

ENGINEERING TEST REPORT

MESDUO
Model No.: MES250/2

FCC ID: OA4MES250

Applicant: **Safeguards Technology, LLC.**

*75 Atlantic Street
Hackensack, New Jersey
USA, 07601-4132*

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC)
PART 15, SUBPART C, SEC. 15.245
Field Disturbance Sensors
Operating in the frequency band 10500 - 10550 MHz

UltraTech's File No.: SFGT-001FCC245

This Test report is Issued under the Authority of
Tri M. Luu, Professional Engineer,
Vice President of Engineering
UltraTech Group of Labs

Date: February 24, 2009

Report Prepared by: Santhosh Fernandez

Tested by: Mr. Wei Wu and Satish Patel,
EMI/RFI Technicians

Issued Date: February 24, 2009

Test Dates: August 13, November 24 and
December 1, 2008

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.*

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com, Email: tri.luu@sympatico.ca

0685

31040/SIT

C-1376

46390-2049

200093-0

SL2-IN-E-1119R

2005-82 & 83

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1. SCOPE	4
1.2. RELATED SUBMITAL(S)/GRANT(S).....	4
1.3. NORMATIVE REFERENCES	4
EXHIBIT 2. PERFORMANCE ASSESSMENT	5
2.1. CLIENT INFORMATION	5
2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION.....	5
2.3. EUT'S TECHNICAL SPECIFICATIONS.....	6
2.4. LIST OF EUT's PORTS	6
2.5. ANCILLARY EQUIPMENT.....	6
2.6. GENERAL TEST SETUP	7
EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS.....	8
3.1. CLIMATE TEST CONDITIONS.....	8
3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	8
EXHIBIT 4. SUMMARY OF TEST RESULTS.....	9
4.1. LOCATION OF TESTS	9
4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	9
4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	9
EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	10
5.1. TEST PROCEDURES	10
5.2. MEASUREMENT UNCERTAINTIES	10
5.3. MEASUREMENT EQUIPMENT USED:.....	10
5.4. POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C, PARA.15.107(A) & 15.20711	
5.4.1. <i>Limits</i>	11
5.4.2. <i>Method of Measurements</i>	11
5.4.3. <i>Test Equipment List</i>	11
5.4.4. <i>Test Arrangement</i>	11
5.4.5. <i>Test Data</i>	12
5.5. 20 DB BANDWIDTH @ FCC 15.215(C)	16
5.5.1. <i>Limits</i>	16
5.5.2. <i>Method of Measurements</i>	16
5.5.3. <i>Test Equipment List</i>	16
5.5.4. <i>Test Data</i>	16
5.5.5. <i>Test Arrangement</i>	16
5.6. RADIATED EMISSIONS, FUNDAMENTAL AND HARMONICS @ 15.245 (B).....	20
5.6.1. <i>Limits</i>	20
5.6.2. <i>Method of Measurements</i>	20
5.6.3. <i>Test Equipment List</i>	20
5.6.4. <i>Test Arrangement</i>	20
5.6.5. <i>Test Data</i>	21
5.6.6. <i>Duty Cycle Analysis</i>	22

5.7. RADIATED EMISSIONS, OUTSIDE SPECIFIED FREQUENCY BAND @ 15.245 (B)(3) AND 15.209	24
5.7.1. <i>Method of Measurements</i>	24
5.7.2. <i>Test Equipment List</i>	24
5.7.3. <i>Test Arrangement</i>	24
5.7.4. <i>Test Data</i>	25

EXHIBIT 6. MEASUREMENT UNCERTAINTY **27**

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY.....	27
6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY	28

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.245
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15
Purpose of Test:	To gain FCC Certification Authorization for Low Power Transmitters operating in the Frequency Band 10500-10550 MHz .
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	<ul style="list-style-type: none">Commercial, industrial or business environment

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

FCC CFR Parts 0-19	2008	Code of Federal Regulations – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1: 2004 +A2: 2006	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:	
Name:	Safeguards Technology, LLC.
Address:	75 Atlantic Street Hackensack, New Jersey USA, 07601
Contact Person:	Mr. Haim Perry Phone #: 201-488-1022 Fax #: 20-488-1244 Email Address: haimperry@safeguards.com

MANUFACTURER:	
Name:	SICURIT ALARMITALIA SPA
Address:	VIA GADAMES 91 MILAN ITALY, 20151
Contact Person:	SEBASTIANO VENTO Phone #: 0039 02 380701 Fax #: 0039 02 3088067 Email Address: EXPORT@SICURIT.IT

