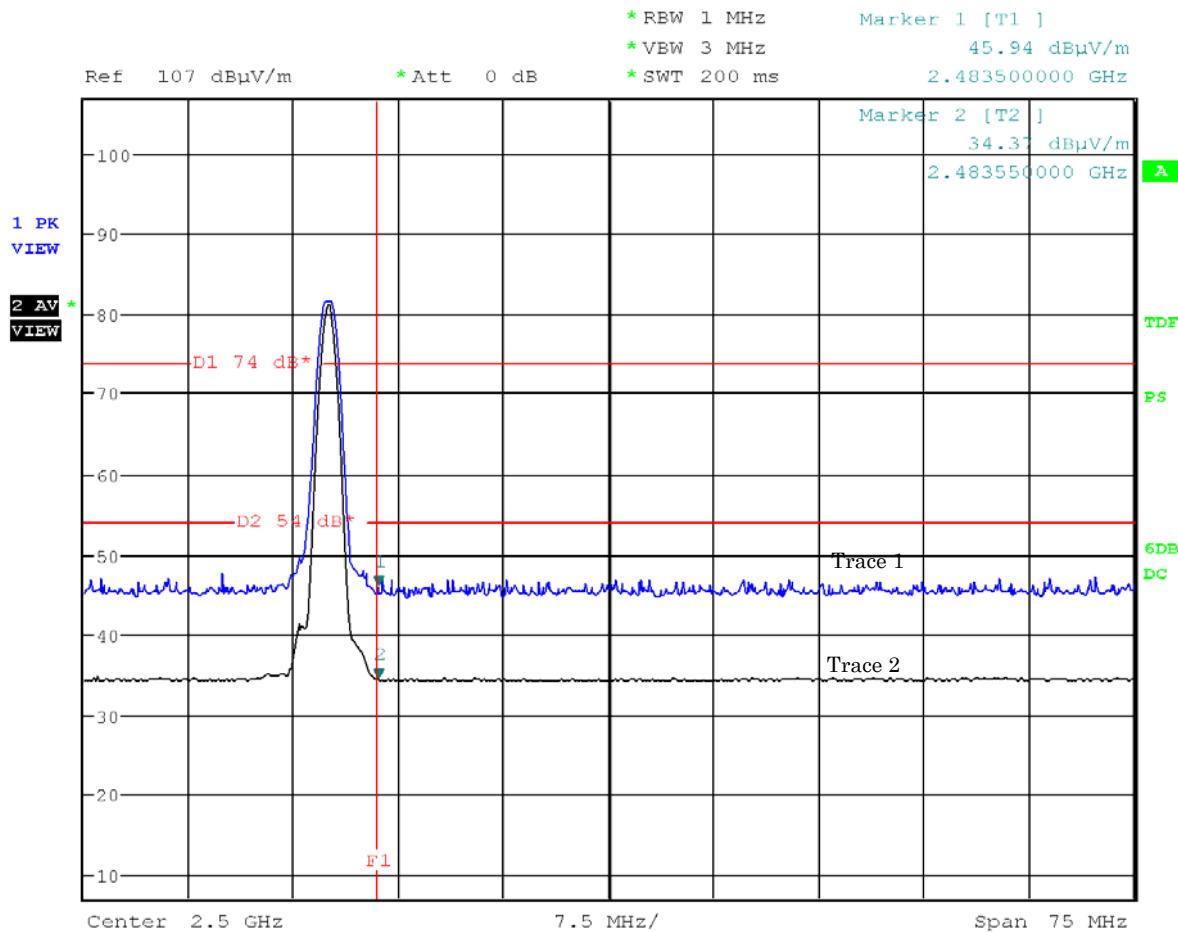
Mode of EUT : Hopping off (0ch: 2402 MHz)


Antenna Polarization : Vertical



Note: The trace 1 is Peak detection. The trace 2 is Average detection.

Mode of EUT : Hopping off (78ch: 2480 MHz)


Antenna Polarization : Horizontal



Note: The trace 1 is Peak detection. The trace 2 is Average detection.

Mode of EUT : Hopping off (78ch: 2480 MHz)

Antenna Polarization : Vertical



Note: The trace 1 is Peak detection. The trace 2 is Average detection.

### A.8.2 Other Spurious Emission

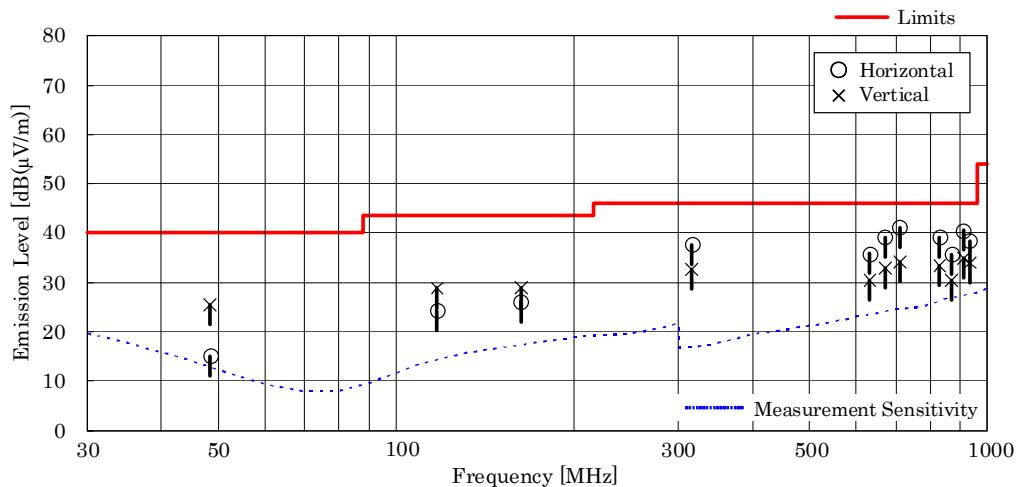
#### A.8.2.1 Powered from AC adapter

##### A.8.2.1.1 Other Spurious Emission(9kHz – 30MHz)

Test Date : April 27, 2012
Temp.:20°C, Humi:40%

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2441MHz) has been listed.

Results : No spurious emissions in the range 20dB below the limit.


##### A.8.2.1.2 Other Spurious Emission(30MHz – 1000MHz)

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2441MHz) has been listed.

