

FCC/MELLON FEB 08 1999

EXHIBIT VI

Test Report

Total pages 25

ASIF9-F001

TEST REPORT FOR CERTIFICATION
On Behalf of
ATMEL ASIA LTD. Shanghai Liaison Office
Smart Card Reader

Model No.: 128

FCC ID: OBPARTH981

Prepared For : ATMEL ASIA LTD. Shanghai Liaison Office

4th Floor, Block A,
586 Pan Yu Road, Shanghai, China

Prepared By : AUDIX Technology (Shanghai) Co., Ltd.

3 F., 34 Bldg., 680 Guiping Rd.,
Caohejing Hi-Tech Park,
Shanghai, China

Tel : (+8621) 64955500

Report No. : ACI-F98001
Date of Test : Nov. 23 ~ Nov. 25, 1998
Date of Report : Dec. 15, 1998

TABLE OF CONTENTS

	Page
1. GENERAL INFORMATION.....	1-1
1.1. Description of Equipment Under Test.....	1-1
1.2. Supported Simulators	1-1
1.3. Description of Test Facility	1-3
2. AC POWERLINE CONDUCTED TEST.....	2-1
2.1. Test Equipment.....	2-1
2.2. Block Diagram of Test Setup	2-1
2.3. Conducted Powerline Emission Limit (CLASS B).....	2-2
2.4. Test Configuration.....	2-2
2.5. Operating Condition of EUT	2-2
2.6. Test Procedures.....	2-3
2.7. Conducted Emission Test Results	2-4
3. RADIATED EMISSION TEST.....	3-1
3.1. Test Equipment.....	3-1
3.2. Block Diagram of Test Setup	3-1
3.3. Radiated Emission Limit	3-2
3.4. Test Configuration.....	3-3
3.5. Operating Condition of EUT	3-3
3.6. Test Procedures.....	3-3
3.7. Radiated Emission Test Results	3-4
4. PHOTOGRAPHS	4-1
4.1. AC Powerline Conducted Emission Test.....	4-1
4.2. Radiated Emission Test	4-2
APPENDIX CONDUCTED EMISSION WAVEFORM	I

TEST REPORT CERTIFICATION

Applicant : ATMEL ASIA LTD. Shanghai Liaison Office
 Telephone : (+8621) 62809234
 Manufacturer : Goldtron Electronics (Shanghai) Co., Ltd.
 FCC ID : OBPARTH981
 EUT Description : Smart Card Reader
 (A) Model No. : 128
 (B) Serial No. : ART001001
 (C) Power Supply : AC 230V/50Hz

Test Procedure Used: AC Adapter by Minwa, Type MW950.

FCC RULES AND REGULATIONS PART 15 SUBPART B CLASS B OCTOBER 1997
 &
ANSI C63.4-1992.

The device described above is tested by AUDIX Technology (Shanghai) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B (Class B) limits both radiated and conducted emissions.

The test results are contained in this test report and AUDIX Technology (Shanghai) Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliant with the FCC official limits. AUDIX Technology (Shanghai) Co., Ltd. recommends that this data can be submitted for FCC certification purposes if a 6dB margin below FCC limits is obtained.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX Technology (Shanghai) Co., Ltd.

Date of Test : Nov. 23 ~ Nov. 25, 1998

Prepared by : Casperlei
 (CASPER LEI)

Test Engineer : Hall Wang
 (HALL WANG)

Approved Signatory : For and on behalf of
 AUDIX TECHNOLOGY (SHANGHAI) CO.,LTD.
Jeremy Geng
 (JEREMY GENG)

1. GENERAL INFORMATION

1.1. Description of Equipment Under Test

Description	:	Smart Card Reader
Model Number	:	128
Serial No.	:	ART001001
FCC ID	:	OBPARTH981
Applicant	:	ATMEL ASIA LTD. Shanghai Liaison Office 4 th Floor, Block A, 586 Pan Yu Road, Shanghai, China
Manufacturer	:	Goldtron Electronics (Shanghai) Co., Ltd. 139 Fu Te Nan Road, Wai Gao Qiao Free Trade Zone, Shanghai, China
Date of Test	:	Nov. 23 ~ Nov. 25, 1998

1.2. Supported Simulators

1.2.1. PERSONAL COMPUTER

Model Number	:	P2L97
Serial Number	:	T02
FCC ID	:	N/A (DOC)
Manufacturer	:	Asus Computer International Co.
Switching Power Supply	:	Model FSP300-60GT Sparkle Power Int'l Ltd.
Floppy Driver	:	Teac Corp. Model FC-235HF
Hard Disk Driver	:	Seagate Model ST3322A
Disk Ctrl Card	:	Within Mother Board
Serial / Parallel Card	:	Within Mother Board
Power Cord	:	Unshielded, Detachable, 1.8m

1.2.2. VGA CARD

Manufacturer	:	Asus Computer International Co.
Model Number	:	3DP-V375DX
Serial Number	:	85C7E05379
FCC ID	:	LUT-CP765

1.2.3. MONITOR

Model Number	:	CM752ET
Serial Number	:	T8E004383
FCC ID	:	N/A (DOC)
Manufacturer	:	HITACHI
Data Cable	:	Shielded, Detachable, 1.7m
Power Cord	:	Unshielded, Detachable, 1.8m

1.2.4. KEYBOARD

Model Number	:	KFK-EA4XA
Serial Number	:	N/A
FCC ID	:	CMYKFK7741
Manufacturer	:	MITSUMI
Data Cable	:	Shielded, Nondetachable, 1.5m

1.2.5. MOUSE

Model Number	:	M-S34
Serial Number	:	850447-0000
FCC ID	:	DZL211029
Manufacturer	:	COMPAQ
Data Cable	:	Unshielded, Nondetachable, 1.4m

