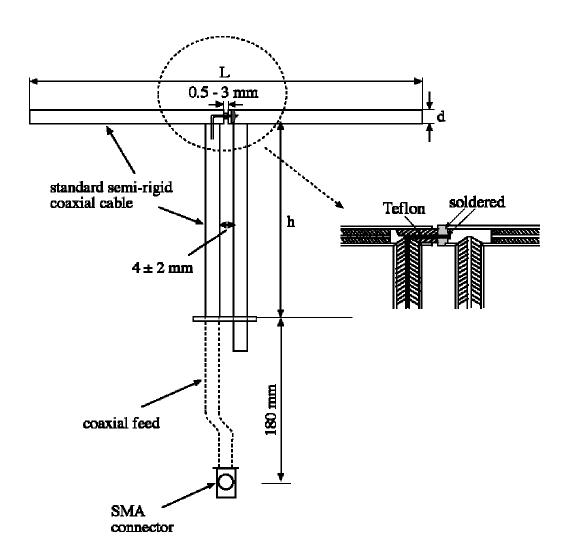


Type:

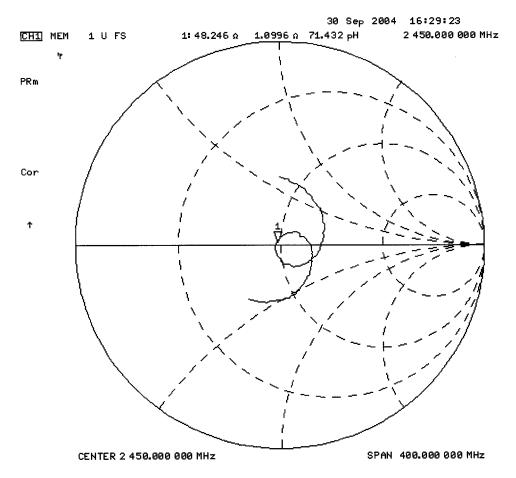
2450 MHz SYSTEM VALIDATION DIPOLE

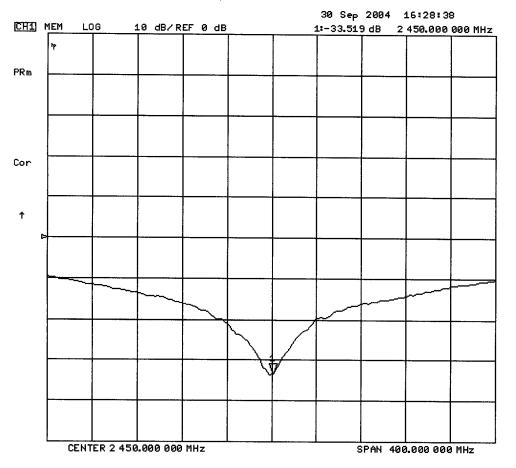
2450 MHz Validation Dipole

	•	
Serial Number:	150	
Place of Calibration:	Celltech Labs Inc.	
Date of Calibration:	September 30, 2004	
Celltech Labs Inc. hereby certifies that this o	device has been calibrated on the date indicated at	bove.
Calibrated by:	Spenser Watson	
Approved by:	Mussell W. Rupe	


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 2450 MHz $Re\{Z\} = 48.246\Omega$


