

FCC TEST REPORT

CATEGORY : Module for Professional Use Mobile Host

PRODUCT NAME : 802.11a/g Workgroup Bridge

FCC ID. : O9C-WL560

FILING TYPE : Certification

BRAND NAME : 3COM

MODEL NAME : WL-560

APPLICANT : 3Com Corporation

5500 Great America Pkwy Santa Clara, CA. 95052 USA

MANUFACTURER : DONGGUAN G-COM COMPUTER CO., LTD.

1st Row Yin Shan Rd., Yin Hwu Industrial Area, Qingxi Town,
Dong Guan City, Guang Dong, China

ISSUED BY : SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,
Taiwan, R.O.C.

Statements:

Only the test result of 802.11b/g part is shown in this test report.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane
Vice General Manager
Sporton International Inc.

Lab Code: 200079-0

Table of Contents

History of this test report.....	ii
1. General Description of Equipment under Test.....	1
1.1. Applicant.....	1
1.2. Manufacturer	1
1.3. Basic Description of Equipment under Test	1
1.4. Features of Equipment under Test (802.11b/g part)	1
1.5. Antenna Description	2
1.6. Table for Carrier Frequencies (802.11b/g part).....	2
2. Test Configuration of the Equipment under Test.....	3
2.1. Description of the Test	3
2.2. Frequency Range Investigated	3
2.3. Description of Test Supporting Units.....	4
2.4. Connection Diagram of Test System	5
2.5. Test Software	6
3. Test Location and Standards	7
3.1. Test Location.....	7
3.2. Test Conditions	7
3.3. Standards for Methods of Measurement.....	7
3.4. DoC Statement.....	7
4. List of Measurements.....	8
4.1. Summary of the Test Results	8
5. Test Result	9
5.1. Test of AC Power Line Conducted Emission	9
5.2. Test of Spurious Radiated Emission	17
5.3. Antenna Requirements	25
6. List of Measuring Equipments Used	26
Appendix A. Photographs of EUT.....	A1 ~ A21

History of this test report

No additional attachment.
 Additional attachment were issued as following record:

1. General Description of Equipment under Test

1.1. Applicant

3Com Corporation

5500 Great America Pkwy Santa Clara, CA. 95052 USA

1.2. Manufacturer

Same as 1.1

1.3. Basic Description of Equipment under Test

This product is a Wireless Access Point / Ethernet Bridge with 802.11a/b/g wireless solution. The technical data has been listed on section " Features of Equipment under Test ". 3 types of antenna are filed in this project. This product is an extend of original one reported under Sporton project number: 453118. 2 additional diodes was added on the pins of the LAN port and the core power supply has been changed from linear to switching.

1.4. Features of Equipment under Test (802.11b/g part)

ITEMS	DESCRIPTION
Type of Modulation	DSSS, OFDM
Number of Channels	11
Frequency Band	2400MHz ~ 2483.5MHz
Carrier Frequency	Please reference table below.
Channel Bandwidth	11MHz (802.11b), 18MHz (802.11g)
Output Power	CCK : 21.02 dBm OFDM : 22.05 dBm
Antenna Type	See section 1.5 for details
Function Type	Transceiver
Power Rating (DC/AC, Voltage)	5 VDC from 90~240VAC power adapter
Temperature Range (Operating)	0 ~ 55°C

Note: Only the test result of 802.11b/g part is shown in this test report.

1.5. Antenna Description

3 types of antenna are filed in this project.

No.	Antenna Type	Gain (dBi)
1	Printed Monopole (GEM-220838-W 1500)	2.5dBi @2.4GHz 5.0dBi @5.0GHz
2	Monopole (Rubber duck antenna)	5.15dBi @2.4GHz 4.38dBi @5.0GHz
3	Chip Antenna	1.58dBi @2.4GHz 3.53dBi @5.0GHz

1.6. Table for Carrier Frequencies (802.11b/g part)

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412 MHz	5	2432 MHz	9	2452 MHz
2	2417 MHz	6	2437 MHz	10	2457 MHz
3	2422 MHz	7	2442 MHz	11	2462 MHz
4	2427 MHz	8	2447 MHz		

2. Test Configuration of the Equipment under Test

2.1. Description of the Test

- a. During testing, the equipment was placed on a non-conducting support.
- b. Based on the description on section 1.3, only spurious emission below 1GHz and conduction has to be re-measured.
- c. The following test modes were performed:
 - Mode 1 : Ant. 1 (GEM-220838-W 1500)
 - Mode 2 : Ant. 2 (Rubber duck antenna)
 - Mode 3 : Ant. 3 (Internal antenna)
- d. Spurious emission below 1GHz is independent of channel selection, so only Channel 11 with OFDM modulation was tested.
- e. The EUT has been programmed to continuously transmit or receive during testing. The used peripherals as well as the configuration fulfill the requirements of ANSI C63.4:2001.
- f. The configuration is operated in a manner which tends to maximize its emission characteristics in a typical application.
- g. 3 meters measurement distance in semi-anechoic chamber was used in this test.