1.2.6. PRINTER

Model Number	:	C2642A
Serial Number	:	TH85K1K380
FCC ID	:	B94C2642X
Manufacturer	:	HP
Power Adaptor	:	HP
Power Cord	:	Model C2175A
Data Cable	:	Unshielded, Detachable, 1.95m

Power Adaptor

Power Cord	:	Shielded, Detachable, 1.2m
------------	---	----------------------------

1.2.7. MODEM

Model Number	:	MODEM1414
Serial Number	:	980013572
FCC ID	:	IFAXDM1414
Manufacturer	:	ACEEX
Power Adaptor	:	HP
Power Cord	:	82241A
Data Cable	:	Unshielded, Detachable, 2.4m

Power Adaptor

Power Cord	:	Shielded, Detachable, 1.2m
------------	---	----------------------------

1.2.8. IC CARD

Manufacturer	:	ATMEL Asia Ltd.
--------------	---	-----------------

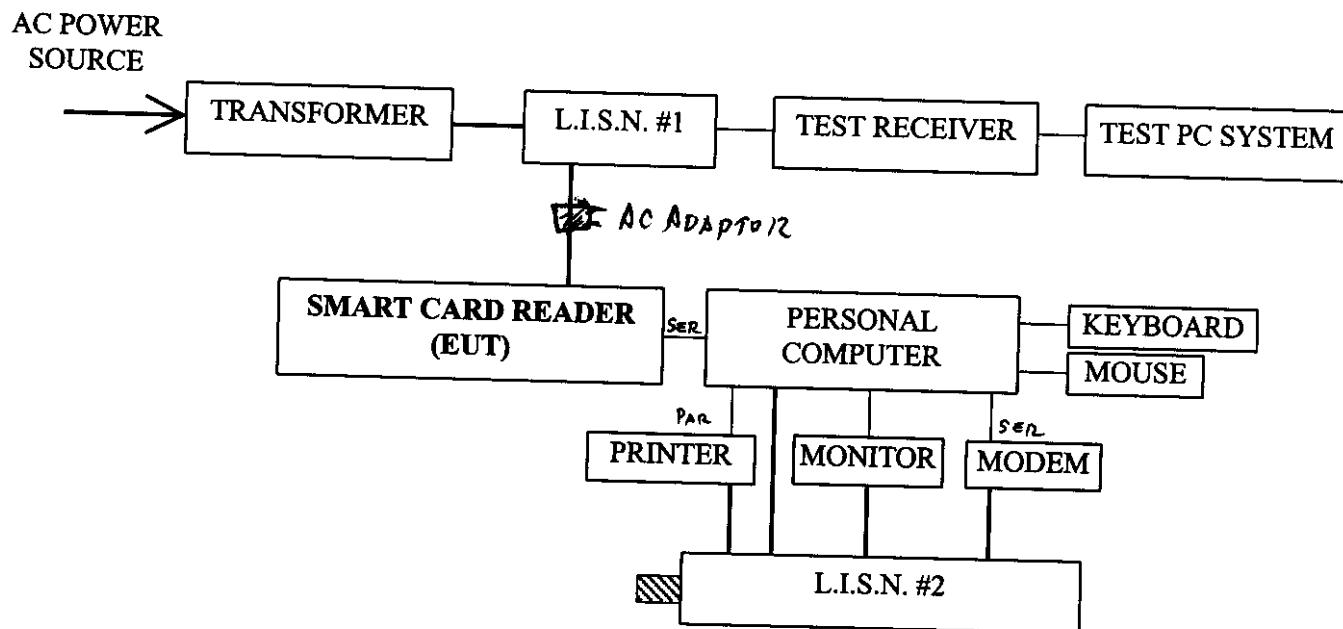
1.3. Description of Test Facility

Site Description : Sept. 17, 1998 file on
(Semi-Anechoic Chamber) Federal Communications Commission
FCC Engineering Laboratory
7435 Oakland Mills Road
Columbia, MD 21046, USA

Name of Firm : AUDIX Technology (Shanghai) Co., Ltd.

Site Location : 3 F., 34 Bldg., 680 Guiping Rd.,
Caohejing Hi-Tech Park,
Shanghai, China

2. AC POWERLINE CONDUCTED TEST


ASIA99-FOO1

2.1. Test Equipment

The following test equipment are used during the powerline conducted test in a shielded room:

Item	Type	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESHS10	844077/020	Jun. 09, 1998	1 Year
2.	Line-impedance Stabilization Network (LISN) #1	Kyoritsu	KMW-407	8-1280-4	Jun. 22, 1998	1 Year
3.	LISN #2	Kyoritsu	KMW-407	8-1280-5	Jun. 22, 1998	1 Year

2.2. Block Diagram of Test Setup

- : 50 OHM TERMINATOR
- : SIGNAL LINE
- : POWER LINE

2.3. Conducted Powerline Emission Limit (CLASS B)

Frequency (MHz)	Maximum RF Line Voltage	
	(μ V)	dB(μ V)
0.45 ~ 30	250	48
NOTE 1 – RF Line Voltage dB(μ V) = 20 log RF Line Voltage (μ V)		

2.4. Test Configuration

The EUT (listed in Sec. 1.1.) and supported simulators (listed in Sec. 1.2.) were installed as shown on Sec. 2.2. on Conducted Test to meet FCC requirement and operating in a manner which tends to maximize its emission level in a normal application.