 $Im{Z} = 1.0996\Omega$

Return Loss at 2450 MHz -33.519 dB

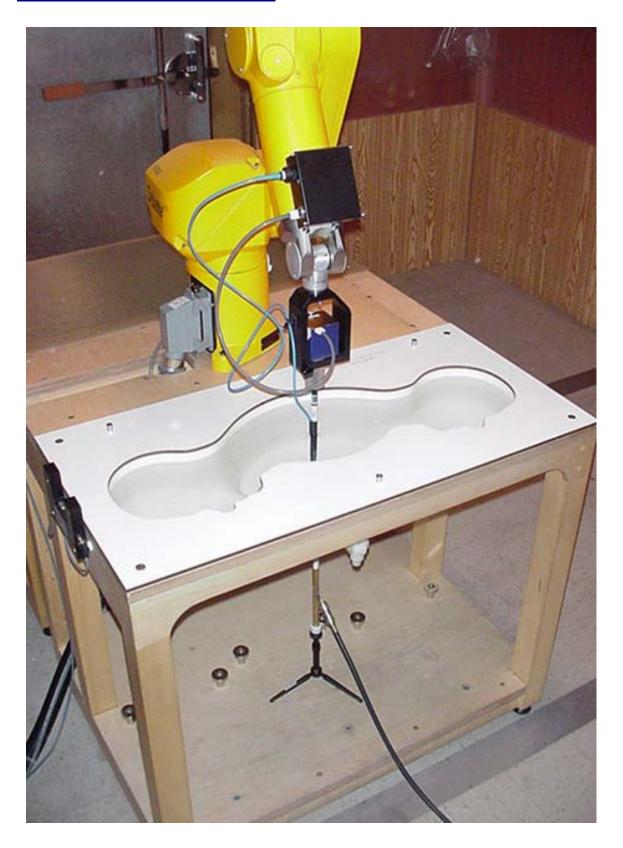
2004 Celltech Labs Inc. 2 of 10

2. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

3. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.


Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ **Filling Volume:** Approx. 25 liters

Dimensions: 50 cm (W) x 100 cm (L)

2004 Celltech Labs Inc. 3 of 10

4. 2450 MHz System Validation Setup

2004 Celltech Labs Inc. 4 of 10

5. 2450 MHz Dipole Setup

2004 Celltech Labs Inc. 5 of 10

6. Measurement Conditions

The phantom was filled with brain simulating tissue having the following electrical parameters at 2450 MHz:

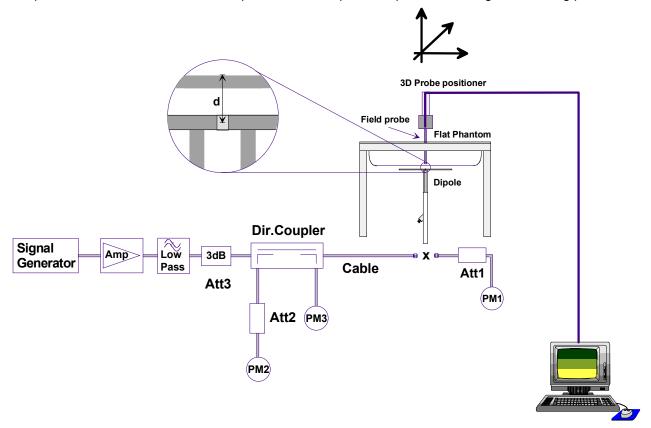
Relative Permittivity: 38.5

Conductivity: 1.86 mho/m Fluid Temperature: 23.7 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 25.3 °C Humidity: 32 % Barometric Pressure: 102.7 kPa

The 2450 MHz simulated brain tissue mixture consists of the following ingredients:


Ingredient	Percentage by weight
Water	52.00%
Glycol Monobutyl	48.00%
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 39.2 (+/-5%) σ = 1.80 S/m (+/-5%)

2004 Celltech Labs Inc. 6 of 10

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

2004 Celltech Labs Inc. 7 of 10

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	14.2	56.8	6.58	26.32	30.4
Test 2	14.1	56.4	6.54	26.16	30.2
Test 3	14.1	56.4	6.54	26.16	30.4
Test 4	14.1	56.4	6.51	26.04	30.6
Test 5	14.0	56.0	6.51	26.04	29.8
Test 6	14.0	56.0	6.49	25.96	29.6
Test 7	14.1	56.4	6.54	26.16	30.0
Test 8	14.1	56.4	6.53	26.12	30.1
Test 9	14.0	56.0	6.50	26.00	29.8
Test10	14.0	56.0	6.47	25.88	30.0
Average Value	14.07	56.28	6.52	26.08	30.09

