Exposure of humans to RF fields

As per Section 1.1310 mobile transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels in accordance with OST/OET Bulletin Number 65.

Calculations have been made using the General Public/Uncontrolled Exposure limits.

Minimum safe distances have been calculated below.

Power density, $mW/m^2 = E^2/3770$

- General Population / Uncontrolled exposure limit will be 0.30 mW/m^2 (f/1500 = 450 MHz/1500)

As this radio can operate over the range of 450 - 470 MHz calculations have been made at 450 MHz which will give the worst case result for operations in the USA.

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

E,
$$V/m = (\sqrt{(30 * P * G)}) / d$$

Uncontrolled

$$E = 0.30 \text{ mW/m}^2 = E^2/3770$$

$$E = \sqrt{0.30*3770}$$

$$E = 33.6 \text{ V/m}$$

The rated maximum transmitter power = 5.0 watts.

The transmitter is typically operated using a quarter wave whip antenna with a gain of 2.14 dBi (1.64).

A duty cycle of 100% has been applied as the transmitter could be used as a base station and it could possibly be operated for long periods of time.

Technologi

Typically it would only be operated for relatively short periods of time

Uncontrolled

$$d = \sqrt{(30 * P * G*DC) / E}$$

$$d = \sqrt{(30 * 5 * 1.64 * 1.0) / 33.6}$$

$$d = 0.466 \text{ metres or } 46.6 \text{ cm}$$

This number rounds up to 47 cm.

Result: Complies if the safe distances defined for this environment is applied.