2.5. Operating Condition of EUT

- 2.5.1. Set up the EUT and simulators as shown on Sec. 2.2.
- 2.5.2. Turned on the power of all equipment.
- 2.5.3. The EUT was in Stand-By mode;
- 2.5.4. Inserted the IC Card into the EUT;
- 2.5.5. The EUT read the data from the IC Card, and showed the data ("H" pattern) on the monitor;
- 2.5.6. PC sent "H" characters to printer to print and read / wrote the data for FDD & HDD and also for modem;
- 2.5.7. Repeated the procedures from Sec. 2.5.5.~ 2.5.6.

2.6. Test Procedures

The EUT with adaptor was connected to the power mains through a Line Impedance Stabilization Network (L.I.S.N. #1). The other simulated devices power cord were connected to the power mains through L.I.S.N. #2. This provided a 50 ohm coupling impedance for the measuring equipment.

Both sides of AC line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed or manipulated according to ANSI C63.4-1992 during conducted test.

The bandwidth of R & S Test Receiver ESHS10 was set at 10 kHz.

The frequency range from 450 kHz to 30 MHz was checked. Both Stand-By mode and Reading mode were done on conducted test and all the test results are listed in Sec. 2.7.

The waveform is attached in APPENDIX.

2.7. Conducted Emission Test Results

< PASS >

The frequency and amplitude of the highest AC powerline conducted emissions relative to the limit is reported. All emissions not reported below are too low against the prescribed limits.

Date of Test :	Nov. 25, 1998	Temperature :	22°C
EUT :	Smart Card Reader	Humidity :	60%
Model No. :	128		

Test Mode: STAND-BY

Frequency (MHz)	Factor (dB)		Measurement dB(µV)		Reading dB(µV)		Limits dB(µV)	Margin dB(µV)	
	VA	VB	VA	VB	VA	VB		VA	VB
0.452	0.46	0.53	21.84	21.17	22.30	21.70	48.00	25.70	26.30
0.515	0.42	0.51	19.18	18.19	19.60	18.70	48.00	28.40	29.30
0.569	0.40	0.48	19.70	19.12	20.10	19.60	48.00	27.90	28.40
* 0.632	0.40	0.44	23.60	23.06	24.00	23.50	48.00	24.00	24.50
0.696	0.40	0.40	20.00	19.80	20.40	20.20	48.00	27.60	27.80
20.730	0.43	0.42	7.87	6.78	8.30	7.20	48.00	39.70	40.80
23.910	0.56	0.48	9.34	6.92	9.90	7.40	48.00	38.10	40.60
27.470	0.71	0.61	9.99	6.99	10.70	7.60	48.00	37.30	40.40

NOTE 1 - All reading are Quasi-Peak values.

NOTE 2 - Factor = Insertion Loss + Cable Loss

NOTE 3 - The worst emission is detected at 0.632 MHz with corrected signal level of 24.00 dB(µV) (limit is 48.00 dB(µV)), when the VA of the EUT is connected to L.I.S.N.

TEST ENGINEER: Hall Wang
(HALL WANG)

Date of Test : Nov. 25, 1998 Temperature : 22°C
 EUT : Smart Card Reader Humidity : 60%
 Model No. : 128

Test Mode: READING

Frequency (MHz)	Factor (dB)		Measurement dB(µV)		Reading dB(µV)		Limits dB(µV)	Margin dB(µV)	
	VA	VB	VA	VB	VA	VB		VA	VB
0.452	0.46	0.53	21.44	21.47	21.90	22.00	48.00	26.10	26.00
0.515	0.42	0.51	17.78	17.69	18.20	18.20	48.00	29.80	29.80
0.569	0.40	0.48	18.90	18.92	19.30	19.40	48.00	28.70	28.60
* 0.632	0.40	0.44	22.70	22.56	23.10	23.00	48.00	24.90	25.00
0.696	0.40	0.40	19.90	19.80	20.30	20.20	48.00	27.70	27.80
20.730	0.43	0.42	6.87	11.28	7.30	11.70	48.00	40.70	36.30
23.610	0.55	0.47	9.05	12.13	9.60	12.60	48.00	38.40	35.40
27.470	0.71	0.61	9.99	6.99	10.70	7.60	48.00	37.30	40.40

NOTE 1 - All reading are Quasi-Peak values.

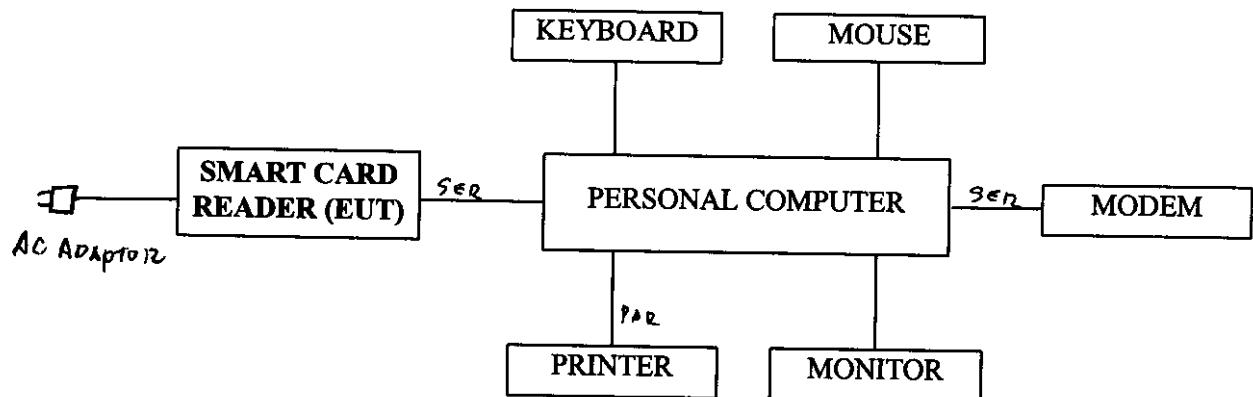
NOTE 2 - Factor = Insertion Loss + Cable Loss

NOTE 3 - The worst emission is detected at 0.632 MHz with corrected signal level of 23.10 dB(µV) (limit is 48.00 dB(µV)), when the VA of the EUT is connected to L.I.S.N.