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1cm³ (1g) of tissue: 52.4 mW/g (+/- 10%)

Averaged over 1cm (1g) of tissue: 56.28 mW/g (+ 7.4% deviation)

IEEE Target over 10cm³ (10g) of tissue: 24.0 mW/g (+/- 10%)

Averaged over 10cm (10g) of tissue: 26.08 mW/g (+ 8.7% deviation)

2004 Celltech Labs Inc. 8 of 10

2540 MHz System Validation - September 30, 2004

DUT: Dipole 2450 MHz; Model: D2450V2; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 25.3 °C; Fluid Temp: 23.7 °C; Barometric Pressure: 102.7 kPa; Humidity: 32%

Communication System: CW

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 (σ = 1.86 mho/m; ε_r = 38.5; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(4.44, 4.44, 4.44); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.58 mW/g

2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.5 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.1 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.51 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.51 mW/g

2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.4 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.49 mW/g

2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.4 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.4 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.53 mW/g

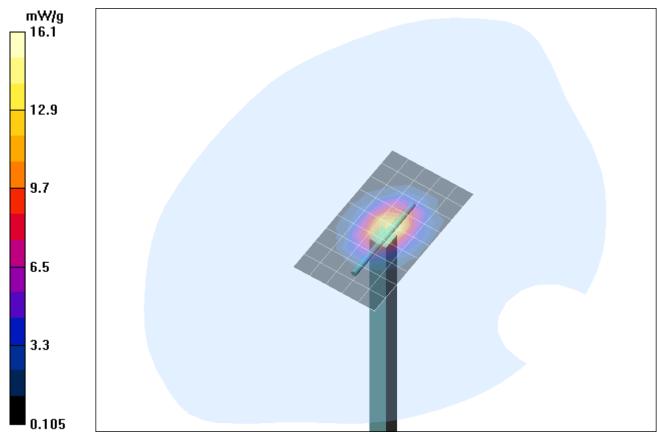
2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.3 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.5 mW/g

2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 96.4 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 30 W/kg


SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.47 mW/g

2004 Celltech Labs Inc. 9 of 10

1 g average of 10 measurements: 14.07 mW/g 10 g average of 10 measurements: 6.521 mW/g

2004 Celltech Labs Inc. 10 of 10

2450 MHz System Validation Measured Fluid Dielectric Parameters (Brain) September 30, 2004

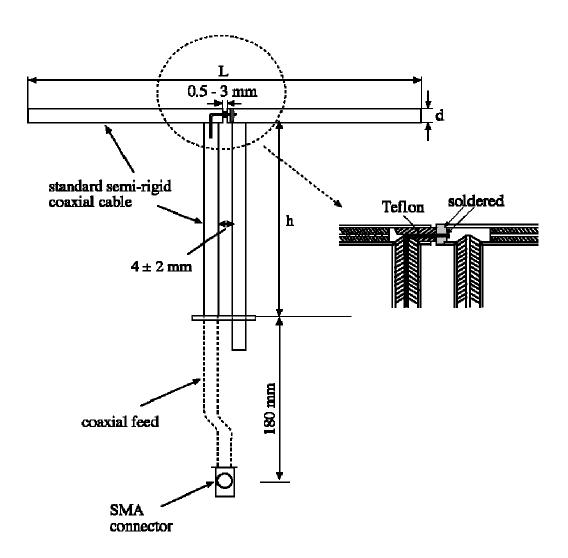
Frequency	e'	e"
2.350000000 GHz	38.9044	13.2920
2.360000000 GHz	38.8598	13.3262
2.370000000 GHz	38.8346	13.3589
2.380000000 GHz	38.7702	13.3903
2.390000000 GHz	38.7465	13.4360
2.400000000 GHz	38.6987	13.4546
2.410000000 GHz	38.6553	13.4975
2.420000000 GHz	38.6023	13.5376
2.430000000 GHz	38.5771	13.5800
2.440000000 GHz	38.5403	13.6072
2.450000000 GHz	38.5010	13.6535
2.460000000 GHz	38.4824	13.6770
2.470000000 GHz	38.4488	13.7080
2.480000000 GHz	38.4153	13.7445
2.490000000 GHz	38.3700	13.7692
2.500000000 GHz	38.3378	13.7887
2.510000000 GHz	38.2798	13.8028
2.520000000 GHz	38.2288	13.8500
2.530000000 GHz	38.1683	13.8945
2.540000000 GHz	38.1113	13.9420
2.550000000 GHz	38.0791	13.9851