2.2. Frequency Range Investigated

- a. Conducted power line test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 25000 MHz

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

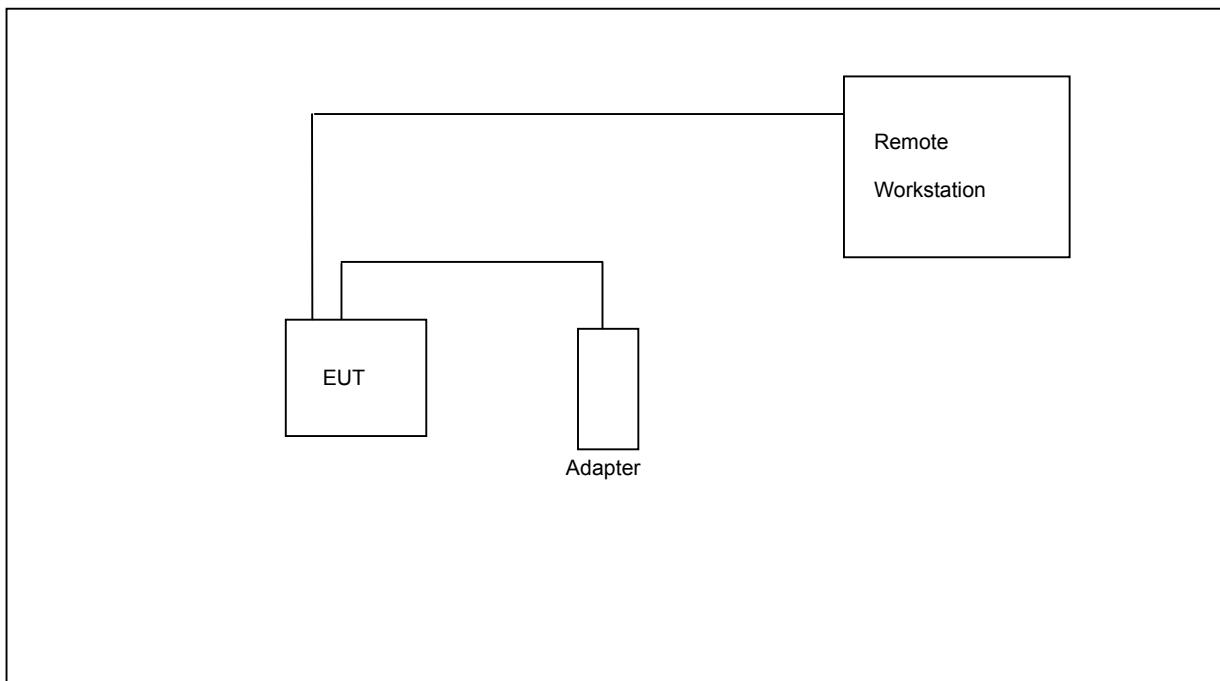
Report No.: FG453118-01

2.3. Description of Test Supporting Units

Support Unit 1. – Notebook (NEC) – for remote workstation

FCC ID	: N/A
Model No.	: VERSA VX
Serial No.	: SP0034
Remark	: This support device was tested to comply with FCC standards and authorized under Declaration of Conformity.

Support Unit 2. – Notebook (Dell) – for remote workstation


FCC ID	: N/A
Model No.	: D505
Serial No.	: SP0035
Remark	: This support device was tested to comply with FCC standards and authorized under Declaration of Conformity.

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

2.4. Connection Diagram of Test System

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

2.5. Test Software

- a. An controlling software was provided by the customer to control the channel and power of this EUT. The EUT can be controlled by the notebook computer with this software via the RJ45 port of the EUT.
- b. "H" Pattern Generator: Except Access Point, the supporting equipment such as monitor or printer is always available. Under testing, these supporting equipment has to also under working condition. "H" Pattern Generator is able to continuously transmitting "H" character to those supporting equipments.

3. Test Location and Standards

3.1. Test Location

Test Location : Spuron Hwa Ya Testing Building

Address : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
Tel: +886 3 327 3456 Fax: +886 3 318 0055

Test Site No. : CO04-HY, 03CH03-HY

3.2. Test Conditions

Normal Voltage : 120V/60Hz (power adapter)
Extreme Voltage : 138V and 102V (power adapter)
Normal Temperature : 20 °C
Extreme Temperature : 0 °C and 40 °C

3.3. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2001

47 CFR Part 15 Subpart C (Section 15.247)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

SPORTON LAB.

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR Part 15 and Part 2			
Paragraph	FCC Rule	Description of Test	Result
5.1	15.107/15.207	AC Power Line Conducted Emission	Pass
5.2	15.209/15.247(c)	Spurious Radiated Emission	Pass

5. Test Result

5.1. Test of AC Power Line Conducted Emission

5.1.1. Measuring Instruments

Please reference item 1~7 in chapter 6 for the instruments used for testing.

5.1.2. Test Procedures

1. Configure the EUT according to ANSI C63.4.
2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
5. The frequency range from 150 KHz to 30 MHz was searched.
6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

5.1.3. Test Result of Conducted Emission

Test Mode	RF Link		Tested By	Hikaru Chan	
Temperature / Humidity	29deg. C / 54%				

Line to Ground

Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Read Level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Remark
0.239	46.00	-6.14	52.14	45.85	0.10	0.05	Average
0.239	55.88	-6.26	62.14	55.73	0.10	0.05	QP
0.369	30.89	-17.63	48.52	30.7	0.10	0.09	Average
0.369	48.12	-10.4	58.52	47.93	0.10	0.09	QP
0.481	36.18	-10.14	46.32	36.07	0.10	0.01	Average
0.481	36.38	-19.94	56.32	36.27	0.10	0.01	QP
17.696	43.66	-6.34	50.00	43.23	0.26	0.17	Average
17.696	46.07	-13.93	60.00	45.64	0.26	0.17	QP
19.710	41.54	-8.46	50.00	41.03	0.30	0.21	Average
19.710	43.79	-16.21	60.00	43.28	0.30	0.21	QP
22.458	40.78	-9.22	50.00	40.28	0.30	0.20	Average
22.458	43.87	-16.13	60.00	43.37	0.30	0.20	QP

