

TABLE OF CONTENTS LIST

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.

FCC ID: OACWH-320

TEST REPORT:

PAGE 1.....COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCRIPTIVE
PAGE 2.....TECHNICAL DESCRIPTION CONTINUED
PAGE 3.....RF POWER OUTPUT
PAGE 4.....MODULATION CHARACTERISTICS
PAGE 5.....OCCUPIED BANDWIDTH
PAGE 6.....FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE 7.....METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE 8.....FREQUENCY STABILITY
PAGE 9.....CERTIFICATION OF TECHNICAL DATA
PAGE 10.....LIST OF TEST EQUIPMENT

EXHIBITS:

EXHIBIT 1.....POWER OF ATTORNEY LETTER
EXHIBIT 2.....FCC ID LABEL SAMPLE
EXHIBIT 3.....SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 4A.....EXTERNAL FRONT VIEW PHOTOGRAPHS - BOTH MODELS
EXHIBIT 4B.....EXTERNAL FRONT VIEW PHOTOGRAPH - MDL WH-900
EXHIBIT 4C.....EXTERNAL REAR VIEW PHOTOGRAPH - MDL WH-900
EXHIBIT 4D-4I.....INTERNAL COMPONENT SIDE PHOTOS - MDL WH-320
EXHIBIT 4J.....INTERNAL SOLDER SIDE PHOTOGRAPH - MDL WH-320
EXHIBIT 4K-4N.....INTERNAL COMPONENT SIDE POTOS - MDL WH-900
EXHIBIT 4O.....INTERNAL SOLDER SIDE PHOTOGRAPH - MDL WH-900
EXHIBIT 5.....BLOCK DIAGRAM
EXHIBIT 6A-6D.....PARTS LIST
EXHIBIT 7.....SCHEMATIC
EXHIBIT 8A-8C.....USER'S MANUAL
EXHIBIT 9A-D.....CRYSTAL SPECIFICATION
EXHIBIT 10A-B.....TUNING PROCEDURE
EXHIBIT 11.....AUDIO FREQUENCY RESPONSE GRAPH
EXHIBIT 12.....AUDIO INPUT VS DEVIATION GRAPH
EXHIBIT 13.....OCCUPIED B/W PLOT - NO AUDIO INPUT - WH-320
EXHIBIT 14.....OCCUPIED B/W PLOT - 15 kHz TONE INPUT - WH-320
EXHIBIT 15.....OCCUPIED B/W PLOT - 15 kHz TONE INPUT - WH-900
EXHIBIT 16.....OCCUPIED BANDWIDTH PLOT

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.

FCC ID: OACWH-320

REPORT #: F:\CUS\B\BAN\BAN306A8.RPT

PAGE: TABLE OF CONTENTS

GENERAL INFORMATION REQUIRED
FOR TYPE ACCEPTANCE

2.983 (a,b,c) BANNER WIRELESS ELECTRONICS CO., LTD. will manufacture the OACWH-320 in quantity, for use under FCC RULES PART 74.801, LOW POWER AUXILIARY STATIONS.

2.983 (d) TECHNICAL_DESCRIPTION

(1) Type of Emission: 58K0F3E

Bn = 2M + 2DK
M = 1000
D = 19.5KHz (Peak Deviation)
K = 1
Bn = 2(1K) + 2(19.5K)(1) = 2K +38.4K = 40.4KHz
M = 15,000
D = 19KHz
K = 1
Bn = 2(10K) + 2(19K) = 20 +38 = 58KHz

74.861(e)(5) ALLOWED AUTHORIZED BANDWIDTH = 200KHz.

(2) Frequency Range: Part 74: 161.625-161.775MHz &
174-216MHz
TEST FREQ = 210.25MHz.

(3) Power Range and Controls: UNIT has no power controls.

(4) Maximum Output Power Rating: 1.0 MilliWatts ERP.