Type:

2450 MHz SYSTEM VALIDATION DIPOLE

2450 MHz Validation Dipole

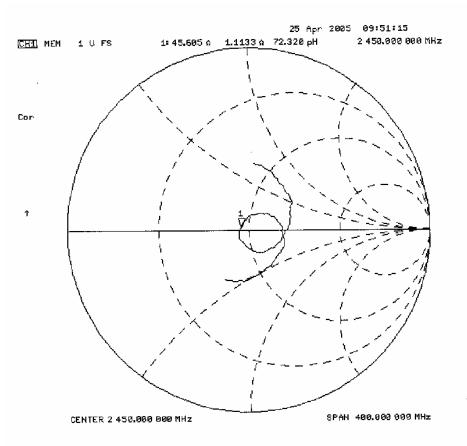
Serial Number:	130	
Place of Calibration:	Celltech Labs Inc.	
Date of Calibration:	April 22, 2005	
Celltech Labs Inc. hereby certifies that this	device has been calibrated on the date inc	dicated above.
Calibrated by:	Sum Shind	
Approved by:	Spencer Watson	

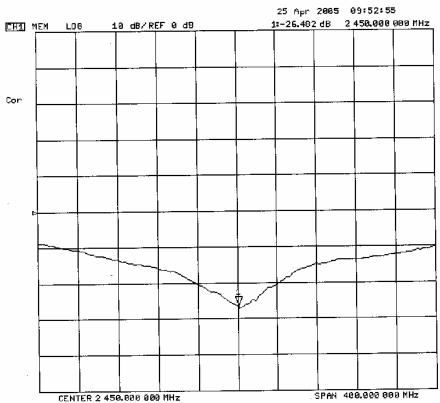

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz $Re{Z} = 45.605\Omega$

 $Im{Z} = 1.1133\Omega$


Return Loss at 2450 MHz -26.482 dB



2005 Celltech Labs Inc. 2 of 12

2. Validation Dipole VSWR Data

2005 Celltech Labs Inc. 3 of 12

3. Validation Dipole Dimensions

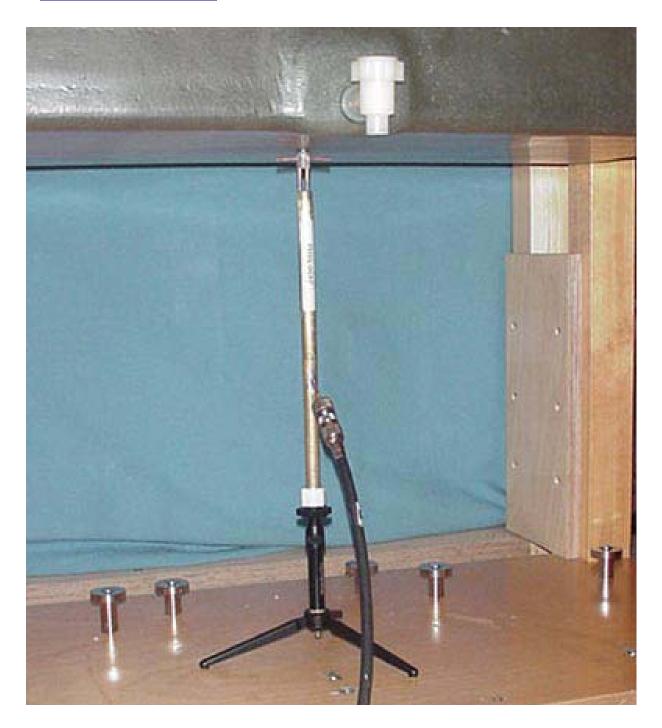
Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 55 liters Dimensions: 44 cm (W) x 94 cm (L)