Test condition : Powered from AC Adapter

Test Date: April 23, 2012
Temp.: 22 °C, Humi: 60 %

| Frequency<br>[MHz] | Antenna<br>Factor<br>[dB(1/m)] | Cable<br>Loss<br>[dB] | Meter Readings<br>[dB(μV)] | Limits<br>[dB(μV/m)] | Results<br>[dB(μV/m)] | Margin<br>[dB] | Remarks |
|--------------------|--------------------------------|-----------------------|----------------------------|----------------------|-----------------------|----------------|---------|
|                    |                                |                       | Hori.                      | Vert.                | Hori.                 | Vert.          |         |
| 48.4               | 11.8                           | 1.1                   | 2.2                        | 12.6                 | 40.0                  | 15.1           | +14.5   |
| 117.2              | 12.7                           | 1.7                   | 9.9                        | 14.4                 | 43.5                  | 24.3           | +14.7   |
| 162.6              | 15.3                           | 2.0                   | 8.8                        | 11.6                 | 43.5                  | 26.1           | +14.6   |
| 316.2              | 14.0                           | 2.9                   | 20.7                       | 15.8                 | 46.0                  | 37.6           | + 8.4   |
| 632.7              | 19.3                           | 4.2                   | 12.3                       | 7.0                  | 46.0                  | 35.8           | +10.2   |
| 671.8              | 19.8                           | 4.3                   | 15.0                       | 8.7                  | 46.0                  | 39.1           | + 6.9   |
| 711.5              | 20.2                           | 4.5                   | 16.4                       | 9.5                  | 46.0                  | 41.1           | + 4.9   |
| 830.0              | 21.4                           | 4.9                   | 12.9                       | 7.2                  | 46.0                  | 39.2           | + 6.8   |
| 869.6              | 21.9                           | 5.0                   | 8.8                        | 3.6                  | 46.0                  | 35.7           | +10.3   |
| 909.3              | 22.2                           | 5.2                   | 13.1                       | 7.4                  | 46.0                  | 40.5           | + 5.5   |
| 933.9              | 22.4                           | 5.2                   | 10.8                       | 6.4                  | 46.0                  | 38.4           | + 7.6   |



#### NOTES

1. Test Distance : 3 m
2. The spectrum was checked from 30 MHz to 1000 MHz.
3. The symbol of “<” means “or less”.
4. The symbol of “>” means “more than”.
5. Calculated result at 711.5 MHz, as the worst point shown on underline:  
Antenna Factor + Cable Loss + Meter Reading = 20.2 + 4.5 + 16.4 = 41.1 dB(μV/m)
6. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)

### A.8.2.1.3 Other Spurious Emission(Above 1000MHz)

Test Date: April 17, 2012  
 Temp.: 20 °C, Humi: 52 %

| Frequency<br>[MHz]                   | Antenna<br>Factor<br>[dB] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |        |          |        | Limits<br>[dB(μV/m)] |      | Results<br>[dB(μV/m)] |        | Margin<br>[dB] | Remarks |
|--------------------------------------|---------------------------|-------------------------|-------------------------|--------|----------|--------|----------------------|------|-----------------------|--------|----------------|---------|
|                                      |                           |                         | Horizontal              |        | Vertical |        | PK                   | AVE  | PK                    | AVE    |                |         |
| <b>Test condition : Tx Low Ch</b>    |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 1602.0                               | 20.4                      | -26.5                   | 59.5                    | 58.0   | 57.3     | 55.5   | 74.0                 | 54.0 | 53.4                  | 51.9   | + 2.1          | A/B     |
| 4804.0                               | 27.3                      | -21.2                   | 48.6                    | 41.1   | 48.4     | 41.1   | 74.0                 | 54.0 | 54.7                  | 47.2   | + 6.8          | A/B     |
| 12010.0                              | 33.6                      | -27.3                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 46.3                | < 36.3 | > +17.7        | A/B     |
| 19216.0                              | 40.2                      | -22.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.6                | < 47.6 | > + 6.4        | A/B     |
| <b>Test condition : TX Middle Ch</b> |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 4882.0                               | 27.3                      | -21.3                   | 48.5                    | 42.8   | 48.2     | 42.5   | 74.0                 | 54.0 | 54.5                  | 48.8   | + 5.2          | A/B     |
| 7323.0                               | 29.9                      | -19.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 50.3                | < 40.3 | > +13.7        | A/B     |
| 12205.0                              | 33.5                      | -27.0                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 46.5                | < 36.5 | > +17.5        | A/B     |
| 19528.0                              | 40.3                      | -22.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.7                | < 47.7 | > + 6.3        | A/B     |
| <b>Test condition : TX High Ch</b>   |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 4960.0                               | 27.3                      | -21.4                   | 49.2                    | 44.0   | 48.1     | 42.7   | 74.0                 | 54.0 | 55.1                  | 49.9   | + 4.1          | A/B     |
| 7440.0                               | 29.9                      | -19.5                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 50.4                | < 40.4 | > +13.6        | A/B     |
| 12400.0                              | 33.5                      | -26.7                   | < 40.0                  | < 30.0 | 40.0     | < 30.0 | 74.0                 | 54.0 | < 46.8                | < 36.8 | > +17.2        | A/B     |
| 19840.0                              | 40.3                      | -22.5                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.8                | < 47.8 | > + 6.2        | A/B     |
| 22320.0                              | 40.4                      | -21.7                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 58.7                | < 48.7 | > + 5.3        | A/B     |

Calculated result at 1602.0 MHz, as the worst point shown on underline:

$$\begin{aligned}
 \text{Antenna Factor} &= 20.4 \text{ dB(1/m)} \\
 \text{Corr. Factor} &= -26.5 \text{ dB} \\
 +) \underline{\text{Meter Reading}} &= 58.0 \text{ dB(μV)} \\
 \text{Result} &= 51.9 \text{ dB(μV/m)}
 \end{aligned}$$

Minimum Margin:  $54.0 - 51.9 = 2.1$  (dB)