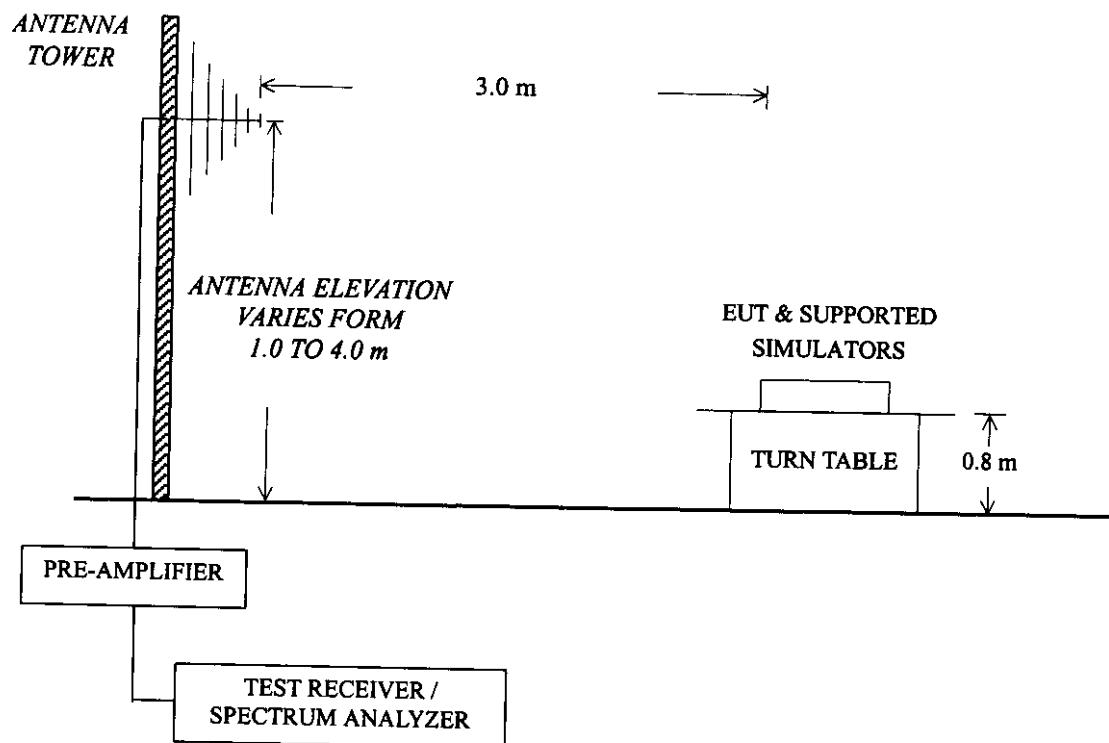
TEST ENGINEER: Hall Wang
 (HALL WANG)

3. RADIATED EMISSION TEST

AS199-F001


3.1. Test Equipment

The following test equipment are used during the radiated emission test in an anechoic chamber:


Item	Type	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	HP	8593EM	3628A00167	Jun. 10, 1998	1 Year
2.	Pre-Amplifier	HP	8447D	2944A06849	Jun. 15, 1998	1/2 Year
3.	Bilog Antenna	Chase	CBL6111	1146	Jun. 15, 1998	1/2 Year
4.	Test Receiver	Rohde & Schwarz	ESVS10	844594/001	Jun. 04, 1998	1 Year

3.2. Block Diagram of Test Setup

3.2.1. EUT and supported simulators

3.2.2. Radiation test setup

3.3. Radiated Emission Limits

Frequency (MHz)	Distance (m)	Field Strengths Limit	
		(μ V/m)	dB μ (V/m)
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

NOTE 1 - Emission Level dB(μ V/m) = 20 log Emission Level (μ V/m)

NOTE 2 - The tighter limit applies at the band edges.

NOTE 3 - Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4. Test Configuration

The configuration of the EUT and simulators are same as those used in conducted test. Please refer to Sec. 2.4.

3.5. Operating Condition of EUT

Same as conducted test which is listed in Sec. 2.5., except the test set up replaced by Sec. 3.2.

3.6. Test Procedures

The EUT and simulators were placed on a turn table which is 0.8 meter above ground. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna, which was mounted on an antenna tower. The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (Calibrated Bilog Antenna) or dipole antenna were used as receiving antenna. Both horizontal and vertical polarization of the antenna were set on measurement. In order to find the maximum emission, all of the interference cables were manipulated according to ANSI C 63.4-1992 requirements during radiated test.

The bandwidth setting on R & S Test Receiver ESVS10 was 120 kHz.

The frequency range from 30 MHz to 1000 MHz was checked. Both Stand-By mode and Reading mode were done on radiated test and all the test results are listed in Sec. 3.7.

3.7. Radiated Emission Test Results

<PASS>

The frequency and amplitude of the highest radiated emissions relative the limit is reported. All the emissions not reported below are too low against the FCC CLASS B limit.