Neutral to Ground

Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Read Level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Remark
0.239	46.98	-5.16	52.14	46.83	0.10	0.05	Average
0.239	56.30	-5.84	62.14	56.15	0.10	0.05	QP
0.363	36.29	-12.37	48.66	36.10	0.10	0.09	Average
0.363	50.11	-8.55	58.66	49.92	0.10	0.09	QP
0.604	27.17	-18.83	46.00	26.77	0.10	0.30	Average
0.604	33.05	-22.95	56.00	32.65	0.10	0.30	QP
2.510	14.57	-31.43	46.00	14.42	0.10	0.05	Average
2.510	32.18	-23.82	56.00	32.03	0.10	0.05	QP
17.696	43.28	-6.72	50.00	42.85	0.26	0.17	Average
17.696	45.81	-14.19	60.00	45.38	0.26	0.17	QP
19.710	42.01	-7.99	50.00	41.50	0.30	0.21	Average
19.710	44.24	-15.76	60.00	43.73	0.30	0.21	QP

5.1.4. Photographs of Conducted Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.

Mode 1

FRONT VIEW

REAR VIEW

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

SIDE VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : O9C-WL560
Page No. : 12 of 27
Issued Date : Nov. 15, 2004

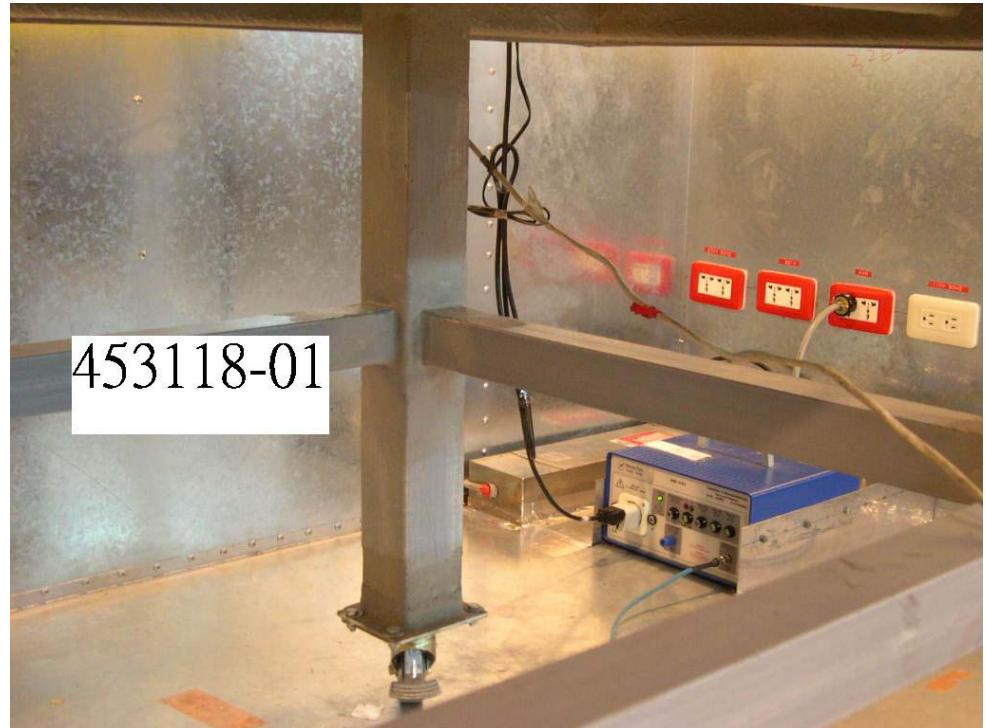
FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

Mode 2

FRONT VIEW

REAR VIEW



FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

SIDE VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : O9C-WL560
Page No. : 14 of 27
Issued Date : Nov. 15, 2004

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

Mode 3

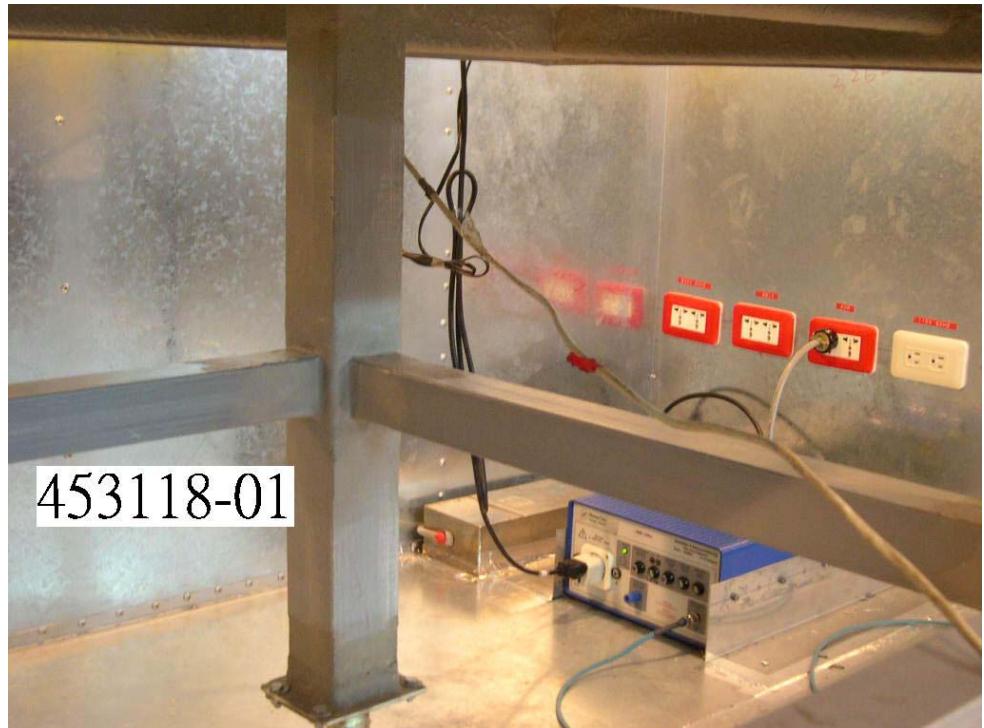
FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