#### NOTES

- Test Distance : 3 m
- The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- The correction factor is shown as follows:
  - Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)
  - Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)
  - Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)
- The symbol of “<” means “or less”.
- The symbol of “>” means “more than”.
- PK : Peak Detector / AVE : Average Detector
- Setting of measuring instrument(s) :

|   | Detector Function | Resolution B.W. | Video B.W. | Sweep Time |
|---|-------------------|-----------------|------------|------------|
| A | Peak              | 1 MHz           | 1 MHz      | AUTO       |
| B | Peak              | 1 MHz           | 10 Hz      | AUTO       |

Test Date: April 17, 2012  
Temp.: 20 °C, Humi: 52 %

| Frequency<br>[MHz] | Antenna<br>Factor<br>[dB(1/m)] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |  |          |  | Limits<br>[dB(μV/m)] |     | Results<br>[dB(μV/m)] |     | Margin<br>[dB] | Remarks |
|--------------------|--------------------------------|-------------------------|-------------------------|--|----------|--|----------------------|-----|-----------------------|-----|----------------|---------|
|                    |                                |                         | Horizontal              |  | Vertical |  | PK                   | AVE | PK                    | AVE |                |         |

**Test condition : RX Middle Ch**

|        |      |       |        |        |        |        |      |      |        |        |         |     |
|--------|------|-------|--------|--------|--------|--------|------|------|--------|--------|---------|-----|
| 1628.3 | 20.6 | -27.5 | 60.8   | 59.6   | 56.6   | 54.4   | 74.0 | 54.0 | 53.9   | 52.7   | + 1.3   | A/B |
| 2442.5 | 21.5 | -22.0 | < 40.0 | < 30.0 | < 40.0 | < 30.0 | 74.0 | 54.0 | < 39.5 | < 29.5 | > +24.5 | A/B |
| 4885.0 | 27.3 | -21.6 | < 40.0 | < 30.0 | < 40.0 | < 30.0 | 74.0 | 54.0 | < 45.7 | < 35.7 | > +18.3 | A/B |
| 7327.5 | 29.9 | -19.9 | < 40.0 | < 30.0 | < 40.0 | < 30.0 | 74.0 | 54.0 | < 50.0 | < 40.0 | > +14.0 | A/B |

Calculated result at 4885.0 MHz, as the worst point shown on underline:

$$\begin{aligned}
 \text{Antenna Factor} &= 27.3 \text{ dB(1/m)} \\
 \text{Corr. Factor} &= -21.6 \text{ dB} \\
 +) \text{ Meter Reading} &= <30.0 \text{ dB(μV)} \\
 \text{Result} &= <35.7 \text{ dB(μV/m)}
 \end{aligned}$$

Minimum Margin: 54.0 - <35.7 = >1.3 (dB)

**NOTES**

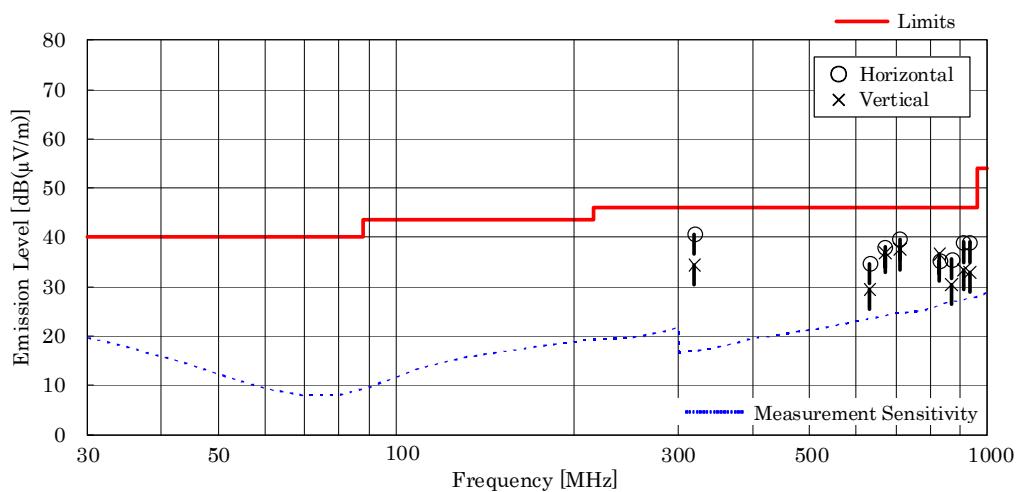
1. Test Distance : 3 m
2. The spectrum was checked from 1 GHz to 7.5 GHz .
3. The correction factor is shown as follows:  
 $\text{Corr. Factor [dB]} = \text{Cable Loss} + 20\text{dB Pad Att.} - \text{Pre-Amp. Gain [dB]} (1.0 - 7.6\text{GHz})$
4. The symbol of “<” means “or less”.
5. The symbol of “>” means “more than”.
6. PK : Peak Detector / AVE : Average Detector
7. Setting of measuring instrument(s) :

|   | Detector Function | Resolution B.W. | Video B.W. | Sweep Time |
|---|-------------------|-----------------|------------|------------|
| A | Peak              | 1 MHz           | 1 MHz      | AUTO       |
| B | Peak              | 1 MHz           | 10 Hz      | AUTO       |

**A.8.2.2 Powered from USB Bus Power****A.8.2.2.1 Other Spurious Emission(9kHz – 30MHz)**

Test Date : May 3, 2012  
 Temp.:23°C, Humi:60%

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2441MHz) has been listed.


Results : No spurious emissions in the range 20dB below the limit.

**A.8.2.2.2 Other Spurious Emission(30MHz – 1000MHz)**

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2441MHz) has been listed.