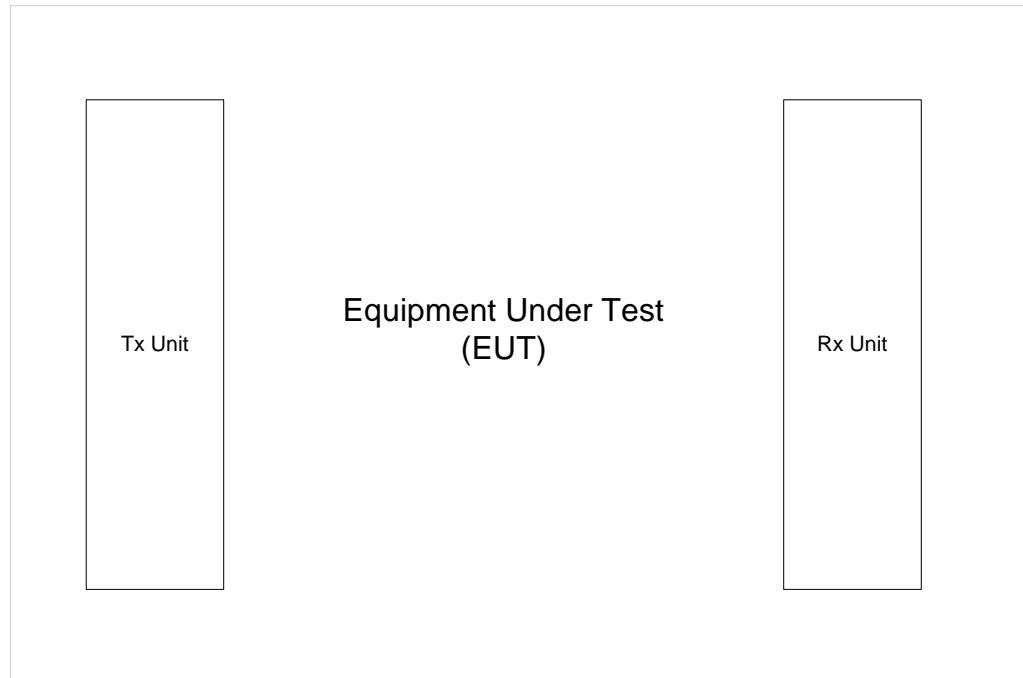
2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	SICURIT
Product Name	MESDUO
Model Name or Number	MES250/2
Serial Number	Test Sample
Type of Equipment	Field Disturbance Sensor
Input Power Supply Type	13.8Vdc
Primary User Functions of EUT:	Dual microwave barrier to detect presence of bodies moving inside an area between transmit and receive units of this device.

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER	
Equipment Type:	Fixed
Intended Operating Environment:	Commercial, light industry & heavy industry
Power Supply Requirement:	13.8Vdc
RF Output Power Rating:	127.97 dBuV/m Peak @3m
Operating Frequency Range:	10525.5-10529.5 MHz
RF Output Impedance:	50 Ohms
Channel Spacing:	N/A
Duty Cycle:	50.7%
20 dB Bandwidth:	1.423MHz
Modulation Type:	On-Off Keying (Pulse Keying 50%)
Antenna Connector Type:	<ul style="list-style-type: none">Integral
Antenna Description:	Manufacturer: ALTEC SRL Type: Parabolic Model:20CATXC0009 Frequency Range: 10.500 – 10.600 GHz In/Out Impedance: 50 Ohms Gain: 24dBi


2.4. LIST OF EUT'S PORTS

None

2.5. ANCILLARY EQUIPMENT

None

2.6. GENERAL TEST SETUP

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	13.8Vdc

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	EUT was configured and operated in the normal mode to transmit.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals:	
Frequencies: <ul style="list-style-type: none">▪ 10500 - 10550 MHz band:	Lowest, middle and highest channel frequencies tested: 10525.5, 10527.3 and 10529.5 MHz
Transmitter Wanted Output Test Signals: <ul style="list-style-type: none">▪ RF Power Output (measured maximum output power):▪ Normal Test Modulation▪ Modulating signal source:	<ul style="list-style-type: none">▪ 127.97 dBuV/m Peak @3m▪ On-Off Keying (Pulse Keying 50%)▪ Internal

Note: The EUT was tested with 3 different antennas to obtain the above three frequencies.

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049A-3, Expiry Date: May 17, 2009).

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	COMPLIANCE (YES/NO)
15.203	Antenna Requirement	Yes. Permanently attached parabolic antenna.
15.207(a)	Power Line Conducted Emissions Measurements (Transmit & Receive)	Yes
15.245 (b)	Radiated Emissions, Fundamental	Yes
15.245 (b) (1)	Radiated Emissions, Harmonics	Yes
15.245 (b) (3) & 15.209	Radiated Emissions, Outside specified band 30 MHz to 53 GHz	Yes
The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices. The engineering test report can be provided upon FCC requests.		

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: SFGT-001FCC245
February 24, 2009

- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1.

5.4. POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C, PARA.15.107(A) & 15.207

5.4.1. Limits

The equipment shall meet the limits of the following table:

CLASS B LIMITS			
Test Frequency Range (MHz)	Quasi-Peak (dB μ V)	Average* (dB μ V)	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average