(5) DC Voltages and Current into Final Amplifier:

FINAL AMPLIFIER ONLY

3.0V BATTERY	9.0V BATTERY
Vce = 5.70 Volts	Vce = 7.0
Ice = 2.0mA.	Ice = 2.0

(6) Function of each electron tube or semiconductor device or other active circuit device:

IC 4	MC4558	AUDIO PREAMPLIFIER & LIMITER
1C 1A	S81332	VOLTAGE REGULATOR
IC38	NE750	MODULATOR/LIMITER
71	2SC1623	VLOTAGE REGULATOR
74	2SC1623	VOLTAGE REGULATOR
11	2SC2884	DC TO DC CONVERTER
20	TR602	DC TO DC CONVERTER
39	HT1050	VOLTAGE REGULATOR
86	FET	SIDE BAND OSCILLATOR
49	2SC1623	SIDE BAND SWITCH
67	2SA812	SWITCH
TR40	2SC1623	BUFFER
55	2SC2059	RF OSCILLATOR
33	2SC2059	MULTIPLIER
30	2SC2059	MULTIPLIER
20	2SC2059	PA

REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 1

2.983(d) (7) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 7. The block diagram is included as EXHIBIT 5. The part list is included as EXHIBIT 6A-6D.

(8) Instruction book. The instruction manual is included as last item in this report.

(9) Tune-up procedure. The tune-up procedure is given in page 10A-10B.

(10) Description of all circuitry and devices provided for determining and stabilizing frequency.
The transmitter frequency is controlled by a crystal, the crystal specifications are included in PAGE 9A-9D.

(11) Description of any circuits or devices employed for suppression of spurious radiation, for limiting modulation, and for limiting power. There are no devices or circuitry to limit the power, since this is a low power device. The interstage coupling between the RF stages as well as the low pass filter made up of L109, C8, C7, L106, and 820nH suppress the harmonics.

Limiting Modulation:
The transmitter audio circuitry is contained in IC4 & IC38. The modulation limiting is also provided by IC38.

Limiting Power:
There is no provision for limiting power.

(12) Digital modulation. This unit does not use digital modulation.

2.983(e) The data required by 2.985 through 2.997 is submitted below.

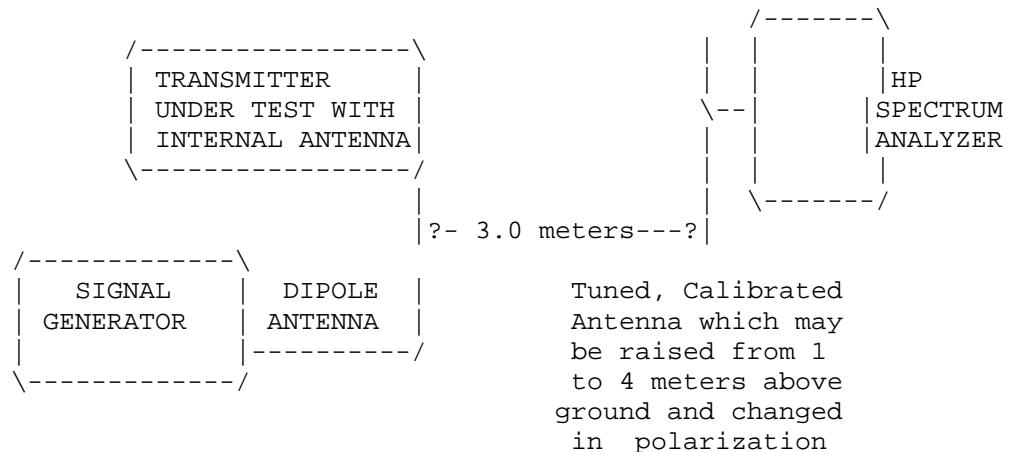
APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT

2.985(a)

RF power output. MODEL NO. WH-320

ERP was measured by the method described later in this report. The input power to the final stage was measured with a 3.0V supply connected in place of the 2-1.5V battery.

