

OPERATING FREQUENCY: 467.7125 MHz
CHANNEL: 14 (High)
MEASURED OUTPUT POWER: 24.90 dBm = 0.3 W
MODULATION SIGNAL: FM
DISTANCE: 3 meters
LIMIT: $43 + 10 \log_{10} (W) =$ 37.91 dBc

FREQ. (MHz)	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (μ V/m)	ERP (dBm)	(dBc)
935.425	-69.7	33.1	V	3311.3	-24.8	49.7
1403.138	-72.0	32.7	V	2426.6	-27.5	52.4
1870.850	-74.5	35.4	V	2483.1	-27.3	52.2
2338.563	-81.0	38.0	V	1584.9	-31.2	56.1
2806.275	-93.1	39.0	V	441.6	-42.3	67.2
3273.988	< -130					

NOTES:

ERP Measurements by Substitution Method:

The EUT was placed on a wooden turn table 3-meters away from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading that was measured with the EUT. This ERP level is recorded. Above 1 GHz, horn antenna is used and the difference between the gains of the horn and dipole antenna are taken into consideration to determine EIRP.

OPERATING FREQUENCY: 462.5625 MHz
CHANNEL: 01 (Low)
MEASURED OUTPUT POWER: 24.99 dBm = 0.316 W
MODULATION SIGNAL: FM
DISTANCE: 3 meters
LIMIT: $43 + 10 \log_{10} (W) =$ 38.00 dBc

FREQ. (MHz)	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (μ V/m)	ERP (dBm)	(dBc)
925.125	-70.3	33.0	V	3054.9	-25.5	50.5
1387.688	-74.5	32.6	V	1798.9	-30.1	55.1
1850.250	-75.8	35.3	V	2113.5	-28.7	53.7
2312.813	-80.5	37.9	V	1659.6	-30.8	55.8
2775.375	-95.5	39.0	V	335.0	-44.7	69.7
3237.938	< -130					

NOTES:

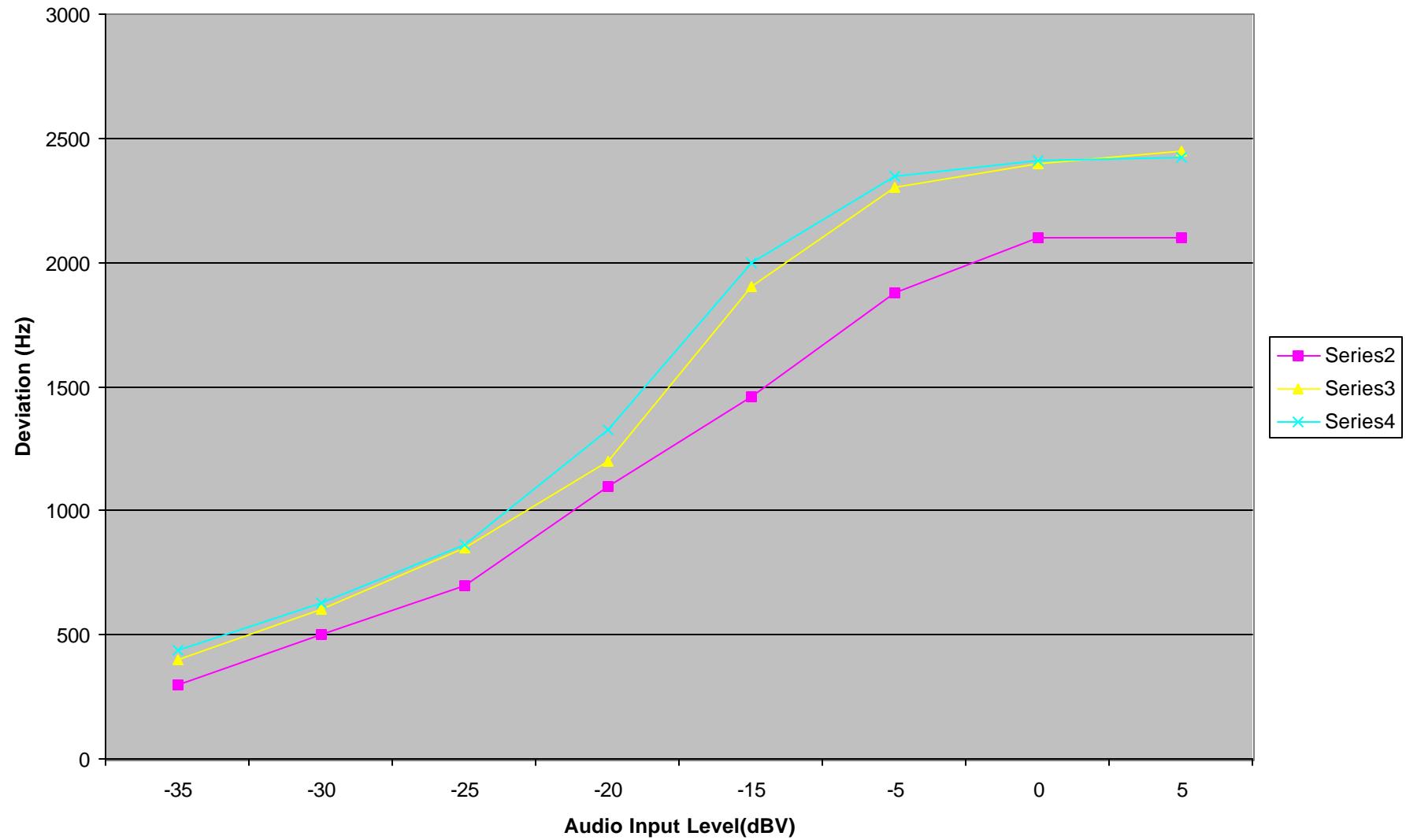
ERP Measurements by Substitution Method:

The EUT was placed on a wooden turn table 3-meters away from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading that was measured with the EUT. This ERP level is recorded. Above 1 GHz, horn antenna is used and the difference between the gains of the horn and dipole antenna are taken into consideration to determine EIRP.

Freq. Tuned (MHz)	LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)
462.5625	-9.83	V	0.31581	24.99
467.7125	-10.05	V	0.30961	24.90


NOTES:

ERP Measurements by Substitution Method:


The EUT was placed on a wooden turn table 3-meters away from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading that was measured with the EUT. This ERP level is recorded.

FCC ID:
GMRS/FRS

Audio Frequency Response

Modulation Limiting

3.1 DESCRIPTION OF TESTS (CONTINUED)

3.4 §2.1049 Occupied Bandwidth

The audio signal generator is adjusted to 1kHz. The output level is increased until deviation limiting takes place. With the level constant, the freq. is set to 2,500Hz. Then the audio signal level is increased by 16dB.

The limits are specified in Section 2.1049.

Bandwidth Calculations (2M + 2D):

$$2(2) + 2(2) \\ 4 + 4.0 = 8.0 \text{ kHz}$$

Emission Designator = 8K0F3E

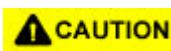
M = maximum modulation frequency

D = maximum deviation from modulating limiting plot

3.5 §2.1051 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to the tenth harmonic.

3.6 §2.1053 Radiation Spurious and Harmonic Emissions


Radiation and harmonic emissions above 1 GHz is measured at out 3-meter indoor site. The EUT is placed on the turntable connected to a dummy load in normal operation using the intended power source. A receiving antenna located 3 meters from the turntable receives any signal radiated from the transmitter and its operating accessories. The antenna is varied from 1 to 4 meters and the polarization is varied (horizontal and vertical) to determine the worst-case emission level. To obtain actual radiated signal strength, a signal generator is adjusted in output until a reading identical to that obtained with the actual transmitter is obtained at the receiver. Signal strength is read directly from the generator and recorded on the attached table.

FCC RF EXPOSURE INFORMATION

WARNING! Read this information before using your phone

In August 1996 the Federal Communications Commission (FCC) of the United States with its action in Report and Order FCC 96-326 adopted an updated safety standard for human exposure to radio frequency electromagnetic energy emitted by FCC regulated transmitters. Those guidelines are consistent with the safety standard previously set by both U.S. and international standards bodies. The design of this phone complies with the FCC guidelines and these international standards.

Use only the supplied or an approved antenna. Unauthorized antennas, modifications, or attachments could impair call quality, damage the phone, or result in violation of FCC regulations.

Do not use the phone with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Please contact your local dealer for replacement antenna.

Safety Information

Your radio contains a low power transmitter. When the Push-to-Talk button is pushed it sends out radio frequency (RF) signals. The device is authorized to operate at a duty factor not to exceed 50%. In August 1996, the Federal Communications Commissions (FCC) adopted RF exposure guidelines with safety levels for hand-held wireless devices.

Body-worn Operation

To maintain compliance with the FCC's RF Exposure guidelines hold the transmitter and antenna at least 1.0 cm from your face/mouth and speak in a normal voice, with the antenna pointed up and away from the face. If you wear the radio on your body while using the headset accessory, use only belt-clips, holsters or similar accessories that maintain a 1.0 cm. separation distance between the user's body and the back of the radio, including the antenna (whether extended or retracted, if applicable). The use of third-party belt-clips, holsters and similar accessories should not contain metallic components in its assembly. The use of accessories that do not satisfy these requirements may not comply with FCC RF exposure guidelines, and should be avoided.

10. CHANNEL DATA

(Unit:MHz)

Ch	Tx Freq	Ch	Local Freq
1	462.5625	1	440.8625
2	462.5875	2	440.8875
3	462.6125	3	440.9125
4	462.6375	4	440.9375
5	462.6625	5	440.9625
6	462.6875	6	440.9875
7	462.7125	7	441.0125
8	467.5625	8	445.8625
9	467.5875	9	445.8875
10	467.6125	10	445.9125
11	467.6375	11	445.9375
12	467.6625	12	445.9625
13	467.6875	13	445.9875
14	467.7125	14	446.0125