* Decreasing linearly with logarithm of frequency

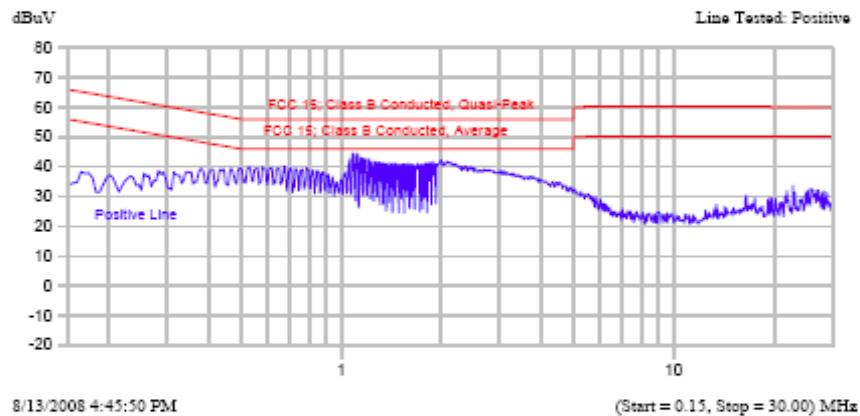

5.4.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

5.4.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver System/Spectrum Analyzer with built-in Amplifier	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz, 50 Ohms
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz 50 Ohms / 50 μ H
12'x16'x12' RF Shielded Chamber	RF Shielding

5.4.4. Test Arrangement

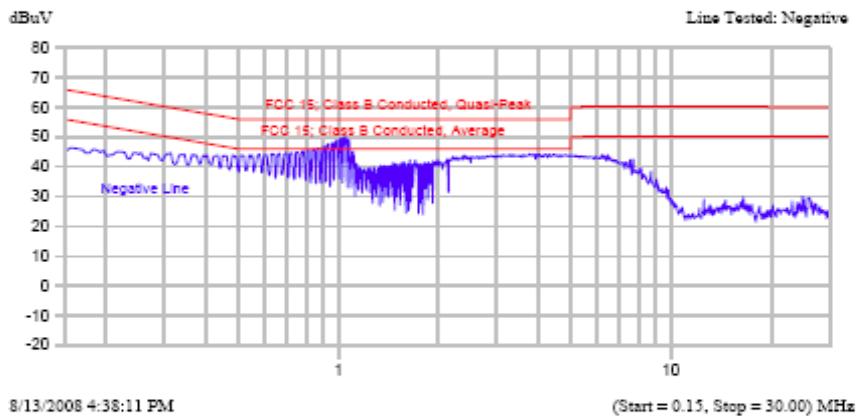


5.4.5. Test Data

5.4.5.1. Power line Conducted Emissions, Transmit Unit- Positive Line

Description: Supply Voltage:13.8VDC
Transmitter Only
Setup Name: FCC 15 Class B
Customer Name: Safeguard Technology Llc
Project Number: SFGT-001Q
Operator Name: Satisch
EUT Name: Field Disturbance Sensor

Current Graph

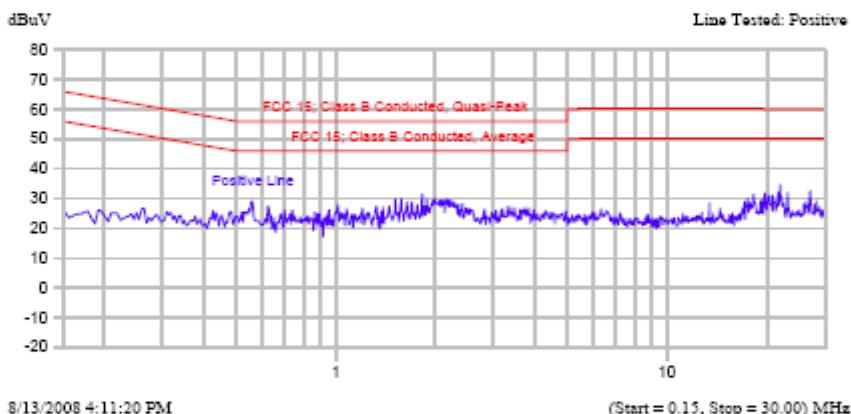

Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta dB	QP-QP Limit	Avg dBuV	Delta dB	Avg-Avg Limit	Trace Name
0.666	40.5	37.0	-19.0		23.7	-22.3		Positive Line
1.095	45.1	42.2	-13.8		26.3	-19.7		Positive Line
1.092	45.0	42.2	-13.8		26.4	-19.6		Positive Line
1.097	45.2	42.2	-13.8		26.4	-19.6		Positive Line
1.135	44.5	41.5	-14.5		26.1	-19.9		Positive Line
1.994	41.9	38.5	-17.5		25.1	-20.9		Positive Line
22.793	34.9	25.0	-35.0		16.2	-33.8		Positive Line

5.4.5.2. Power line Conducted Emissions, Transmit Unit- Negative Line

Description: Supply Voltage:13.8VDC
Transmitter Only
Setup Name: FCC 15 Class B
Customer Name: Safeguard Technology Llc
Project Number: SFGT-001Q
Operator Name: Satish
EUT Name: Field Disturbance Sensor