FCC ID. : O9C-WL560
Page No. : 15 of 27
Issued Date : Nov. 15, 2004

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

SIDE VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

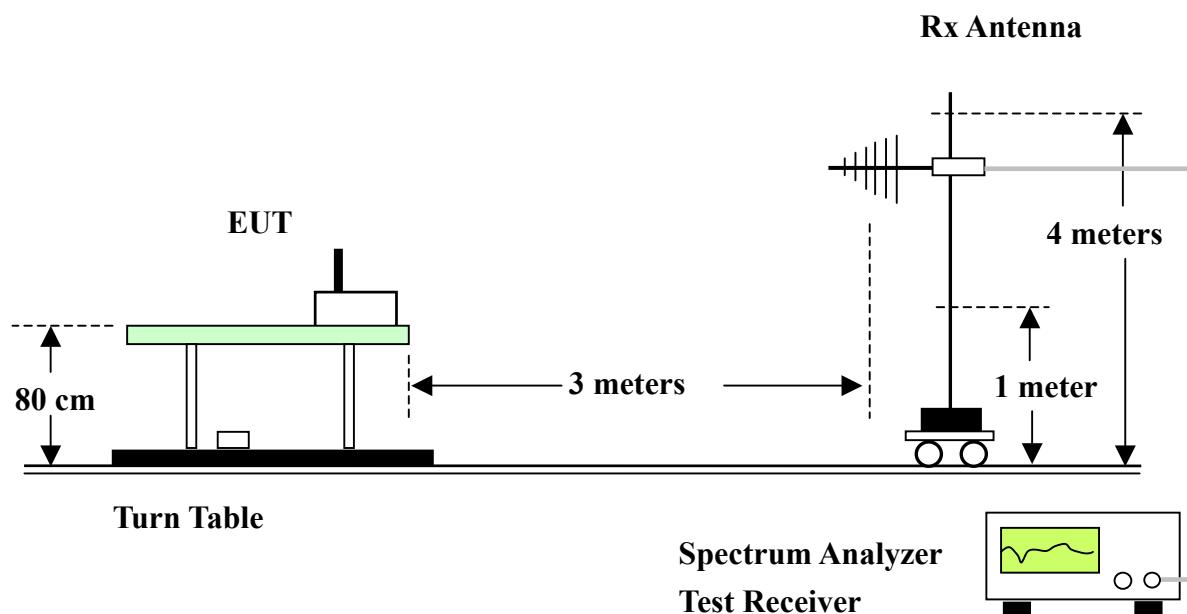
FAX : 886-2-2696-2255

FCC ID. : O9C-WL560

Page No. : 16 of 27

Issued Date : Nov. 15, 2004

5.2. Test of Spurious Radiated Emission


5.2.1. Measuring Instruments

Please reference item 8~19 in chapter 6 for the instruments used for testing.

5.2.2. Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT was placed on the top of the turn table 0.8 meter above ground.
- c) The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- d) Power on the EUT and all the supporting units.
- e) The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- f) The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- g) For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- h) Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- i) For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- j) If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- k) For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.2.3. Test Setup Layout

5.2.4. Test Results and Limit

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Modulation Type	OFDM						
Test Mode	Mode 1 (CH 11 2462MHz)			Temperature	27 deg. C	Tested By	Ted Chiu
Freq. Range	30MHz~1GHz		Humidity	45%			

(A) Polarization: Horizontal

Freq	Level	Over Limit		Read Line		Probe Factor		Cable Loss		Preamp Factor		Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	dB	dB		
1	56.350	29.00	-11.00	40.00	44.45	10.83	1.27	27.55	Peak	---	---		
2	89.670	30.50	-13.00	43.50	47.64	8.52	1.62	27.28	Peak	---	---		
3	143.220	26.73	-16.77	43.50	39.37	12.36	2.11	27.11	Peak	---	---		
1 !	374.400	42.44	-3.56	46.00	50.41	16.04	3.38	27.39	Peak	---	---		
2	400.000	36.04	-9.96	46.00	43.47	16.80	3.47	27.70	Peak	---	---		
3	900.000	38.67	-7.33	46.00	38.83	21.70	5.34	27.20	Peak	---	---		

(B) Polarization: Vertical

Freq	Level	Over Limit		Read Line		Probe Factor		Cable Loss		Preamp Factor		Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	dB	dB		
1 !	34.420	36.55	-3.45	40.00	50.97	12.02	1.01	27.45	QP	---	---		
2 !	58.390	36.49	-3.51	40.00	52.10	10.64	1.28	27.53	QP	---	---		
3 !	80.830	36.82	-3.18	40.00	53.21	9.41	1.55	27.35	QP	139	70		
1	448.800	36.23	-9.77	46.00	44.01	16.41	3.71	27.90	Peak	---	---		
2	630.400	36.99	-9.01	46.00	40.35	20.49	4.46	28.31	Peak	---	---		
3	720.000	38.02	-7.98	46.00	40.33	20.95	4.76	28.02	Peak	---	---		

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Modulation Type	OFDM										
Test Mode	Mode 2 (CH 11 2462MHz)			Temperature		27 deg. C		Tested By			
Freq. Range	30MHz~1GHz			Humidity		45%				Ted Chiu	

(A) Polarization: Horizontal

Freq	Level	Over Limit		Read Line		Probe	Cable Preamp		Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	Factor	dB		
1	37.140	23.54	-16.46	40.00	37.78	12.19	1.04	27.47	Peak	---
2	58.390	26.39	-13.61	40.00	42.00	10.64	1.28	27.53	Peak	---
3	180.110	28.42	-15.08	43.50	38.83	14.20	2.43	27.04	Peak	---
1 !	900.000	40.04	-5.96	46.00	40.20	21.70	5.34	27.20	Peak	---
2 !	944.800	41.65	-4.35	46.00	40.74	22.69	5.51	27.29	Peak	---
3 !	957.600	42.49	-3.51	46.00	41.20	22.96	5.65	27.32	QP	---

