

Exposure of humans to RF fields

As per Section 1.1310 mobile transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels in accordance with OST/OET Bulletin Number 65.

Calculations have been made using the General Public/Uncontrolled Exposure limits.

Minimum safe distances have been calculated below.

$$\text{Power density, mW/m}^2 = E^2/3770$$

- Occupational / Controlled Exposure limit will be 1.53 mW/m^2
($f/300 = 459 \text{ MHz}/300$)

- General Population / Uncontrolled exposure limit will be 0.306 mW/m^2
($f/1500 = 459 \text{ MHz}/1500$)

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

$$E, \text{ V/m} = (\sqrt{(30 * P * G)}) / d$$

Controlled

$$E = 1.53 \text{ W/m}^2 = E^2/3770$$

$$E = \sqrt{1.53 * 3770}$$

$$E = 75.9 \text{ V/m}$$

Uncontrolled

$$E = 0.306 \text{ W/m}^2 = E^2/3770$$

$$E = \sqrt{0.306 * 3770}$$

$$E = 34.0 \text{ V/m}$$

The rated maximum transmitter power = 0.063 watts (+18 dBm).

Transmitter is operated using a quarter wave whip antenna with a gain of 2.14 dBi (1.64).

The client has declared a duty cycle of 100% however in practice the duty cycle would be less.

Controlled

$$d = \sqrt{(30 * P * G * DC) / E}$$

$$d = \sqrt{(30 * 0.063 * 1.64 * 1.0) / 75.9}$$

$$d = 0.023 \text{ metres or } 2.3 \text{ cm}$$

Uncontrolled

$$d = \sqrt{(30 * 0.063 * 1.64 * 1.0) / 34.0}$$

$$d = 0.052 \text{ metres or } 5.2 \text{ cm}$$

Result: Complies if a safe distance of a least 20 cm is defined for each environment.