Current Graph

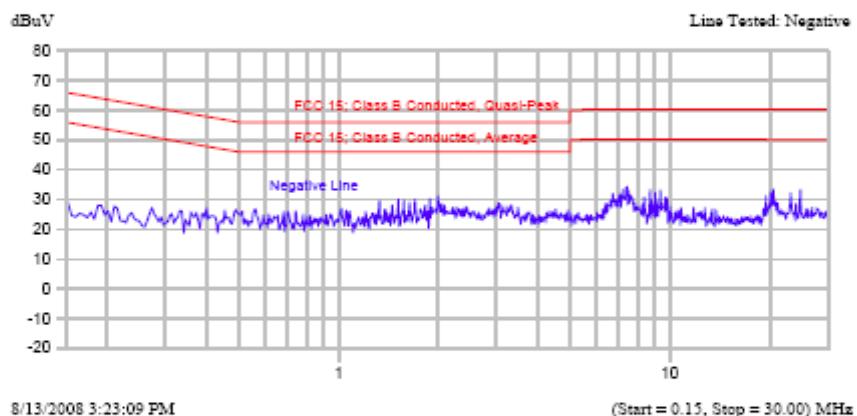

Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta dB	QP-QP Limit dB	Avg dBuV	Delta dB	Avg-Avg Limit dB	Trace Name
0.552	44.6	41.7	-14.3		28.1	-17.9		Negative Line
0.761	45.5	42.8	-13.2		27.6	-18.4		Negative Line
1.053	50.7	47.8	-8.2		31.1	-14.9		Negative Line
1.056	50.2	47.7	-8.3		30.8	-15.2		Negative Line
1.060	50.2	47.5	-8.5		30.7	-15.3		Negative Line
1.084	47.8	45.2	-10.8		29.0	-17.0		Negative Line
2.429	43.8	40.7	-15.3		25.3	-20.7		Negative Line
6.047	43.3	40.3	-19.7		25.0	-25.0		Negative Line

5.4.5.3. Power line Conducted Emissions, Receive Unit- Positive Line

Description: Supply Voltage:13.8VDC
Receiver Only
Setup Name: FCC 15 Class B
Customer Name: Safeguard Technology Llc
Project Number: SFGT-001Q
Operator Name: Satis
EUT Name: Field Disturbance Sensor

Current Graph


Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta dB	QP-QP Limit dB	Avg dBuV	Delta dB	Avg-Avg Limit dB	Trace Name
1.811	31.9	28.9	-27.1	26.1	26.1	-19.9	26.1	Positive Line
18.244	34.4	29.5	-30.5	23.9	23.9	-26.1	23.9	Positive Line
21.936	35.1	32.9	-27.1	24.9	24.9	-25.1	24.9	Positive Line
27.035	26.6	22.1	-37.9	11.4	11.4	-38.6	11.4	Positive Line

5.4.5.4. Power line Conducted Emissions, Receive Unit- Negative Line

Description: Supply Voltage:13.8 V DC
Configuration: Receiver Only
Setup Name: FCC 15 Class B
Customer Name: Safeguards Technology Llc
Project Number: SFGT-001Q
Operator Name: Satish
EUT Name: Field Disturbance Sensor

Current Graph

Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP dB	Delta QP Limit	Avg dBuV	Delta Avg-Avg	Trace Name
1.997	31.7	27.8	-28.2		23.8	-22.2	Negative Line
7.373	37.2	34.4	-25.6		28.7	-21.3	Negative Line
8.694	35.1	33.0	-27.0		32.3	-17.7	Negative Line
9.029	29.5	24.2	-35.8		19.1	-30.9	Negative Line
9.353	34.0	31.9	-28.1		29.7	-20.3	Negative Line
20.466	36.4	34.4	-25.6		31.1	-18.9	Negative Line
23.128	35.5	31.9	-28.1		26.0	-24.0	Negative Line
24.763	34.5	31.4	-28.6		27.4	-22.6	Negative Line

5.5. 20 DB BANDWIDTH @ FCC 15.215(C)