(B) Polarization: Vertical

Freq	Level	Over Limit		Read Line		Probe	Cable Preamp		Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	Factor	dB		
1 !	34.420	36.15	-3.85	40.00	50.57	12.02	1.01	27.45	QP	---
2 !	58.390	36.77	-3.23	40.00	52.38	10.64	1.28	27.53	QP	---
3 !	89.670	38.43	-5.07	43.50	55.57	8.52	1.62	27.28	QP	---
1	810.400	36.60	-9.40	46.00	37.25	21.88	5.12	27.65	Peak	---
2	902.400	37.45	-8.55	46.00	37.56	21.75	5.35	27.21	Peak	---
3 !	957.600	42.89	-3.11	46.00	41.60	22.96	5.65	27.32	QP	118 79

Note:

Emission level (dB_{uV/m}) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Modulation Type	OFDM									
Test Mode	Mode 3 (CH 11 2462MHz)			Temperature	27 deg. C		Tested By	Ted Chiu		
Freq. Range	30MHz~1GHz			Humidity	45%					

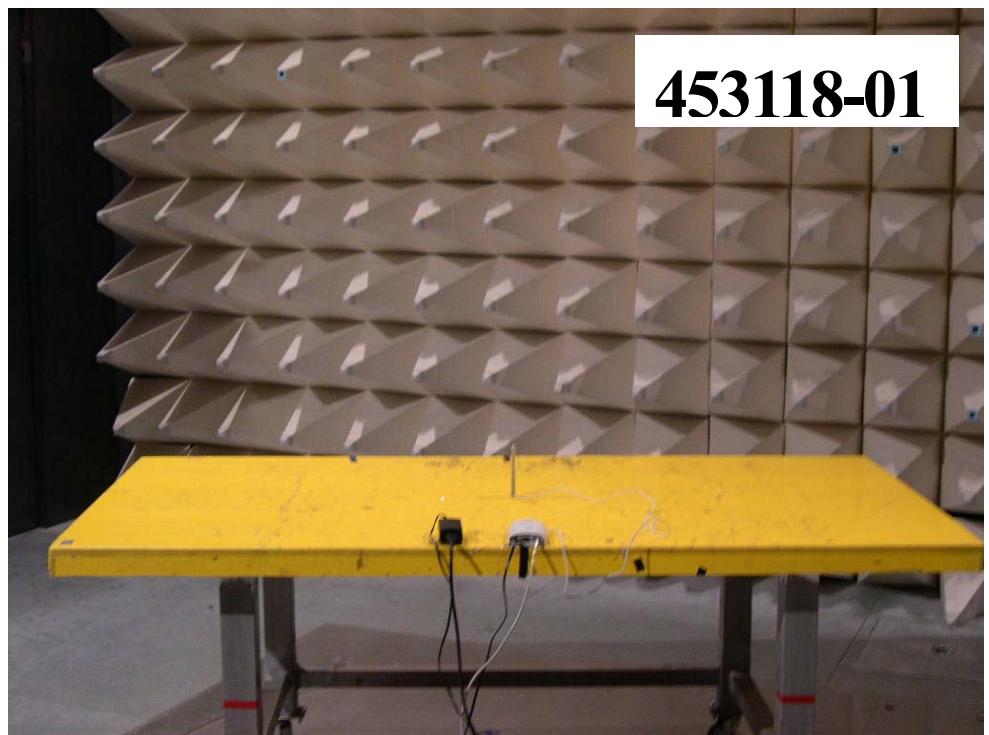
(A) Polarization: Horizontal

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table		
		Limit	Line	Level	Factor	Loss	Factor				
MHz	dB _{uV/m}	dB	dB _{uV/m}	dB _{uV}	dB	dB	dB	cm	deg		
1	58.390	24.13	-15.87	40.00	39.74	10.64	1.28	27.53	Peak	---	---
2	89.670	18.38	-25.12	43.50	35.52	8.52	1.62	27.28	Peak	---	---
3	180.110	21.49	-22.01	43.50	31.90	14.20	2.43	27.04	Peak	---	---
1 !	908.800	42.37	-3.63	46.00	42.32	21.90	5.37	27.22	Peak	---	---
2 !	915.200	42.03	-3.97	46.00	41.83	22.04	5.39	27.23	Peak	---	---
3 !	957.600	42.65	-3.35	46.00	41.36	22.96	5.65	27.32	QP	---	---

(B) Polarization: Vertical

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table		
		Limit	Line	Level	Factor	Loss	Factor				
MHz	dB _{uV/m}	dB	dB _{uV/m}	dB _{uV}	dB	dB	dB	cm	deg		
1 !	34.420	36.85	-3.15	40.00	51.27	12.02	1.01	27.45	QP	148	89
2 !	62.470	36.27	-3.73	40.00	52.12	10.33	1.32	27.50	QP	---	---
3 !	89.670	40.15	-3.35	43.50	57.29	8.52	1.62	27.28	Peak	---	---
1	249.600	39.25	-6.75	46.00	50.87	12.30	2.83	26.75	Peak	---	---
2 !	902.400	42.48	-3.52	46.00	42.59	21.75	5.35	27.21	QP	---	---
3 !	957.600	42.39	-3.61	46.00	41.10	22.96	5.65	27.32	QP	---	---

5.6.5 Photographs of Radiated Emission Test Configuration


- The photographs show the configuration that generates the maximum emission.

Mode 1

FRONT VIEW

REAR VIEW

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

Mode 2

FRONT VIEW

REAR VIEW

SPORTON International Inc.