2005 Celltech Labs Inc. 4 of 12


5. 2450 MHz System Validation Setup

2005 Celltech Labs Inc. 5 of 12

6. 2450 MHz Dipole Setup

2005 Celltech Labs Inc. 6 of 12

7. Measurement Conditions

The phantom was filled with 2450 MHz Body simulating tissue:

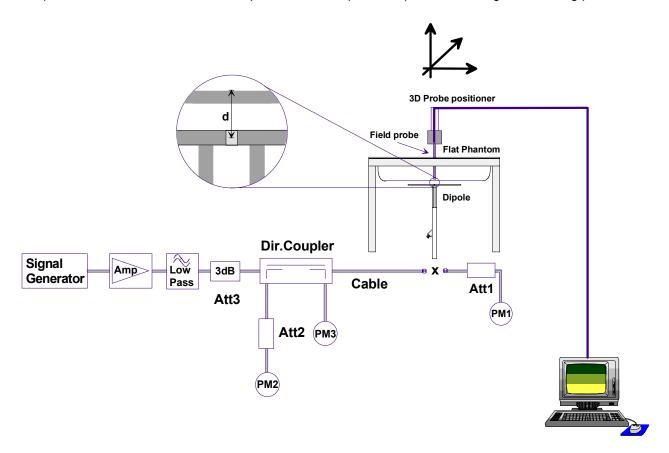
Relative Permittivity: 50.2

Conductivity: 1.97 mho/m Fluid Temperature: 23.9 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 25.7 °C Humidity: 30 % Barometric Pressure: 102.6 kPa

The 2450 MHz simulated Body tissue mixture consists of the following ingredients:


Ingredient	Percentage by weight
Water	69.98%
Glycol Monobutyl	30.00%
Salt	0.02%
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 52.7 (+/-5%) σ = 1.95 S/m (+/-5%)

2005 Celltech Labs Inc. 7 of 12

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

2005 Celltech Labs Inc. 8 of 12

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	12.6	50.4	5.86	23.44	27.7
Test 2	12.6	50.4	5.86	23.44	27.4
Test 3	12.6	50.4	5.87	23.48	27.4
Test 4	12.6	50.4	5.86	23.44	27.3
Test 5	12.6	50.4	5.86	23.44	27.4
Test 6	12.6	50.4	5.87	23.48	27.8
Test 7	12.7	50.8	5.88	23.52	27.7
Test 8	12.7	50.8	5.88	23.52	27.8
Test 9	12.6	50.4	5.87	23.48	27.6
Test10	12.7	50.8	5.88	23.52	27.7
Average Value	12.63	50.52	5.869	23.48	27.58

The results have been normalized to 1W (forward power) into the dipole.