Test condition : Powered from USB Bus Power  
 Test Date: May 3, 2012  
 Temp.: 23 °C, Humi: 60 %

| Frequency<br>[MHz] | Antenna<br>Factor<br>[dB(1/m)] | Cable<br>Loss<br>[dB] | Meter Readings<br>[dB(μV)] | Limits<br>[dB(μV/m)] | Results<br>[dB(μV/m)] | Margin<br>[dB] | Remarks |
|--------------------|--------------------------------|-----------------------|----------------------------|----------------------|-----------------------|----------------|---------|
|                    |                                |                       | Hor. Vert.                 |                      | Hor. Vert.            |                |         |
| 319.5              | 14.0                           | 2.9                   | 23.7                       | 17.5                 | 46.0                  | 40.6           | 34.4    |
| 632.7              | 19.3                           | 4.2                   | 11.2                       | 5.9                  | 46.0                  | 34.7           | 29.4    |
| 671.8              | 19.8                           | 4.3                   | 13.9                       | 12.8                 | 46.0                  | 38.0           | 36.9    |
| 711.5              | 20.2                           | 4.5                   | 15.0                       | 12.8                 | 46.0                  | 39.7           | 37.5    |
| 830.0              | 21.4                           | 4.9                   | 8.8                        | 10.3                 | 46.0                  | 35.1           | 36.6    |
| 869.6              | 21.9                           | 5.0                   | 8.7                        | 3.5                  | 46.0                  | 35.6           | 30.4    |
| 909.3              | 22.2                           | 5.2                   | 11.6                       | 5.9                  | 46.0                  | 39.0           | 33.3    |
| 933.9              | 22.4                           | 5.2                   | 11.4                       | 5.2                  | 46.0                  | 39.0           | 32.8    |



## NOTES

1. Test Distance : 3 m
2. The spectrum was checked from 30 MHz to 1000 MHz.
3. The symbol of “<” means “or less”.
4. The symbol of “>” means “more than”.
5. Calculated result at 319.5 MHz, as the worst point shown on underline:  

$$\text{Antenna Factor} + \text{Cable Loss} + \text{Meter Reading} = 14.0 + 2.9 + 23.7 = 40.6 \text{ dB}(\mu\text{V/m})$$
6. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)

### A.8.2.2.3 Other Spurious Emission(Above 1000MHz)

Test Date: May 3, 2012  
Temp.: 23 °C, Humi: 60 %

| Frequency<br>[MHz]                   | Antenna<br>Factor<br>[dB] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |        |          |        | Limits<br>[dB(μV/m)] |      | Results<br>[dB(μV/m)] |        | Margin<br>[dB] | Remarks |
|--------------------------------------|---------------------------|-------------------------|-------------------------|--------|----------|--------|----------------------|------|-----------------------|--------|----------------|---------|
|                                      |                           |                         | Horizontal              |        | Vertical |        | PK                   | AVE  | PK                    | AVE    |                |         |
| <b>Test condition : Tx Low Ch</b>    |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 1602.0                               | 20.4                      | -26.5                   | 58.5                    | 56.9   | 57.8     | 54.9   | 74.0                 | 54.0 | 52.4                  | 50.8   | + 3.2          | A/B     |
| 4804.0                               | 27.3                      | -21.2                   | 48.4                    | 41.0   | 47.7     | 40.1   | 74.0                 | 54.0 | 54.5                  | 47.1   | + 6.9          | A/B     |
| 12010.0                              | 33.6                      | -27.3                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 46.3                | < 36.3 | > +17.7        | A/B     |
| 19216.0                              | 40.2                      | -22.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.6                | < 47.6 | > + 6.4        | A/B     |
| <b>Test condition : TX Middle Ch</b> |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 4882.0                               | 27.3                      | -21.3                   | 49.9                    | 44.2   | 48.1     | 41.8   | 74.0                 | 54.0 | 55.9                  | 50.2   | + 3.8          | A/B     |
| 7323.0                               | 29.9                      | -19.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 50.3                | < 40.3 | > +13.7        | A/B     |
| 12205.0                              | 33.5                      | -27.0                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 46.5                | < 36.5 | > +17.5        | A/B     |
| 19528.0                              | 40.3                      | -22.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.7                | < 47.7 | > + 6.3        | A/B     |
| <b>Test condition : TX High Ch</b>   |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 4960.0                               | 27.3                      | -21.4                   | 49.1                    | 44.0   | 48.7     | 42.5   | 74.0                 | 54.0 | 55.0                  | 49.9   | + 4.1          | A/B     |
| 7440.0                               | 29.9                      | -19.5                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 50.4                | < 40.4 | > +13.6        | A/B     |
| 12400.0                              | 33.5                      | -26.7                   | < 40.0                  | < 30.0 | 40.0     | < 30.0 | 74.0                 | 54.0 | < 46.8                | < 36.8 | > +17.2        | A/B     |
| 19840.0                              | 40.3                      | -22.5                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 57.8                | < 47.8 | > + 6.2        | A/B     |
| 22320.0                              | 40.4                      | -21.7                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 58.7                | < 48.7 | > + 5.3        | A/B     |

Calculated result at 1602.0 MHz, as the worst point shown on underline:

$$\begin{aligned}
 \text{Antenna Factor} &= 20.4 \text{ dB(1/m)} \\
 \text{Corr. Factor} &= -26.5 \text{ dB} \\
 +) \underline{\text{Meter Reading}} &= 56.9 \text{ dB(μV)} \\
 \text{Result} &= 50.8 \text{ dB(μV/m)}
 \end{aligned}$$

Minimum Margin:  $54.0 - 50.8 = 3.2 (dB)$

#### NOTES

- Test Distance : 3 m
- The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).
- The correction factor is shown as follows:
  - Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)
  - Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)
  - Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)
- The symbol of “<” means “or less”.
- The symbol of “>” means “more than”.
- PK : Peak Detector / AVE : Average Detector
- Setting of measuring instrument(s) :

|   | Detector Function | Resolution B.W. | Video B.W. | Sweep Time |
|---|-------------------|-----------------|------------|------------|
| A | Peak              | 1 MHz           | 1 MHz      | AUTO       |
| B | Peak              | 1 MHz           | 10 Hz      | AUTO       |

Test Date: May 3, 2012  
Temp.: 23 °C, Humi: 60 %

| Frequency<br>[MHz]                   | Antenna<br>Factor<br>[dB] | Corr.<br>Factor<br>[dB] | Meter Readings [dB(μV)] |        |          |        | Limits<br>[dB(μV/m)] |      | Results<br>[dB(μV/m)] |        | Margin<br>[dB] | Remarks |
|--------------------------------------|---------------------------|-------------------------|-------------------------|--------|----------|--------|----------------------|------|-----------------------|--------|----------------|---------|
|                                      |                           |                         | Horizontal              |        | Vertical |        | PK                   | AVE  | PK                    | AVE    |                |         |
| <b>Test condition : RX Middle Ch</b> |                           |                         |                         |        |          |        |                      |      |                       |        |                |         |
| 1628.3                               | 20.6                      | -27.5                   | 57.2                    | 55.3   | 56.1     | 53.8   | 74.0                 | 54.0 | 50.3                  | 48.4   | + 5.6          | A/B     |
| 2442.5                               | 21.5                      | -22.0                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 39.5                | < 29.5 | > +24.5        | A/B     |
| 4885.0                               | 27.3                      | -21.6                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 45.7                | < 35.7 | > +18.3        | A/B     |
| 7327.5                               | 29.9                      | -19.9                   | < 40.0                  | < 30.0 | < 40.0   | < 30.0 | 74.0                 | 54.0 | < 50.0                | < 40.0 | > +14.0        | A/B     |