5.5.1. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

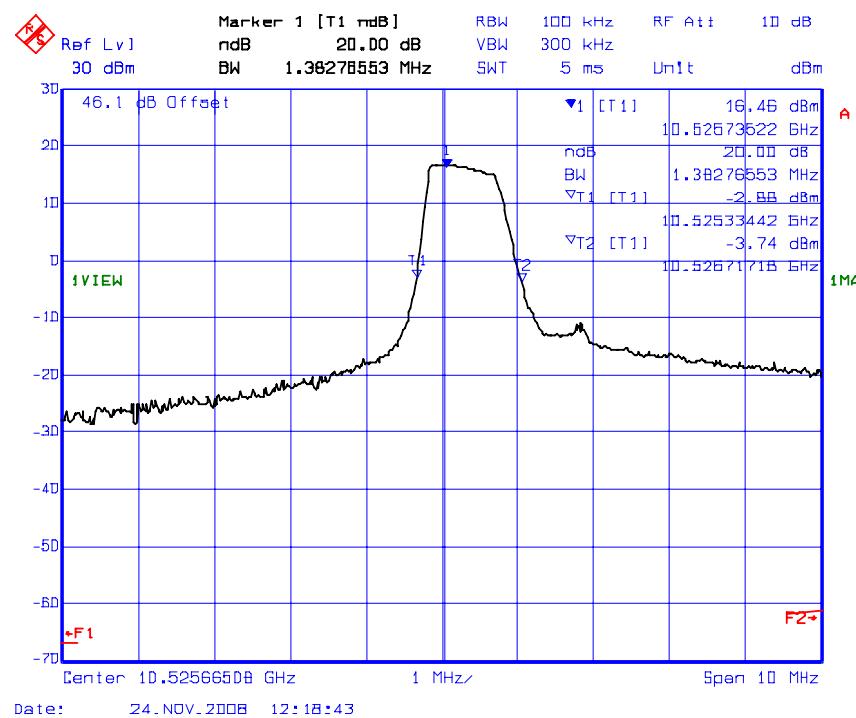
5.5.2. Method of Measurements

Refer to ANSI C63.4

5.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.5.4. Test Data

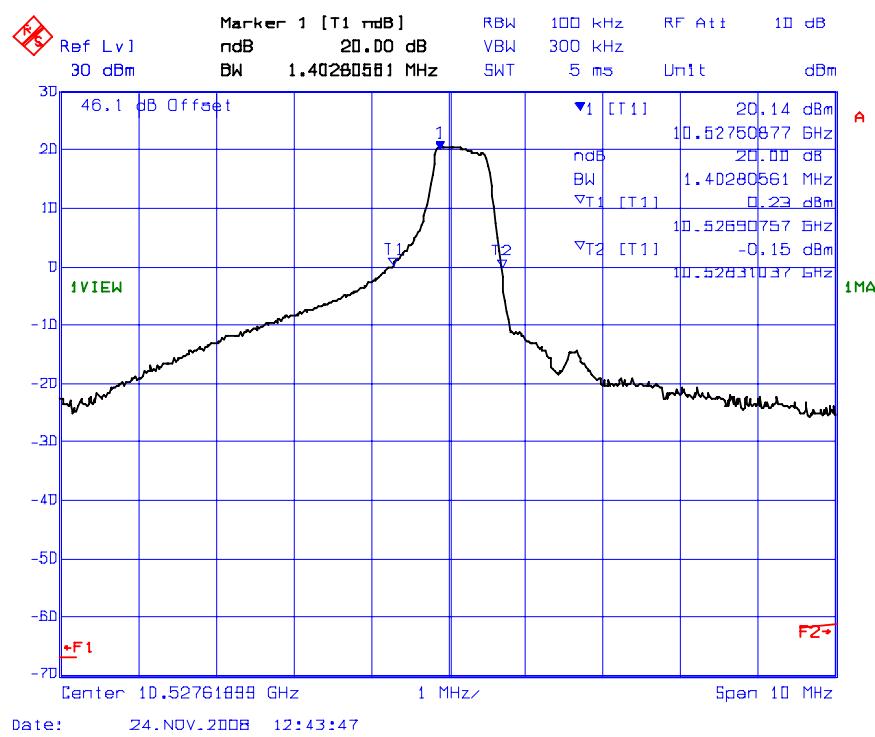

CHANNEL FREQUENCY (MHz)	20dB Bandwidth (MHz)
10525.67	1.3828
10527.51	1.4028
10529.47	1.4228

Please refer to Plots # 1to 3 for Measurements data

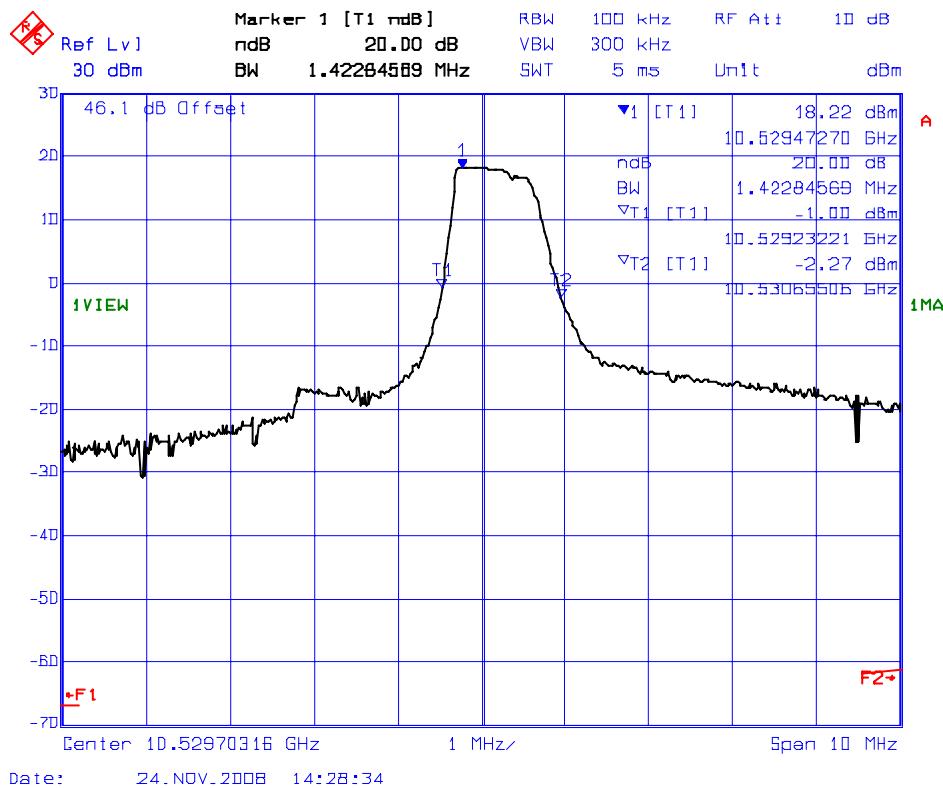
5.5.5. Test Arrangement

5.5.5.1. Plot#1 - Antenna #1 Configuration: 20dB Bandwidth

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>


File #: SFGT-001FCC245
 February 24, 2009

- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.5.5.2. Plot#2 - Antenna #2 Configuration: 20dB Bandwidth