Test Mode: **STAND-BY**

Date of Test	:	Nov. 24, 1998	Temperature	:	21°C
EUT	:	Smart Card Reader	Humidity	:	64%
Model No.	:	128			

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Meter Reading dB(µV/m)	Emission Level dB(µV/m)	Limits dB(µV/m)	Margin dB(µV/m)
48.023	9.14	7.02	26.63	41.6	31.13	40.00	8.87
66.378	6.52	7.23	26.62	42.10	29.23	40.00	10.77
* 69.845	7.01	7.26	26.62	49.30	36.95	40.00	3.05
110.610	11.82	7.74	26.54	38.10	31.12	43.50	12.38
120.023	13.23	7.85	26.50	38.30	32.88	43.50	10.62
143.783	11.34	8.00	26.40	43.50	36.44	43.50	7.06
154.840	10.85	8.12	26.36	42.20	34.81	43.50	8.69
201.183	9.73	8.48	26.22	37.20	29.19	43.50	14.31
240.058	12.19	8.83	26.12	34.50	29.39	46.00	16.61
504.125	19.01	10.34	27.40	30.70	32.64	46.00	13.36
603.480	20.74	10.83	27.46	29.40	33.52	46.00	12.48
704.280	21.52	11.41	27.49	32.50	37.94	46.00	8.06
816.208	22.08	11.53	27.24	30.10	36.47	46.00	9.53

Calculation:

$$\text{Emission Level} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Preamp Factor}$$

NOTE 1 - All readings are Quasi-Peak values.

NOTE 2 - The worst emission was detected at 69.845 MHz with corrected signal level of 36.95 dB(µV/m) (limit is 40.00 dB(µV/m)) when the antenna was at horizontal polarization and was at 1.94 m high and the turn table was at 71°.

NOTE 3 - 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.

TEST ENGINEER: Hall Wang
(HALL WANG)

Date of Test : Nov. 24, 1998 Temperature : 21°C
 EUT : Smart Card Reader Humidity : 64%
 Model No. : 128

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Meter Reading Vertical dB(µV/m)	Emission Level Vertical dB(µV/m)	Limits dB(µV/m)	Margin dB(µV/m)
33.200	16.48	6.81	26.65	39.40	36.04	40.00	3.96
* 48.023	9.14	7.02	26.63	48.30	37.83	40.00	2.17
69.845	7.01	7.26	26.62	42.10	29.75	40.00	10.25
99.550	9.98	7.60	26.60	38.30	29.28	43.50	14.22
110.603	11.82	7.74	26.54	44.60	37.62	43.50	5.88
120.045	13.23	7.85	26.50	39.70	34.28	43.50	9.22
143.778	11.34	8.00	26.40	40.00	32.94	43.50	10.56
154.840	10.85	8.12	26.36	43.90	36.51	43.50	6.99
166.793	10.48	8.20	26.32	35.40	27.77	43.50	15.73
201.158	9.73	8.48	26.22	38.40	30.39	43.50	13.11
469.580	18.26	10.19	27.23	32.30	33.51	46.00	12.49
576.148	20.31	10.70	27.44	30.80	34.37	46.00	11.63
599.080	20.69	10.81	27.45	29.70	33.74	46.00	12.26
624.143	20.92	10.97	27.46	30.60	35.02	46.00	10.98
704.100	21.52	11.41	27.50	31.50	36.93	46.00	9.07

Calculation:

$$\text{Emission Level} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Preamp Factor}$$

NOTE 1 - All readings are Quasi-Peak values.

NOTE 2 - The worst emission was detected at 48.023 MHz with corrected signal level of 37.83 dB(µV/m) (limit is 40.00 dB(µV/m)) when the antenna was at vertical polarization and was at 1.00 m high and the turn table was at 158°.

NOTE 3 - 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.

TEST ENGINEER: Hall Wang
(HALL WANG)

Test Mode: **READING**

Date of Test : Nov. 24, 1998 Temperature : 21°C
 EUT : Smart Card Reader Humidity : 64%
 Model No. : 128

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Meter Reading Horizontal dB(µV/m)	Emission Level Horizontal dB(µV/m)	Limits dB(µV/m)	Margin dB(µV/m)
48.008	9.14	7.02	26.63	39.20	28.73	40.00	11.27
110.610	11.82	7.74	26.54	32.20	25.22	43.50	18.28
132.730	12.31	7.88	26.45	32.90	26.64	43.50	16.86
* 143.795	11.34	8.00	26.40	46.10	39.04	43.50	4.46
154.848	10.85	8.12	26.36	41.90	34.51	43.50	8.99
199.860	9.68	8.46	26.22	36.50	28.42	43.50	15.08
466.150	18.18	10.18	27.21	29.10	30.25	46.00	15.75
603.300	20.74	10.83	27.46	30.30	34.42	46.00	11.58
704.080	21.52	11.41	27.50	32.30	37.73	46.00	8.27
720.180	21.55	11.41	27.46	31.70	37.20	46.00	8.80
864.165	23.03	11.86	27.15	29.60	37.34	46.00	8.66

Calculation:

$$\text{Emission Level} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Preamp Factor}$$

NOTE 1 - All readings are Quasi-Peak values.

NOTE 2 - The worst emission was detected at 143.795 MHz with corrected signal level of 39.04 dB(µV/m) (limit is 40.00 dB(µV/m)) when the antenna was at horizontal polarization and was at 1.94 m high and the turn table was at 71°.

NOTE 3 - 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.

TEST ENGINEER: Hall Wang
(HALL WANG)

Date of Test : Nov. 24, 1998 Temperature : 21°C
 EUT : Smart Card Reader Humidity : 64%
 Model No. : 128

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Meter Reading Vertical dB(µV/m)	Emission Level Vertical dB(µV/m)	Limits dB(µV/m)	Margin dB(µV/m)
* 33.178	16.48	6.81	26.65	38.40	35.04	40.00	4.96
44.253	11.24	6.93	26.64	41.90	33.44	40.00	6.56
48.013	9.14	7.02	26.63	43.90	33.43	40.00	6.57
99.553	9.98	7.60	26.60	44.60	35.58	43.50	7.92
143.788	11.34	8.00	26.40	45.40	38.34	43.50	5.16
154.845	10.85	8.12	26.36	44.30	36.91	43.50	6.59
165.128	10.70	8.19	26.33	39.10	31.67	43.50	11.83
199.820	9.68	8.46	26.22	33.60	25.52	43.50	17.98
465.900	18.18	10.18	27.21	34.30	35.45	46.00	10.55
603.550	20.76	10.85	27.46	28.60	32.75	46.00	13.25
720.180	21.55	11.41	27.46	29.40	34.90	46.00	11.10

Calculation:

$$\text{Emission Level} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Preamp Factor}$$

NOTE 1 - All readings are Quasi-Peak values.