Calculated result at 4885.0 MHz, as the worst point shown on underline:

Antenna Factor = 27.3 dB(1/m)  
 Corr. Factor = -21.6 dB  
 +) Meter Reading = <30.0 dB(μV)  
 Result = <35.7 dB(μV/m)

Minimum Margin: 54.0 - <35.7 = >5.6 (dB)

#### NOTES

1. Test Distance : 3 m
2. The spectrum was checked from 1 GHz to 7.5 GHz .
3. The correction factor is shown as follows:  
 $\text{Corr. Factor [dB]} = \text{Cable Loss} + 20\text{dB Pad Att.} - \text{Pre-Amp. Gain [dB]} (1.0 - 7.6\text{GHz})$
4. The symbol of “<” means “or less”.
5. The symbol of “>” means “more than”.
6. PK : Peak Detector / AVE : Average Detector
7. Setting of measuring instrument(s) :

|   | Detector Function | Resolution B.W. | Video B.W. | Sweep Time |
|---|-------------------|-----------------|------------|------------|
| A | Peak              | 1 MHz           | 1 MHz      | AUTO       |
| B | Peak              | 1 MHz           | 10 Hz      | AUTO       |

### A.9 Maximum Permissible Exposure

Power density is given by:

$$S = EIRP / (4 * \pi * D^2)$$

where

S: Power density (W/m<sup>2</sup>)

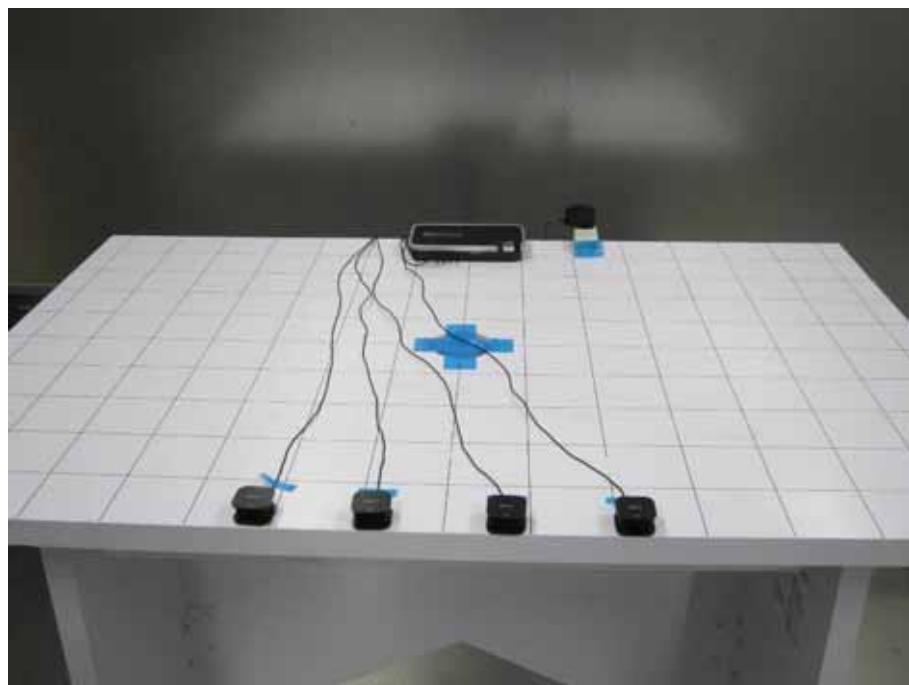
EIRP: Equivalent Isotropic Radiated Power (W)

D: Separation distance (m)

Power density in units of W/m<sup>2</sup> is converted to units of mW/cm<sup>2</sup> by dividing by 10.

| Band    | Mode      | Separation Distance (m) | Maximum Output Power (dBm) | Antenna Gain (dBi) | Power Density (mW/cm <sup>2</sup> ) | FCC Limit (mW/cm <sup>2</sup> ) |
|---------|-----------|-------------------------|----------------------------|--------------------|-------------------------------------|---------------------------------|
| 2.4 GHz | Bluetooth | 0.20                    | -4.36                      | 2.0                | 0.00012                             | 1.0                             |

Note: FCC Limit: §1.1310 Table 1 (B)


Sample Calculation:

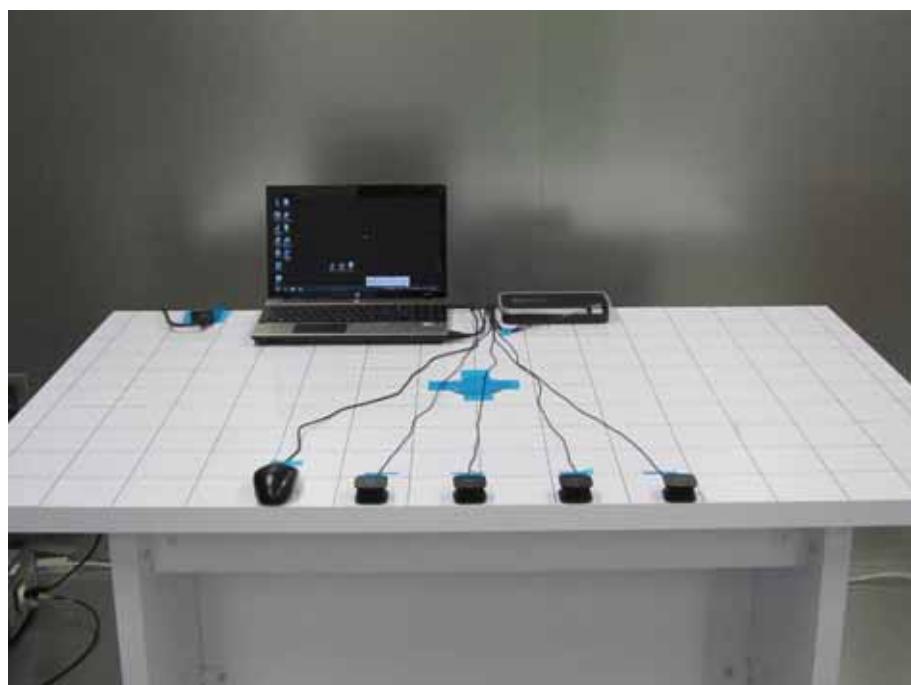
$$\begin{aligned} S(\text{mW/cm}^2) &= EIRP / (4 * \pi * D^2) / 10 \\ &= 10^{((2.0-4.36-30)/10)} / (4 * \pi * 0.2^2) / 10 \\ &= 0.00012 \end{aligned}$$