INPUT POWER: FOR 3.0 V OPERATION
(5.7V)(0.002A) = 11.4milliWatts
OUTPUT POWER: FOR 3.0 V OPERATION
1.0 mWATTS ERP

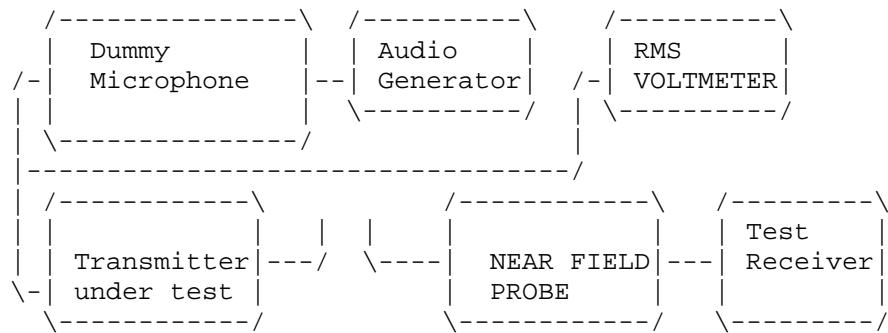

2.985(a)

RF power output. MODEL NO. WH-900

ERP was measured by the method described later in this report. The input power to the final stage was measured with a 9.V supply connected in place of the 9V battery.

INPUT POWER: FOR 9.0 V OPERATION
(7.0V)(0.002A) = 14.0milliWatts
OUTPUT POWER: FOR 9.0 V OPERATION
1.0 mWATTS ERP

R.F. POWER OUTPUT


Equipment placed 1 meter above ground on a rotatable platform. The center of the Dipole antenna at the center of the platform and the output of the signal generator adjusted to produce the same meter reading as measured for the fundamental in the radiated emissions test.

2.987(a)(b) Modulation characteristics:

AUDIO FREQUENCY RESPONSE

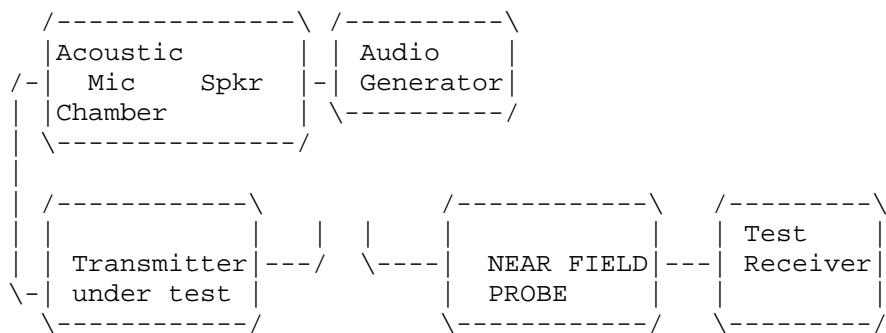
The audio frequency response was measured in accordance with TIA/EIA Specification 603 S2.2.6.2.1. with the following exceptions;

Constant Deviation Test

1. The test receiver audio bandwidth was <50Hz to >20,000Hz.
2. Apply a 1000Hz tone and adjust the audio generator to produce 10% of the rated system deviation.
3. Measure frequency response over the frequency range from 100Hz to 20,000Hz.

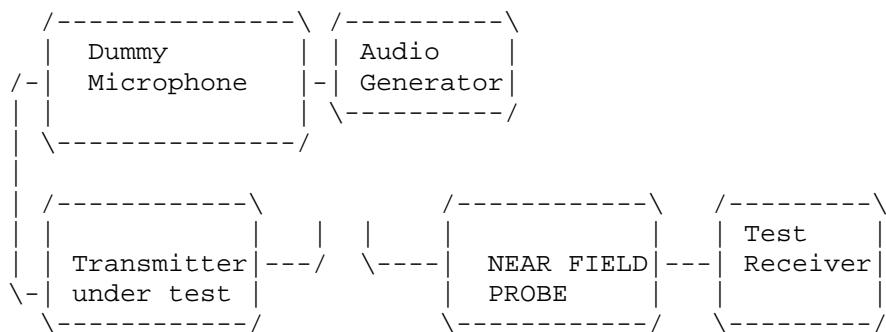
The audio frequency response curve is shown in Exhibit 11.

AUDIO LOW PASS FILTER


The audio low pass filter is not required in this unit.

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 4

2.989(c) Occupied bandwidth: Using TIA/EIA 2.2.10 acoustic Microphone Sensitivity test procedure to determine if the UUT could be put into modulation limiting and limiting could not be reached, the maximum deviation was only +40KHz. Using this test procedure the frequency of maximum sensitivity was determined to be 500Hz.


a.