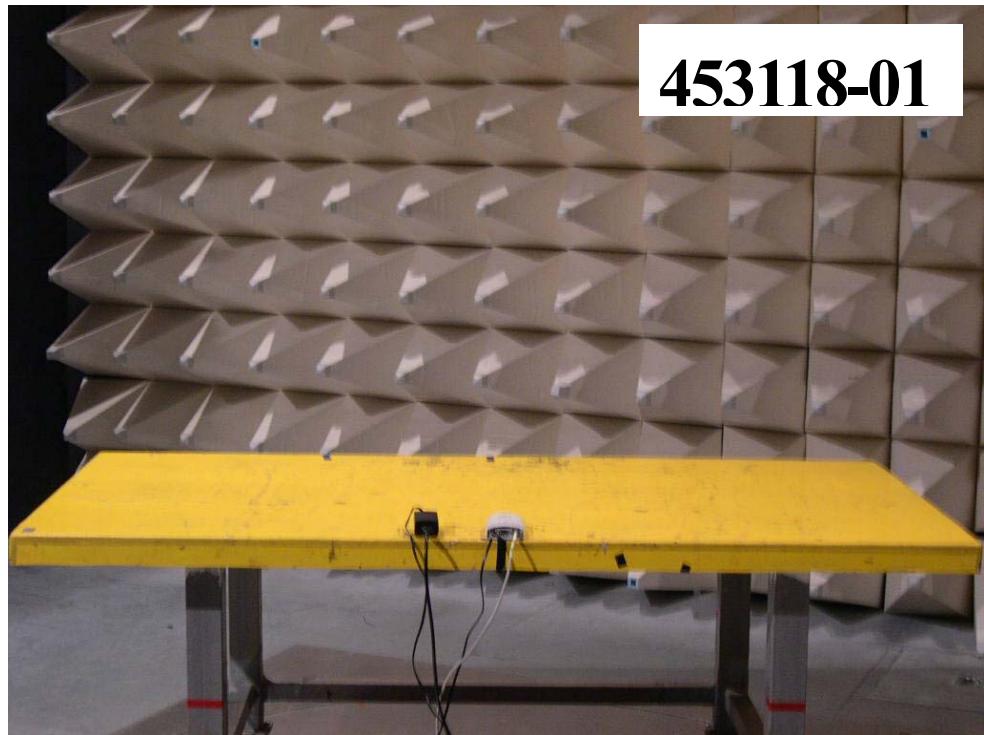
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : O9C-WL560
Page No. : 23 of 27
Issued Date : Nov. 15, 2004



FCC ID: O9C-WL560
Issued on Nov. 15, 2004


Report No.: FG453118-01

Mode 3

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : O9C-WL560
Page No. : 24 of 27
Issued Date : Nov. 15, 2004

5.3. Antenna Requirements

5.3.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.247 (b):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.3.2. Antenna Connected Construction

There is no antenna connector for integral chip antenna. The connector for monopole antenna is reversed SMA and standard SMA. But this product is classified as professional use, so there is no need to fulfill the unique antenna connector requirement.

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100174	9 KHz – 2.75 GHz	Feb. 16, 2004	Conduction (CO04-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9 KHz – 30 MHz	Jun. 09, 2004	Conduction (CO04-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9 KHz – 30 MHz	Apr. 27, 2004	Conduction (CO04-HY)
4	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
5	RF Cable-CON	UTIFLEX	3102-26886-4	CB044	9KHz~30MHz	Apr. 21, 2004	Conduction (CO04-HY)
6	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
7	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 23, 2003	Radiation (03CH03-HY)
8	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 05, 2003	Radiation (03CH03-HY)
9	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 24, 2003	Radiation (03CH03-HY)
10	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 24, 2003	Radiation (03CH03-HY)
11	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
12	Amplifier	MITEQ	AFS44	879981	100MHz~26.5GHz	Jul. 23, 2003	Radiation (03CH03-HY)
13	Horn Antenna	EMCO	3115	6821	1GHz – 18GHz	Sep. 12, 2003	Radiation (03CH03-HY)
14	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
15	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
16	Horn Antenna	Schwarzbeck	BBHA9170	154	15GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
17	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

※ Calibration Interval of instruments listed above is one year.

FCC ID: O9C-WL560
Issued on Nov. 15, 2004

Report No.: FG453118-01

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
18	Spectrum analyzer	R&S	FSP7	838858/014	9KHZ~7GHZ	Sep. 03, 2003	Conducted (TH01-HY)
19	Power meter	R&S	NRVS	100444	DC~40GHz	Jun. 15, 2004	Conducted (TH01-HY)
20	Power sensor	R&S	NRV-Z55	100049	DC~40GHz	Jun. 15, 2004	Conducted (TH01-HY)
21	Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	Jun. 15, 2004	Conducted (TH01-HY)
22	AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	Jun. 16, 2004	Conducted (TH01-HY)
23	AC power source	G.W.	GPC-6030D	C671845	DC 1V~60V	Nov. 06, 2003	Conducted (TH01-HY)
24	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2003	Conducted (TH01-HY)
25	RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz~7GHz	Jan. 01, 2004	Conducted (TH01-HY)
26	RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz~1GHz	Jan. 01, 2004	Conducted (TH01-HY)

※ Calibration Interval of instruments listed above is one year.