5.5.5.3. Plot#3 - Antenna #3 Configuration: 20dB Bandwidth

5.6. RADIATED EMISSIONS, FUNDAMENTAL AND HARMONICS @ 15.245 (B)

5.6.1. Limits

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental @ 3m		Field Strength of Harmonics @ 3m	
	(millivolts/meter)	(dB μ V/m)	(millivolts/meter)	(dB μ V/m)
10500 - 10550	2500	127.96	25.0	87.95

Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in § 15.205, shall not exceed the field strength limits shown in § 15.209. Harmonic emissions in the **restricted bands at and above 17.7 GHz** shall not exceed the following field strength limits:

(i) For the second and third harmonics of field disturbance sensors operating in the 24075-24175 MHz band and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m @ 3m.
(ii) For all other field disturbance sensors, **7.5 mV/m (77.5 dBuV/m) @ 3m**.

5.6.2. Method of Measurements

Refer to ANSI C63.4

5.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Microwave Amplifier	Spacek Labs	SLKKa-30-6	6A10	18-40GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	ETS	3115	5955	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09	1007	18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10	1001	26.5 GHz – 40 GHz
Horn Antenna & Mixer	OML	WR-19	U30625-1	40 – 60 GHz
Co-axial cable (4m)	Micro-Coax	P/N: MKR250-A-0-1574-200200	210275-001	DC-40GHz

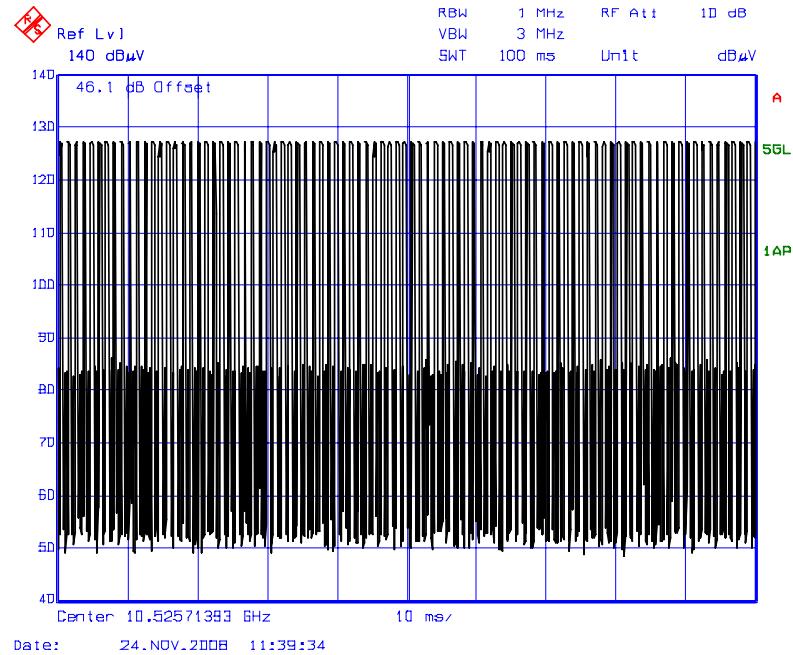
5.6.4. Test Arrangement

5.6.5. Test Data

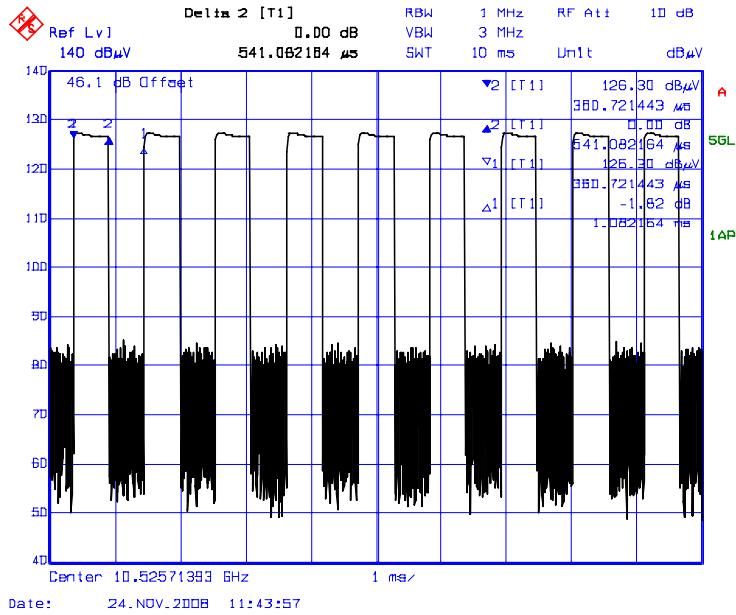
Fundamental and Harmonics of Antenna #1

Frequency (MHz)	RF Peak Level (dB μ V/m)	Duty Cycle (%)	RF Avg Level (dB μ V/m)	Antenna Plane (H/V)	Limit@3m 15.245 (dB μ V/m)	Margin (dB)	Pass/Fail
10525.541	127.97	50.7	122.07	V	127.96	-5.9	Pass
10525.541	107.54	50.7	101.64	H	127.96	-26.3	Pass
21051.480	76.38	50.7	70.48	V	77.5	-7.0	Pass
21051.480	73.87	50.7	67.97	H	77.5	-9.5	Pass
31577.907	75.65	50.7	69.75	V	77.5	-7.8	Pass
31577.907	73.52	50.7	67.62	H	77.5	-9.9	Pass