Test procedure diagram
OCCUPIED BANDWIDTH MEASUREMENT

b. Since the UUT could not be put into modulation limiting with an acoustic coupling a dummy microphone was used to connect to the UUT and a test procedure similar to TIA/EIA-603 S2.2.11 was used to measure the occupied bandwidth. Plots were made of the frequency of maximum sensitivity, at 10KHz and at the highest frequency for the UUT. Data in the plots show that all sidebands beyond the authorized bandwidth are less than 0.5% of the unmodulated carrier. The plot show the transmitter modulated with 10,000 Hz(the highest modulation frequency), adjusted for 50% modulation plus 16 dB. The spectrum analyzer was set with the unmodulated carrier at the top of the screen. The test procedure diagram and occupied bandwidth plots follow.

Test procedure diagram
OCCUPIED BANDWIDTH MEASUREMENT

REQUIREMENT: PART 74: 200kHz EMISSION BANDWIDTH.

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.

FCC ID: OACWH-320

REPORT #: F:\CUS\B\BAN\BAN306A8.RPT

PAGE #: 5

2.993(a)(b) Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $43 + 10\log(P_0)$ dB below the mean power output of the transmitter.

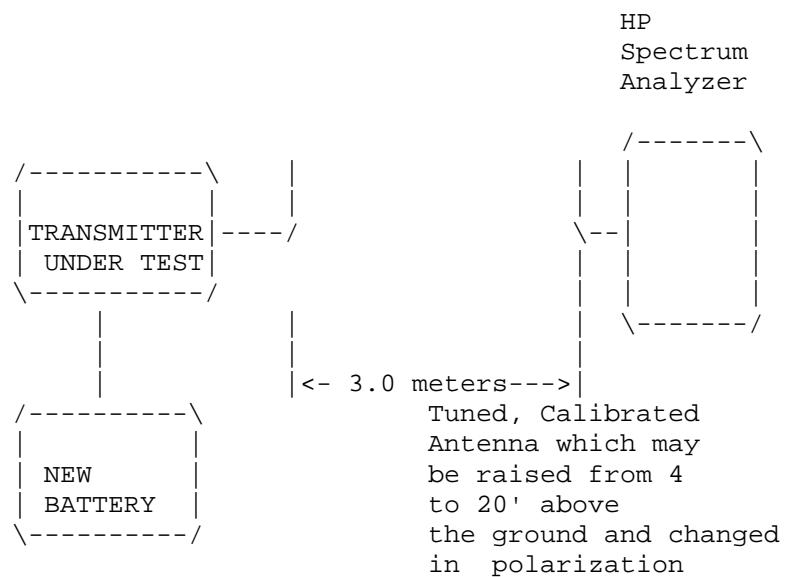
$$43 + 10 \log(0.001) = 43 - 10.0 = 30 \text{ dB}$$

TEST DATA: MODEL 320

EMISSION FREQUENCY MHz	METER READING @ 3m dBuV	COAX LOSS dB	ACF dB	FIELD STRENGTH dBuV/m	ATT. LEVEL dB	MARGIN dB	ANT.
MODEL NO. 320							
210.25	83.80	1.20	12.22	97.22	0.0	0.0	V
420.50	41.10	1.60	17.47	60.17	37.05	7.05	V
630.75	22.70	1.60	20.78	45.08	52.14	22.14	V
841.00	21.40	2.90	23.49	47.79	49.43	19.43	V
1051.25	16.90	1.00	24.20	42.10	55.12	25.12	H
1261.50	17.10	1.00	25.05	43.15	54.07	24.07	H
1471.75	14.90	1.00	25.89	41.79	55.43	25.43	V
1682.00	16.70	1.00	26.73	44.43	52.79	22.79	H
1892.25	14.60	1.01	27.57	43.18	54.04	24.04	H
2102.25	11.80	1.05	28.26	41.10	56.12	26.12	H
MODEL NO. WH-900							
210.25	83.60	1.20	12.22	97.02	0.0	0.0	V
420.50	42.40	1.60	17.47	61.47	35.55	5.55	V
630.75	33.30	1.60	20.78	55.68	41.34	11.34	V
841.00	22.90	2.90	23.49	49.29	47.73	17.73	V
1051.25	19.60	1.00	24.20	44.81	52.21	22.21	H
1261.50	18.80	1.00	25.05	44.85	52.17	22.17	H
1471.75	24.60	1.00	25.89	51.49	45.53	15.53	H
1682.00	15.90	1.00	26.73	43.63	53.74	23.74	H
1892.25	14.70	1.01	27.57	43.28	53.74	23.74	H
2102.50	12.10	1.05	28.26	41.40	55.62	25.62	V