## Appendix B: Test Arrangement (Photographs)

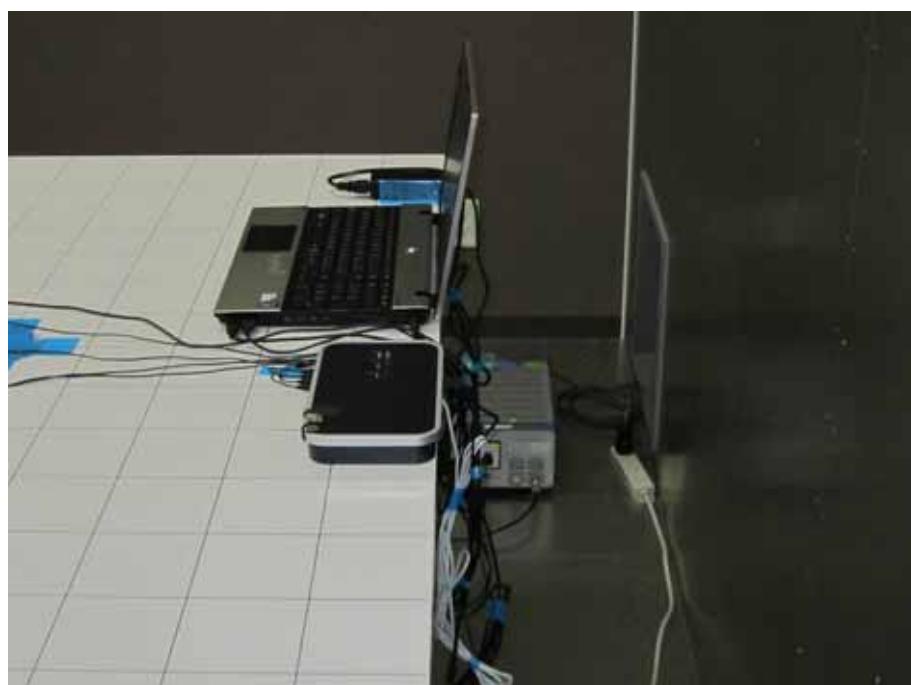
### B.1 AC Powerline Conducted Emission

#### B.1.1 Powered from AC Adapter




– Front View –



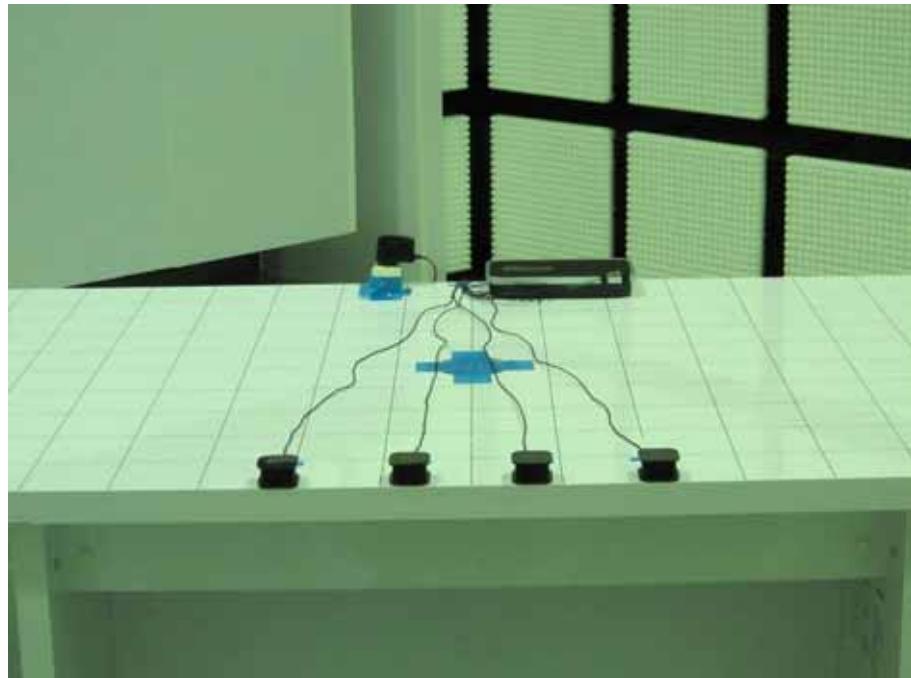

– Side View –

Photograph present configuration with maximum emission

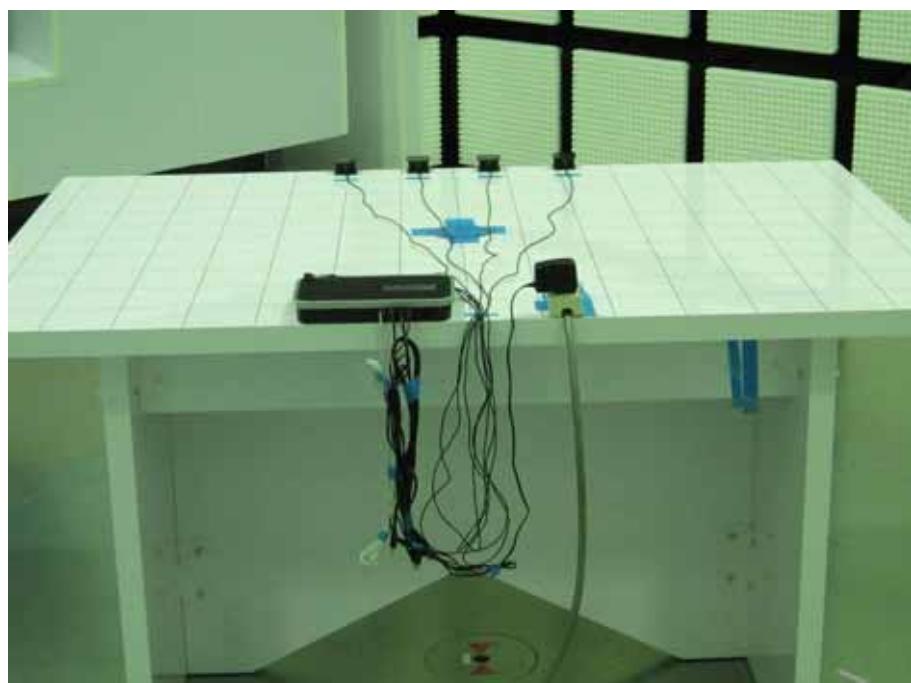
**B.1.2 Powered from USB Bus Power**



–Front View–

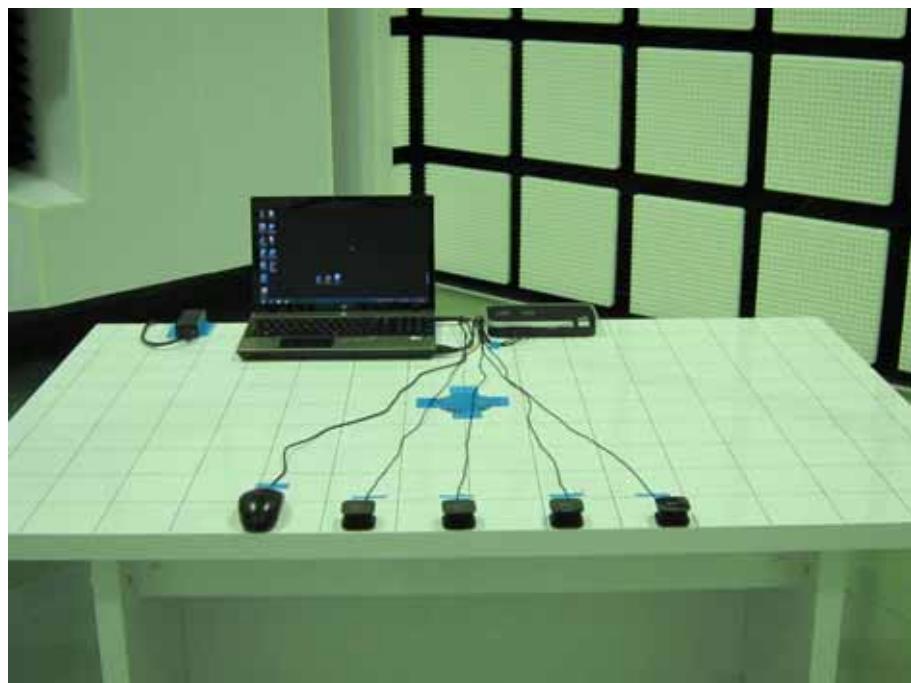



–Side View–

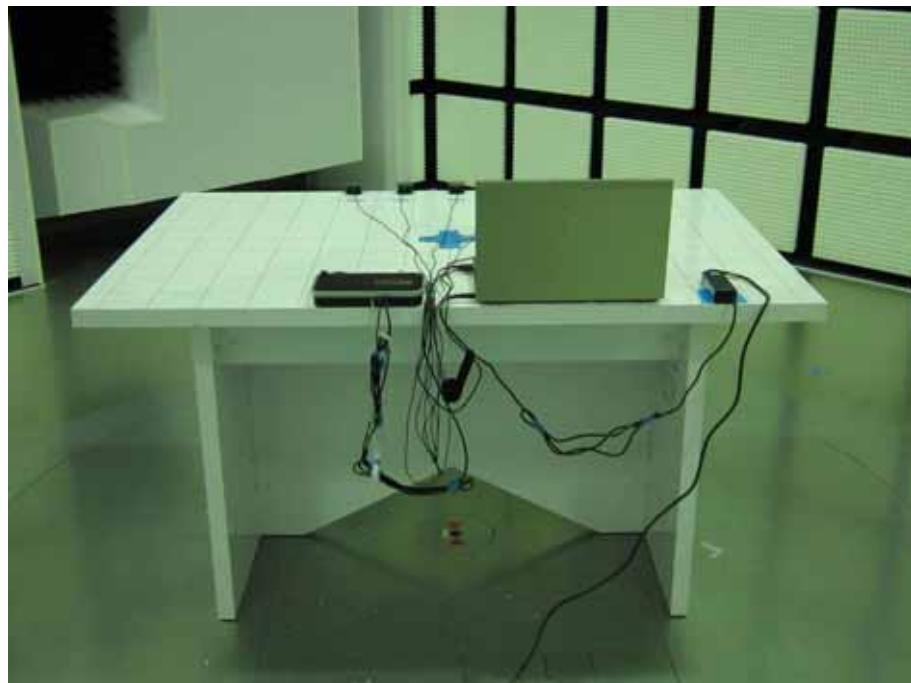

Photograph present configuration with maximum emission

**B.2 Radiated Emission**

**B.2.1 Powered from AC Adapter**




– Front View –




– Rear View –

Photograph present configuration with maximum emission

**B.2.2 Powered from USB Bus Power**

—Front View—



—Rear View—

Photograph present configuration with maximum emission

**Appendix C: Test Instruments****C.1 Channel Separation**

| Type              | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|-------------------|-------------|--------------|--------|-----------|----------|
| Spectrum Analyzer | E4446A      | Agilent      | A-39   | 2011/9    | 1 Year   |
| Attenuator        | 54A-10      | Weinschel    | D-28   | 2011/9    | 1 Year   |
| RF Cable          | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.2 Minimum Hopping Channel**

| Type              | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|-------------------|-------------|--------------|--------|-----------|----------|
| Spectrum Analyzer | E4446A      | Agilent      | A-39   | 2011/9    | 1 Year   |
| Attenuator        | 54A-10      | Weinschel    | D-28   | 2011/9    | 1 Year   |
| RF Cable          | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.3 Occupied Bandwidth**