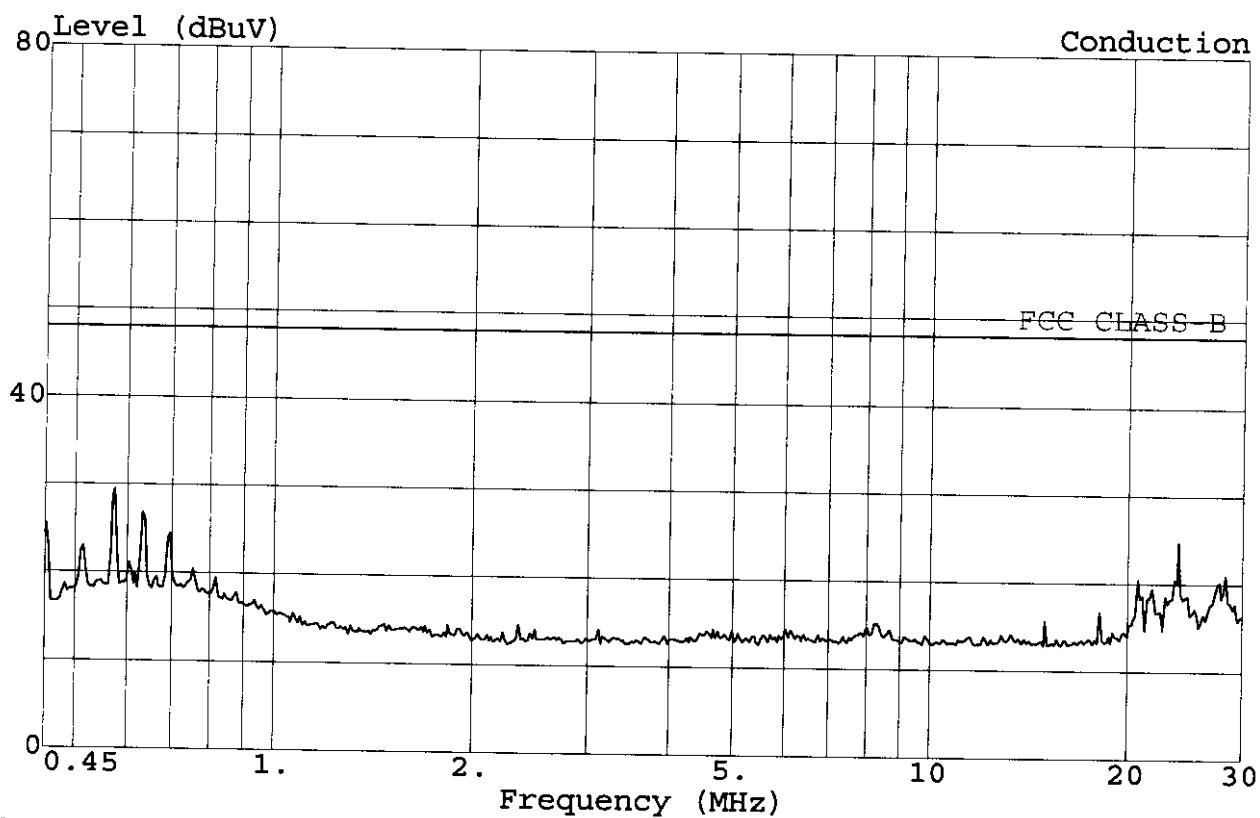
NOTE 2 - The worst emission was detected at 33.178 MHz with corrected signal level of 35.04 dB(µV/m) (limit is 40.00 dB(µV/m)) when the antenna was at vertical polarization and was at 1.00 m high and the turn table was at 158°.

NOTE 3 - 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.

TEST ENGINEER: Hall Wang
 (HALL WANG)

APPENDIX

CONDUCTED EMISSION WAVEFORM


AUDIX

AUDIX Technology (Shanghai) Co., Ltd. Tel:021-64955500 Fax:021-64950791

Data#: 14 File#: ATMEL.EMI

3,4F #34 No.680 Guiping Rd
Caohejing Xinxing Center
Shanghai, China

Date: 1998-11-25 Time: 11:13:45

Trace:

Limit: FCC CLASS-B Probe:

Ref Trace:

Project No. : ACI-E980006

Applicant : ATMEL

EUT : Smart Card Reader

M/N : 128

Power Supply : 120V/60Hz

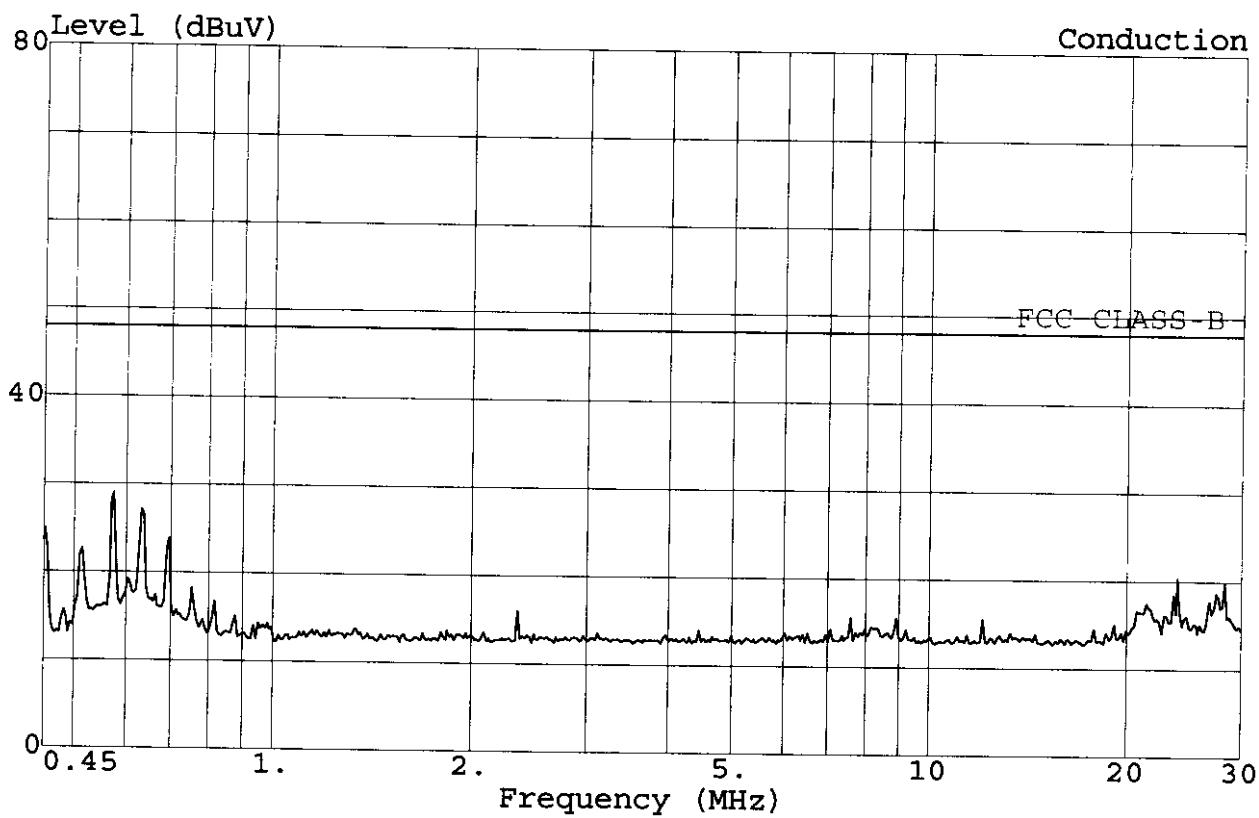
Ambient : 22°C 60%RH

Test Mode : Stand-by

Test Line : VA

Test Engineer:

Hall Wang


AUDIX

AUDIX Technology (Shanghai) Co., Ltd. Tel:021-64955500 Fax:021-64950791

Data#: 13 File#: ATMEL.EMI

3,4F #34 No.680 Guiping Rd
Caohejing Xinxing Center
Shanghai, China

Date: 1998-11-25 Time: 11:08:15

Trace:

Ref Trace:

Limit: FCC CLASS-B Probe:

Project No. : ACI-E980006

Applicant : ATMEL

EUT : Smart Card Reader

M/N : 128

Power Supply : 120V/60Hz

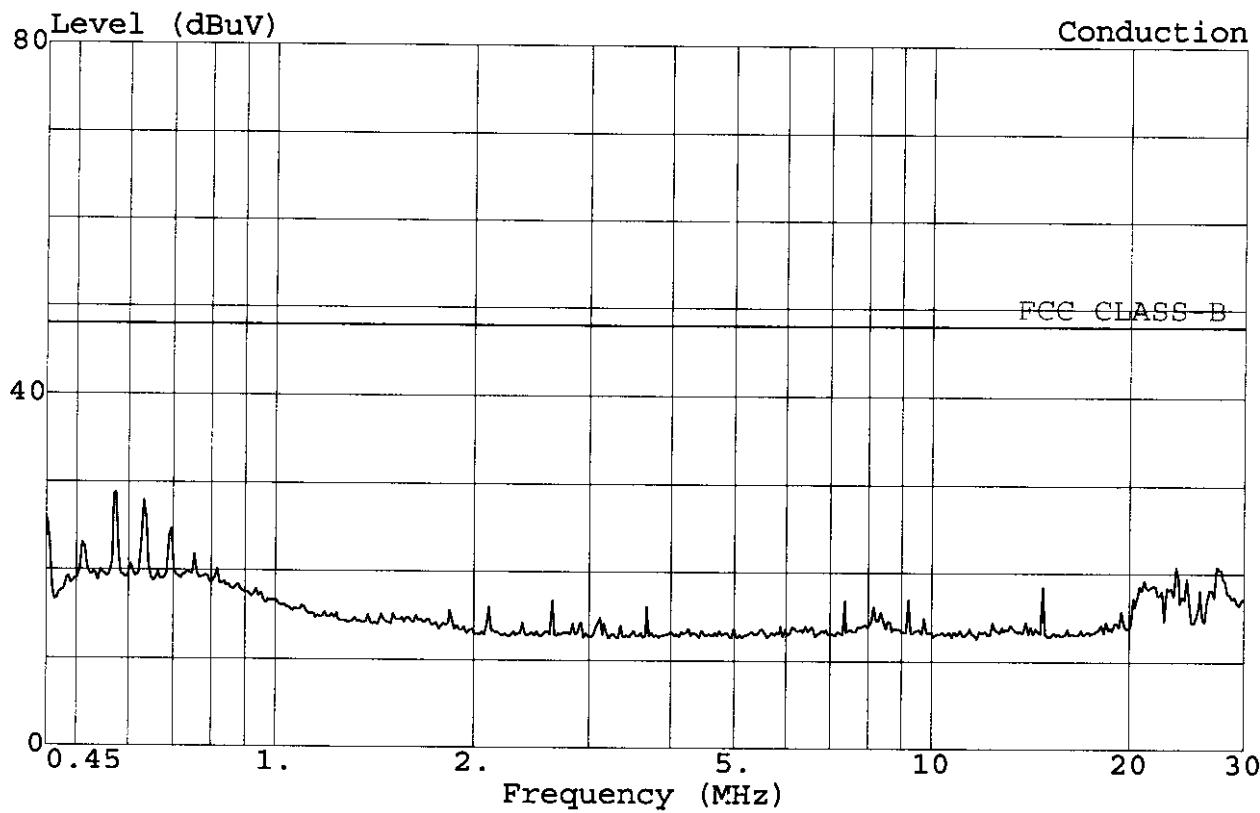
Ambient : 22°C 60%RH

Test Mode : Stand-by

Test Line : VB

Test Engineer:

Hull Wang


AUDIX

AUDIX Technology (Shanghai) Co., Ltd. Tel:021-64955500 Fax:021-64950791

Data#: 9 File#: ATMEL.EMI

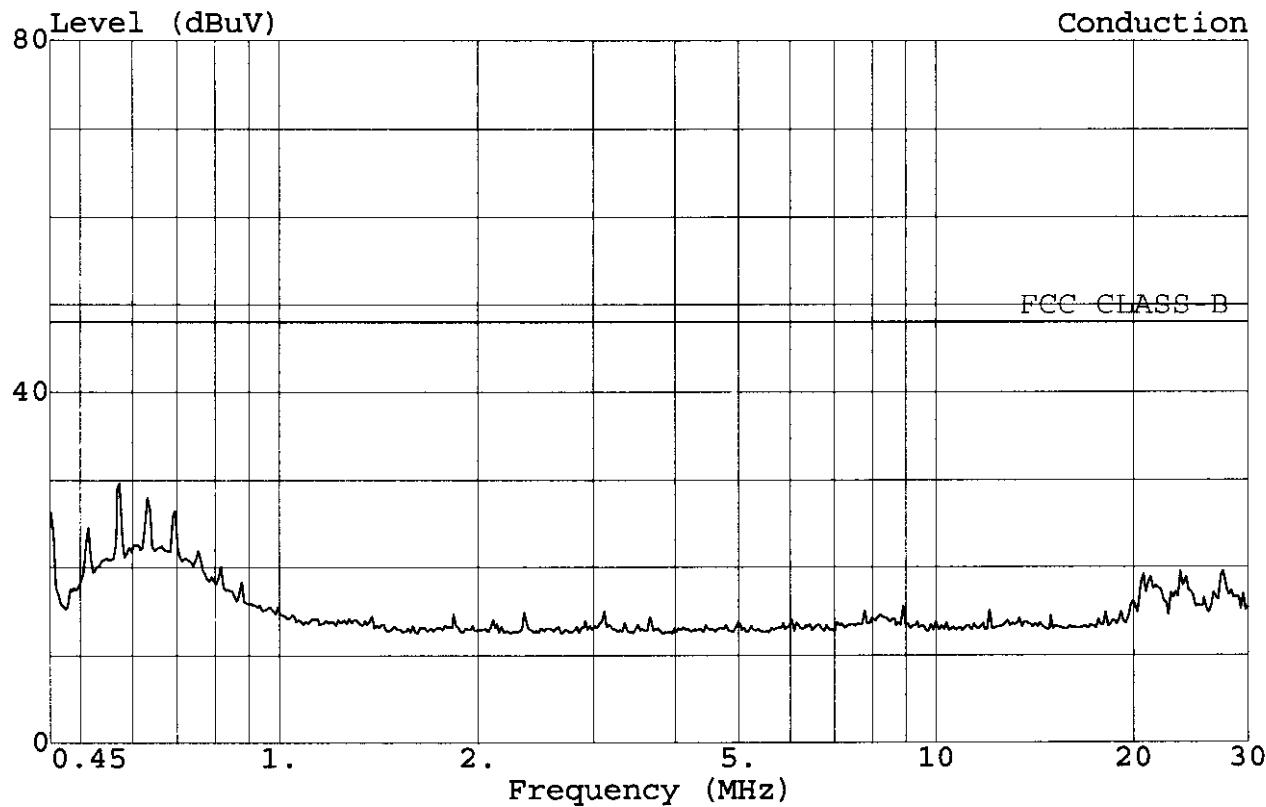
3,4F #34 No.680 Guiping Rd
Caohejing Xinxing Center
Shanghai, China

Date: 1998-11-25 Time: 10:41:07

Trace:

Ref Trace:

Limit: FCC CLASS-B Probe:
 Project No. : ACI-E980006
 Applicant : ATMEL
 EUT : Smart Card Reader
 M/N : 128
 Power Supply : 120V/60Hz
 Ambient : 22°C 60%RH
 Test Mode : Reading
 Test Line : VA
 Test Engineer: *Hall Wang*


AUDIX

3,4F #34 No.680 Guiping Rd
Caohejing Xinxing Center
Shanghai, China

AUDIX Technology (Shanghai) Co., Ltd. Tel:021-64955500 Fax:021-64950791

Data#: 10 File#: ATMEL.EMI

Date: 1998-11-25 Time: 10:51:46

Trace:

Ref Trace:

Limit: FCC CLASS-B Probe:
Project No. : ACI-E980006
Applicant : ATMEL
EUT : Smart Card Reader
M/N : 128
Power Supply : 120V/60Hz
Ambient : 22°C 60%RH
Test Mode : Reading
Test Line : VB
Test Engineer: *Hall Wang*