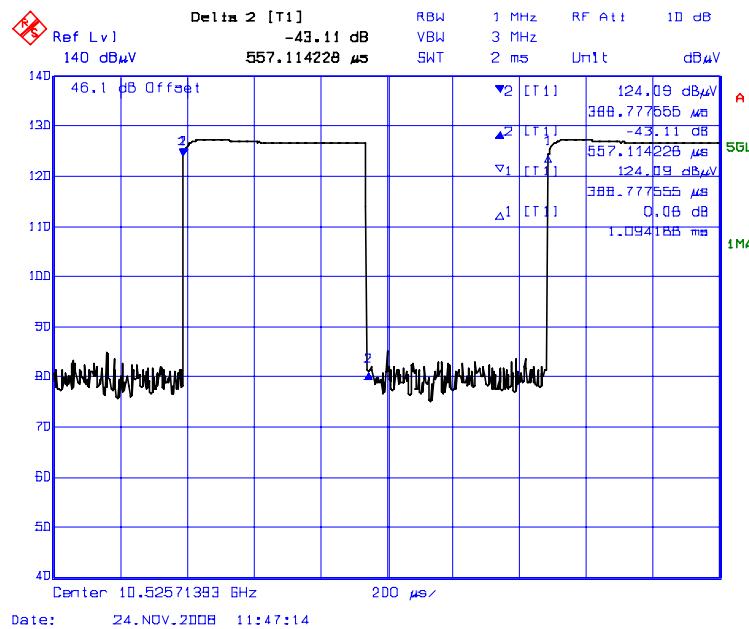
Fundamental and Harmonics of Antenna #2


Frequency (MHz)	RF Peak Level (dB μ V/m)	Duty Cycle (%)	RF Avg Level (dB μ V/m)	Antenna Plane (H/V)	Limit@3m 15.245 (dB μ V/m)	Margin (dB)	Pass/Fail
10527.270	126.57	50.7	120.67	V	127.96	-7.3	Pass
10527.270	108.10	50.7	102.20	H	127.96	-25.8	Pass
21055.674	77.86	50.7	71.96	V	77.5	-5.5	Pass
21055.674	74.78	50.7	68.88	H	77.5	-8.6	Pass
31587.380	79.68	50.7	73.78	V	77.5	-3.7	Pass
31587.380	79.16	50.7	73.26	H	77.5	-4.2	Pass

Fundamental and Harmonics of Antenna #3


Frequency (MHz)	RF Peak Level (dB μ V/m)	Duty Cycle (%)	RF Avg Level (dB μ V/m)	Antenna Plane (H/V)	Limit@3m 15.245 (dB μ V/m)	Margin (dB)	Pass/Fail
10529.509	126.24	50.7	120.34	V	127.96	-7.6	Pass
10529.509	106.07	50.7	100.17	H	127.96	-27.8	Pass
21059.431	73.76	50.7	67.86	V	77.5	-9.6	Pass
21059.431	74.72	50.7	68.82	H	77.5	-8.7	Pass
31590.603	71.57	50.7	65.67	V	77.5	-11.8	Pass
31590.603	71.71	50.7	65.81	H	77.5	-11.7	Pass

5.6.6. Duty Cycle Analysis


5.6.6.1. 100ms time Plot

5.6.6.2. 10ms time Plot

5.6.6.3. Tx on time Plot

5.6.6.4. Calculation

$Tx\ on = 91 \times 0.557114228 = 50.697\ ms$
 Duty cycle = $Tx\ on / (Tx\ on + Tx\ off) = 50.697 / 100 = 0.50697$
 Duty cycle factor = $20 \log(0.50697) = -5.9\ dB$

5.7. RADIATED EMISSIONS, OUTSIDE SPECIFIED FREQUENCY BAND @ 15.245 (B)(3) AND 15.209

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

5.7.1. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods


The following measurement procedures were also applied:

- For 30 MHz \leq frequencies \leq 1 GHz: RBW = 100 KHz, VBW \geq 100 KHz, SWEEP=AUTO.
- For frequencies \geq 1 GHz: RBW = 1 MHz, VBW = 1 MHz .
- If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

5.7.2. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Microwave Amplifier	Spacek Labs	SLKKA-30-6	6A10	18-40GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	ETS	3115	5955	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09	1007	18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10	1001	26.5 GHz – 40 GHz
Horn Antenna & Mixer	OML	WR-19	U30625-1	40 –60 GHz
Co-axial cable (4m)	Micro-Coax	P/N: MKR250-A-0-1574-200200	210275-001	DC-40GHz

5.7.3. Test Arrangement

5.7.4. Test Data

The emissions were scanned from 30MHz to 53 GHz and all emissions within 20dB below the limits.