@ 1 W averag	et SAR att Input ged over n (W/kg)	Measured SAR @ 1 Watt Input averaged over 1 gram (W/kg)	Deviation from Target (%)	Target SAR @ 1 Watt Input averaged over 10 grams (W/kg)		Measured SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Deviation from Target (%)
51.2	+/- 10%	50.52	- 1.3	23.7	+/- 10%	23.48	- 0.93

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

2005 Celltech Labs Inc. 9 of 12

2450 MHz System Validation - April 22, 2005

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 150; Calibrated: 04/22/2005

Ambient Temp: 25.7 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.6 kPa; Humidity: 30%

Communication System: CW

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ε_r = 50.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 06/07/2004
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.7 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.1 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.0 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g

2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.9 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.5 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.0 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g

2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.7 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g

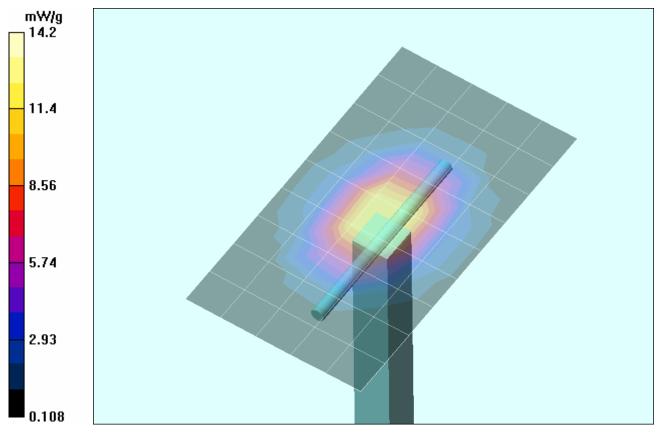
2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.3 V/m; Power Drift = -0.00 dB

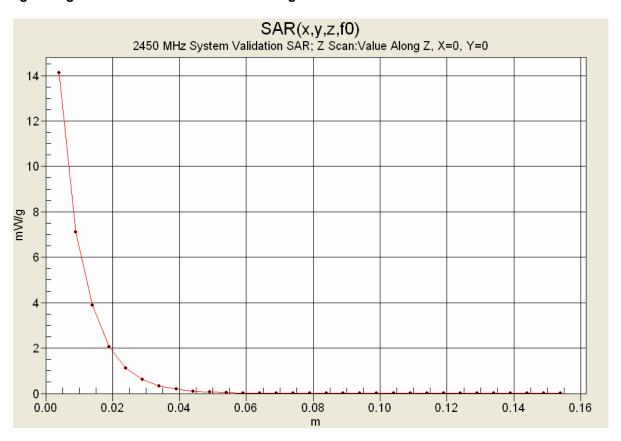
Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g

2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 89.6 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 27.7 W/kg


SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g

2005 Celltech Labs Inc. 10 of 12

1 g average of 10 measurements: 12.63 mW/g 10 g average of 10 measurements: 5.869 mW/g

2005 Celltech Labs Inc. 11 of 12

10. Measured Fluid Dielectric Parameters

System Validation - 2450 MHz Dipole

Measured Fluid Dielectric Parameters (Muscle)

April 22, 2005

Frequency	e'	e"	
2.350000000 GHz	50.4884	14.1016	
2.360000000 GHz	50.4542	14.1475	
2.370000000 GHz	50.4295	14.1756	
2.380000000 GHz	50.4094	14.2063	
2.390000000 GHz	50.3750	14.2541	
2.400000000 GHz	50.3395	14.2965	
2.410000000 GHz	50.2961	14.3310	
2.420000000 GHz	50.2408	14.3481	
2.430000000 GHz	50.2047	14.3861	
2.440000000 GHz	50.1822	14.4193	
2.450000000 GHz	50.1500	14.4611	
2.460000000 GHz	50.1035	14.5137	
2.470000000 GHz	50.0825	14.5504	
2.480000000 GHz	50.0515	14.6073	
2.490000000 GHz	50.0191	14.6410	
2.500000000 GHz	49.9867	14.6647	
2.510000000 GHz	49.9442	14.7231	
2.520000000 GHz	49.9042	14.7502	
2.530000000 GHz	49.8769	14.7804	
2.540000000 GHz	49.8259	14.8081	
2.550000000 GHz	49.7900	14.8467	

2005 Celltech Labs Inc. 12 of 12