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : O9C-WL560

Page No. : 27 of 27

Issued Date : Nov. 15, 2004

APPENDIX A. Photographs of EUT

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A2 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


PAGE NUMBER : A4 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A5 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A7 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A8 OF A21

ISSUED DATE : Nov. 15, 2004

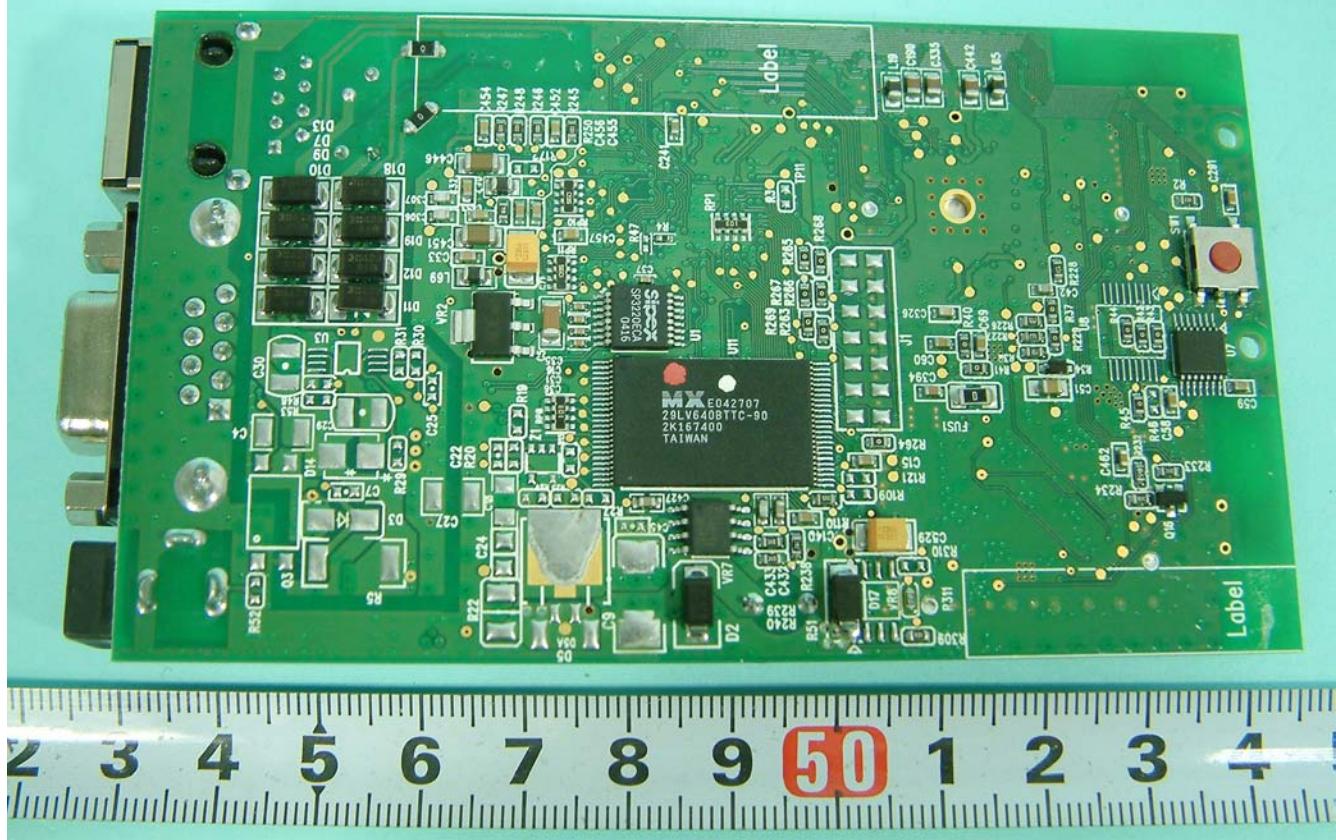
REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

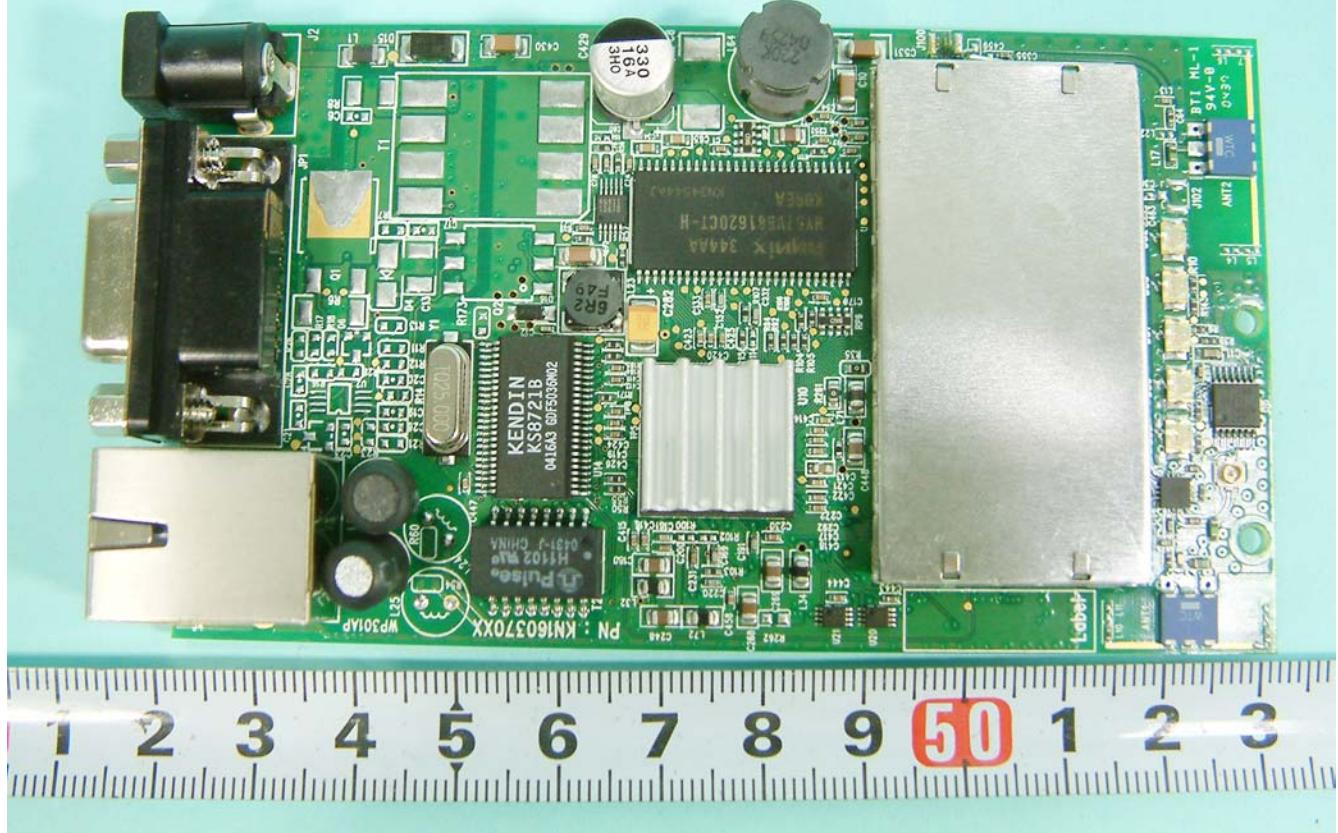
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


