

SAR & HAC Instruments for Wireless • Consulting • Research • Standards • Compliance • Training

Timothy R Johnson
Examining Engineer
American Telecommunications Certification Body
6731 Whittier Avenue
Suite C110
McLean, VA 22101 USA
tjohnson@American TCB.com

Re: Palmone Inc.

FCC ID: O8FMADECA

CRN: 25308

Dear Timothy

This is in response to your request for additional information for FCC ID: O8FMADECA. Following are the responses.

A) Regarding your answer to question 4 please update the report accordingly. Please include both measured field and calculated peak field along with an example of the calculation. Please explain the use of sqrt2 in the example provided on page 2 of your answer.

Response:

- The Report has been updated to reflect answers to question 4 with respect to the Modulation Factors on pages 22-45 actually used for calculation of the peak values from the measured field strength. The Tables on pages 14 and 16 have been replaced with the appropriate tables as represented in the last responses to your Request for additional information (CRN24414).
- 2. The Peak field value from the measured field strength is calculated using the formula:

 Peak = Raw * PMF

where Peak is the calculated peak field as the output of the software, Raw is the measured field value and PMF is the Probe Modulation Factor.

This calculation is performed by the software algorithm of the automated measurement system and the Peak is directly exported to the report as Peak value. As an example:

If measured Raw field = 78.008 V/m and PMF = 0.992, then calculated peak field is: Peak = $78.008 \times 0.992 = 77.384$ V/m

3. The sqrt of 2 shows on page 2 of previous response is actually only used for the calculation of peak field values while doing system validation and to match the target peak values. This peak field values were shown in the two tables on page 2 of previous response. The process is shown in more details in the tables below since it was not clearly stated in the previous response.

Table1: E-field

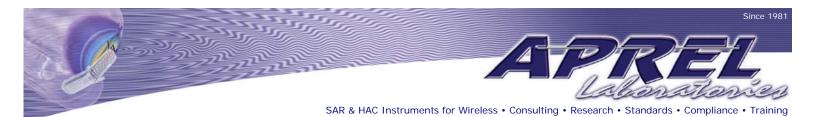
SAR & HAC Instruments for Wireless • Consulting • Research • Standards • Compliance • Training

Signal Type	Freq	Average Input Power	Measured E-field	Measured Peak E- field	Target E-field Value	Deviation	PMF
	(MHz)	(mW)	(V/m)	(V/m)	(V/m)	(%)	
CW	835	100	172.534	244	265	-7.9	
CW	1880	100	138.593	196	211	-7.1	
80% AM	835	31	104.652	148			
80% AM	1880	31	84.146	119			
CDMA	835	31	173.948	246			0.992
CDMA	1880	31	137.178	194			1.010

As an example: Peak field = Measured field * sqrt2 = 172.534 * sqrt2 = 244 V/m

Table 2: H-field

Signal Type	Freq	Average Input Power	Measured H-field	Measured Peak H- field	Target H-field Value	Deviation	PMF
	(MHz)	(mW)	(A/m)	(A/m)	(A/m)	(%)	
CW	835	100	0.500	0.707	0.673	5.1	
CW	1880	100	0.486	0.687	0.645	6.5	
80% AM	835	31	0.304	0.430			
80% AM	1880	31	0.296	0.418			
CDMA	835	31	0.475	0.672			1.052
CDMA	1880	31	0.454	0.642			1.070


As an example: Peak field = Measured field * sqrt2 = 0.500 * sqrt2 = 0.707 A/m

B) Regarding your answer to question 7 the 0 span power plots suggest power was approximately -5dBm rather than 20 dBm. Please explain.

Response: The suggested power from the 0 span power plots was not -5 dBm, but around 28 dBm which was measured while the WD is transmitting at full power. Here's the explanation:

From the 0 span power plot, we can see the reference line is 33.4dBm, and the grid step is 1dB. So the power reading is approximately 28dBm.

The DUT output signal is then inject into the reference dipole through proper attenuation to arrive 20dBm input power. As an example, if the WD output power is measured to be 27.7 dBm and the cable loss is found to be 0.7 dB, then an 7dB attenuator was used in series with the cable for the measurement. The cable was calibrated using a VNA and the cable loss was then found for different frequencies.

C) Please clarify if the contour plots show average or peak field strengths.

Response: They are peaks.

FYI

Please note that in future filings, I will fully apply FCC 3 G policy on future applications and provide full scan information for PMF measurements.