| Type              | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|-------------------|-------------|--------------|--------|-----------|----------|
| Spectrum Analyzer | E4446A      | Agilent      | A-39   | 2011/9    | 1 Year   |
| Attenuator        | 54A-10      | Weinschel    | D-28   | 2011/9    | 1 Year   |
| RF Cable          | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.4 Dwell Time**

| Type              | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|-------------------|-------------|--------------|--------|-----------|----------|
| Spectrum Analyzer | E4446A      | Agilent      | A-39   | 2011/9    | 1 Year   |
| Attenuator        | 54A-10      | Weinschel    | D-28   | 2011/9    | 1 Year   |
| RF Cable          | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.5 Peak Output Power (Conduction)**

| Type         | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|--------------|-------------|--------------|--------|-----------|----------|
| Power Meter  | N1911A      | Agilent      | B-63   | 2011/7    | 1 Year   |
| Power Sensor | N1921A      | Agilent      | B-64   | 2011/7    | 1 Year   |
| RF Cable     | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.6 Spurious Emission (Conduction)**

| Type              | Model       | Manufacturer | ID No. | Last Cal. | Interval |
|-------------------|-------------|--------------|--------|-----------|----------|
| Spectrum Analyzer | E4446A      | Agilent      | A-39   | 2011/9    | 1 Year   |
| Attenuator        | 54A-10      | Weinschel    | D-28   | 2011/9    | 1 Year   |
| RF Cable          | SUCOFLEX102 | SUHNER       | C-52   | 2011/6    | 1 Year   |

**C.7 AC Power Conducted Emission**

| Type          | Model   | Manufacturer    | ID No. | Last Cal. | Interval |
|---------------|---------|-----------------|--------|-----------|----------|
| Test Receiver | ESU 26  | Rohde & Schwarz | A-6    | 2012/4    | 1 Year   |
| AMN (main)    | ESH3-Z5 | Rohde & Schwarz | D-12   | 2011/8    | 1 Year   |
| RF Cable      | RG223/U | SUHNER          | H-7    | 2011/11   | 1 Year   |
| RF Cable      | RG223/U | SUHNER          | H-35   | 2011/6    | 1 Year   |

**C.8 Radiated Emission****C.8.1 Radiated Emission 9 kHz – 30 MHz**

| Type          | Model   | Manufacturer    | ID No. | Last Cal. | Interval |
|---------------|---------|-----------------|--------|-----------|----------|
| Test Receiver | ESU 26  | Rohde & Schwarz | A-6    | 2012/4    | 1 Year   |
| Loop Antenna  | HFH2-Z2 | Rohde & Schwarz | C-2    | 2011/8    | 1 Year   |
| RF Cable      | RG213/U | SUHNER          | H-28   | 2011/8    | 1 Year   |

**C.8.2 Radiated Emission 30MHz – 1000 MHz**

| Type                 | Model             | Manufacturer    | ID No. | Last Cal. | Interval |
|----------------------|-------------------|-----------------|--------|-----------|----------|
| Test Receiver        | ESU 26            | Rohde & Schwarz | A-6    | 2012/4    | 1 Year   |
| Biconical Antenna    | VHA9103/BBA9106   | Schwarzbeck     | C-30   | 2011/5    | 1 Year   |
| Log-periodic Antenna | UHALP9108-A1      | Schwarzbeck     | C-31   | 2011/5    | 1 Year   |
| RF Cable             | S 10162 B-11 etc. | SUHNER          | H-4    | 2012/3    | 1 Year   |
| Site Attenuation     | --                | ----            | H-15   | 2012/2    | 1 Year   |

**C.8.3 Radiated Emission Above 1000 MHz**

| Type                  | Model         | Manufacturer    | ID No. | Last Cal. | Interval |
|-----------------------|---------------|-----------------|--------|-----------|----------|
| Test Receiver         | ESU 26        | Rohde & Schwarz | A-6    | 2012/4    | 1 Year   |
| Pre-Amplifier         | WJ-6882-824   | Watkins Johnson | A-21   | 2012/1    | 1 Year   |
| Pre-Amplifier         | WJ-6611-513   | Watkins Johnson | A-23   | 2012/1    | 1 Year   |
| Pre-Amplifier         | BZ1840LD1     | B&Z             | A-29   | 2012/1    | 1 Year   |
| Pre-Amplifier         | DBL-0618N515  | DBS Microwave   | A-33   | 2012/1    | 1 Year   |
| Horn Antenna          | 91888-2       | EATON           | C-41-1 | 2011/6    | 1 Year   |
| Horn Antenna          | 91889-2       | EATON           | C-41-2 | 2011/6    | 1 Year   |
| Horn Antenna          | 3160-04       | EMCO            | C-55   | 2011/6    | 2 Years  |
| Horn Antenna          | 3160-05       | EMCO            | C-56   | 2011/6    | 2 Years  |
| Horn Antenna          | 3160-06       | EMCO            | C-57   | 2011/6    | 2 Years  |
| Horn Antenna          | 3160-07       | EMCO            | C-58   | 2011/6    | 2 Years  |
| Horn Antenna          | 3160-08       | EMCO            | C-59   | 2011/6    | 2 Years  |
| Horn Antenna          | 3160-09       | EMCO            | C-48   | 2011/6    | 2 Years  |
| Attenuator            | 54A-10        | Weinschel       | D-29   | 2011/9    | 1 Year   |
| Attenuator            | 2-10          | Weinschel       | D-79   | 2011/11   | 1 Year   |
| Band Rejection Filter | BRM50701      | MICRO-TRONICS   | D-93   | 2012/2    | 1 Year   |
| RF Cable              | SUCOFLEX102   | SUHNER          | C-52   | 2011/6    | 1 Year   |
| RF Cable              | SUCOFLEX104   | SUHNER          | C-66   | 2012/1    | 1 Year   |
| RF Cable              | SUCOFLEX104   | SUHNER          | C-67   | 2012/1    | 1 Year   |
| RF Cable              | SUCOFLEX102EA | SUHNER          | C-69   | 2012/1    | 1 Year   |
| SVSWR                 | --            | ----            | H-19   | 2012/2    | 1 Year   |