Frequency (MHz)	RF Level (dB μ V/m)	Detector Used (Peak/QP/Avg)	Antenna Plane (H/V)	3m Limit (dB μ V/m)	Margin (dB)	Pass/Fail
50.0	34.36	Peak	V	40.0	-5.6	Pass
50.0	23.38	Peak	H	40.0	-16.6	Pass
57.5	28.13	Peak	V	40.0	-11.9	Pass
99.5	23.86	Peak	V	43.5	-19.6	Pass
99.5	22.39	Peak	H	43.5	-21.1	Pass
117.9	32.43	Peak	H	43.5	-11.1	Pass
133.7	25.32	Peak	V	43.5	-18.2	Pass
149.2	25.58	Peak	V	43.5	-17.9	Pass
423.7	28.96	Peak	V	46.0	-17.0	Pass
423.7	36.07	Peak	H	46.0	-9.9	Pass
520.5	28.82	Peak	V	46.0	-17.2	Pass
520.5	31.76	Peak	H	46.0	-14.2	Pass
620.0	31.75	Peak	V	46.0	-14.3	Pass
620.0	41.21	Peak	H	46.0	-4.8	Pass
621.2	32.66	Peak	V	46.0	-13.3	Pass
623.1	34.56	Peak	V	46.0	-11.4	Pass
623.1	38.79	Peak	H	46.0	-7.2	Pass
648.6	31.65	Peak	V	46.0	-14.4	Pass
671.6	31.77	Peak	V	46.0	-14.2	Pass
671.6	32.90	Peak	H	46.0	-13.1	Pass
672.9	37.52	Peak	V	46.0	-8.5	Pass
672.9	39.92	Peak	H	46.0	-6.1	Pass
769.9	33.47	Peak	V	46.0	-12.5	Pass
769.9	32.16	Peak	H	46.0	-13.8	Pass
822.1	31.77	Peak	V	46.0	-14.2	Pass
822.1	39.35	Peak	H	46.0	-6.7	Pass
871.9	35.98	Peak	V	46.0	-10.0	Pass
871.9	34.28	Peak	H	46.0	-11.7	Pass
919.0	33.35	Peak	V	46.0	-12.7	Pass
919.0	35.07	Peak	H	46.0	-10.9	Pass
968.8	35.78	Peak	V	54.0	-18.2	Pass
968.8	38.22	Peak	H	54.0	-15.8	Pass
1019.0	44.07	Peak	H	54.0	-9.9	Pass
1119.0	46.42	Peak	V	54.0	-7.6	Pass
1119.0	41.74	Peak	H	54.0	-12.3	Pass
1271.0	48.08	Peak	V	54.0	-5.9	Pass
1271.0	43.22	Peak	H	54.0	-10.8	Pass
1318.0	48.11	Peak	V	54.0	-5.9	Pass
1318.0	47.45	Peak	H	54.0	-6.6	Pass
1366.0	49.61	Peak	V	54.0	-4.4	Pass
1366.0	46.89	Peak	H	54.0	-7.1	Pass

Continued ...

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>File #: SFGT-001FCC245
February 24, 2009

- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Frequency (MHz)	RF Level (dB μ V/m)	Detector Used (Peak/QP/Avg)	Antenna Plane (H/V)	3m Limit (dB μ V/m)	Margin (dB)	Pass/Fail
1418.0	48.14	Peak	V	54.0	-5.9	Pass
1418.0	47.45	Peak	H	54.0	-6.6	Pass
1442.0	46.83	Peak	V	54.0	-7.2	Pass
1442.0	41.13	Peak	H	54.0	-12.9	Pass
1570.0	47.95	Peak	V	54.0	-6.1	Pass
1570.0	43.23	Peak	H	54.0	-10.8	Pass
1618.0	48.71	Peak	V	54.0	-5.3	Pass
1618.0	45.20	Peak	H	54.0	-8.8	Pass
1765.0	47.13	Peak	V	54.0	-6.9	Pass
1765.0	40.96	Peak	H	54.0	-13.0	Pass
1808.0	42.75	Peak	H	54.0	-11.3	Pass
1869.0	43.59	Peak	H	54.0	-10.4	Pass

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Line Conducted)	PROBABILITY DISTRIBUTION	UNCERTAINTY (dB)	
		9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	± 1.5	± 1.5
LISN coupling specification	Rectangular	± 1.5	± 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	± 0.3	± 0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1+\Gamma_1\Gamma_R)$	U-Shaped	± 0.2	± 0.3
System repeatability	Std. deviation	± 0.2	± 0.05
Repeatability of EUT	--	--	--
Combined standard uncertainty	Normal	± 1.25	± 1.30
Expanded uncertainty U	Normal (k=2)	± 2.50	± 2.60

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)} = \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} = \pm 1.30 \text{ dB}$$

$$U = 2u_c(y) = \pm 2.6 \text{ dB}$$

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Radiated Emissions)	PROBABILITY DISTRIBUTION	UNCERTAINTY (\pm dB)	
		3 m	10 m
Antenna Factor Calibration	Normal (k=2)	± 1.0	± 1.0
Cable Loss Calibration	Normal (k=2)	± 0.3	± 0.5
EMI Receiver specification	Rectangular	± 1.5	± 1.5
Antenna Directivity	Rectangular	$+0.5$	$+0.5$
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase center variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	± 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi)$ 0.3 (Lp) Uncertainty limits $20\log(1+\Gamma_1\Gamma_R)$	U-Shaped	+1.1 -1.25	± 0.5
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$