METHOD OF MEASUREMENT: The procedure used was C63.4-1992 operated into its own built-in antenna at a height of 1.5 meters above the ground plane. The spectrum was scanned from 30 to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer, an Eaton model 94455-1 Biconical Antenna, ElectroMetrics antennas models TDA, TDS-25-1, TDS-25-2 RGA 180. Measurements were made at the open field test site of TIMCO ENGINEERING INC. located at 6051 N.W. 19th LANE,

GAINESVILLE, FL. 32605.


APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.

FCC ID: OACWH-320

REPORT #: F:\CUS\B\BAN\BAN306A8.RPT

PAGE #: 6

Method of Measuring Radiated Spurious Emissions

Equipment placed 4' above ground
on a rotatable platform.

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 7

2.995(a)(b)(d) Frequency stability:

Temperature and voltage tests were performed to verify that the frequency remains within the .0050%,(50 ppm) specification limit.

The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30 degrees C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50 degrees C.

MEASUREMENT DATA:

Assigned Frequency (Ref. Frequency): 210.250 000

TEMPERATURE_C	FREQUENCY_MHz	PPM
-30	210.245 270	-22.50
-20	210.246 300	-17.59
-10	210.249 020	- 4.66
0	210.251 210	+ 5.75
10	210.249 560	- 2.09
20	210.248 620	- 6.56
30	210.248 200	- 8.56
40	210.247 890	-10.03
50	210.250 070	+ 0.32

25c END BATT. Volt(3.0)= 2.25VDC 210.250 350 + 1.66

RESULTS OF MEASUREMENTS: The maximum frequency variation over the temperature range was -22.5 to + 5.75 ppm. The maximum frequency variation at the battery end-point was +1.66 ppm.

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 8

2.983(f) Photo or Drawing of Label:
See Exhibit 2.

2.983(g) Photos of Equipment:
See Exhibit 4A-40.

2.997 Frequency Spectrum Investigated The Spectrum was investigated from 0.400 to at least the tenth harmonic of the fundamental.

2.999 Measurement Procedures for Type Acceptance:

Measurement techniques have been in accordance with EIA specifications and the FCC requirements.

2.909 Certification of Technical Data by Engineers

We, the undersigned, certify that the enclosed measurements and enclosed data are true and correct.

S.S. Sanders
Engineer

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 9

LIST OF TEST EQUIPMENT

1. Spectrum Analyzer: Hewlett Packard 8566B - Opt 462, w/
preselector 85685A, & Quasi-Peak Adapter HP 85650A, & HP
8449B - OPT H02 Cal. 6/26/98
2. Signal Generator, Hewlett Packard 8640B, cal. 10/1/98
3. Eaton Biconnical Antenna Model 94455-1
20-200 MHz Serial No. 0997 Cal. 5/15/98
4. Electro-Metric Dipole Kit, 20-1000 MHz, Model TDA-30 10/15/98
5. Electro-Metric Horn 1-18 GHz, Model RGA-180, Cal. 8/15/98
6. Electro-Metric Antennas Model TDS-25-1, TDS-25-2, 5/15/97
7. Electro-Metric Line Impedance Stabilization Network Model
No. EM-7821, Serial No. 101; 100KHz-30MHz 50uH. 12/3/97
8. Electro-Metric Line Impedance Stabilization Network Model
No. EM-7820, Serial No. 2682; 10KHz-30MHz 50uH. 12/3/97
9. Special low loss cable was used above 1 GHz

APPLICANT: BANNER WIRELESS ELECTRONICS CO., LTD.
FCC ID: OACWH-320
REPORT #: F:\CUS\B\BAN\BAN306A8.RPT
PAGE #: 10