PAGE NUMBER : A9 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01


453118-01

REPORT NO. : FG453118-01

453118-01

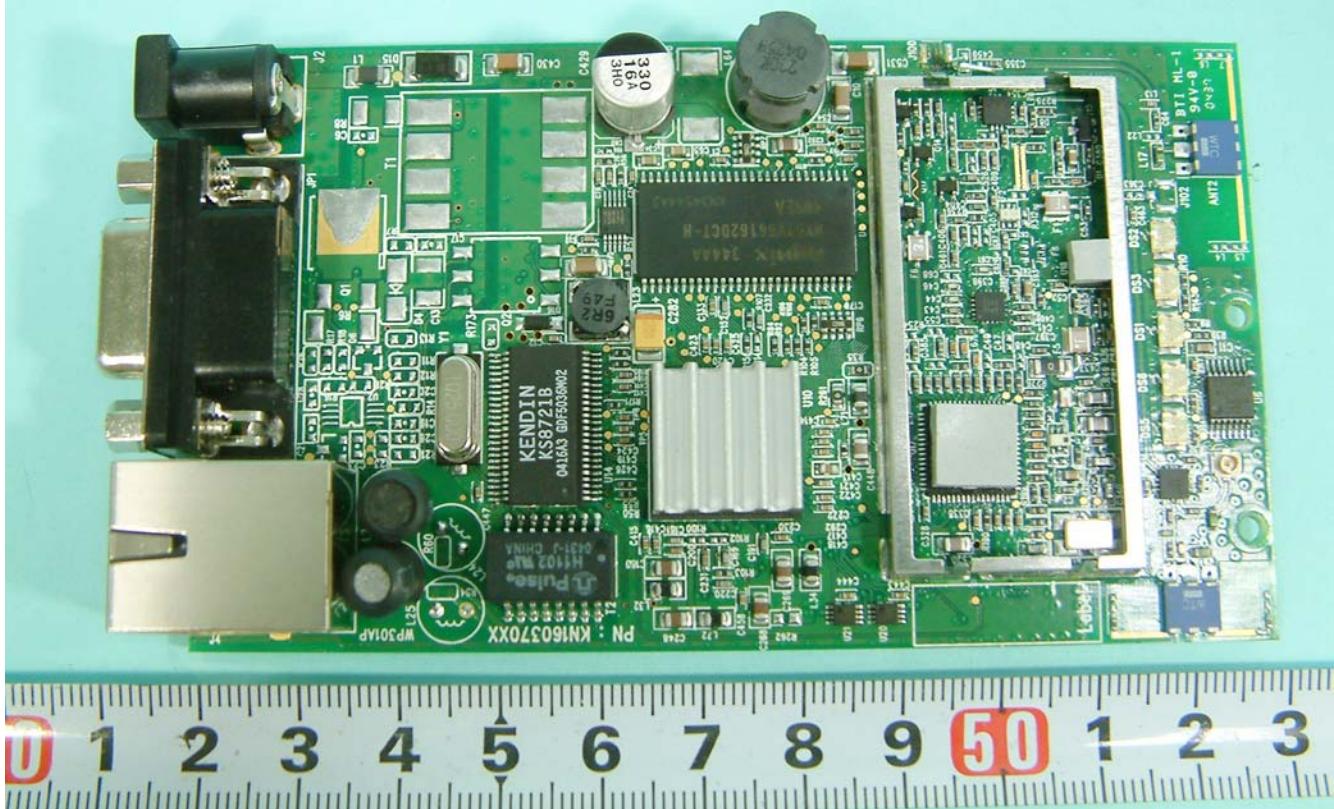
REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255


PAGE NUMBER : A12 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A13 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

REPORT NO. : FG453118-01

453118-01

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A16 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A17 OF A21

ISSUED DATE : Nov. 15, 2004

SPORTON LAB.

REPORT NO. : FG453118-01

453118-01

DVE®

SWITCHING POWER SUPPLY/ 电源适配器

MODEL/ 型号: DSA-0151D-05

INPUT/ 输入: 100-240V~ 0.4A 47-63Hz 40VA

OUTPUT/ 输出: +5V---2.4A ⊖ ⊕ ⊖ ⊕

제모	품명	명: 디비엔터프리스
정정	모델	명: DSA-0151D-05
격정	입력	력: AC100-240V, 47-63Hz, 0.4A
제조	출력	력: DC 5V, 2.4A
제조	조사	자: Dee Van Enterprise Co., Ltd.
제조	국	국: 중국 (Shen Zhen)

LISTED
81GJ
E135856

中国制造

LEVEL 3
L.P.S. I.T.E

A004395

KTL-HU10037-2004A
TEL XXXXXXXXX

MADE IN CHINA

株式会社

[F]

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A19 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A20 OF A21

ISSUED DATE : Nov. 15, 2004

REPORT NO. : FG453118-01

453118-01

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

PAGE NUMBER : A21 OF A21

ISSUED DATE : Nov. 15, 2004