

# TEST REPORT

Applicant: MobileDemand, LC

1501 Boyson Square Drive, Suite 101, Hiawatha, Address:

Iowa, 52233 United States

**Equipment Type: Tablet** 

FLEX 12B **Model Name:** 

**Brand Name:** MobileDemand

FCC ID: O86-FLEX12B

FCC 47 CFR Part 2.1093 **Test Standard:** 

(refer to section 3.1)

Maximum SAR: Body 6GHz(1 g): 0.46 W/kg

**Sample Arrival Date:** Dec. 11, 2023

Test Date: Dec. 11, 2023 - Dec. 20, 2023

Date of Issue: Dec. 26, 2023

**ISSUED BY:** 

Shenzhen BALUN Technology Co., Ltd.

Tested by: Xiong Lining Checked by: Xu Rui Approved by: Tolan Tu

(Testing Director)

Liong Li Wing

Xu Rui

Tolon In



## **Revision History**

Version

Issue Date

**Revisions Content** 

Rev. 01

Dec. 26, 2023

Initial Issue

## **TABLE OF CONTENTS**

| 1 | GENER  | AL INFORMATION                                     | 4    |
|---|--------|----------------------------------------------------|------|
|   | 1.1    | Test Laboratory                                    | 4    |
|   | 1.2    | Test Location                                      | 4    |
|   | 1.3    | Test Environment Condition                         | 4    |
| 2 | PRODU  | ICT INFORMATION                                    | 5    |
|   | 2.1    | Applicant Information                              | 5    |
|   | 2.2    | Manufacturer Information                           | 5    |
|   | 2.3    | General Description for Equipment under Test (EUT) | 5    |
|   | 2.4    | Ancillary Equipment                                | 5    |
|   | 2.5    | Technical Information                              | 6    |
| 3 | SUMMA  | ARY OF TEST RESULT                                 | 7    |
|   | 3.1    | Test Standards                                     | 7    |
|   | 3.2    | Device Category and SAR Limit                      | 8    |
|   | 3.3    | Test Result Summary                                | 9    |
|   | 3.4    | Test Uncertainty                                   | 10   |
| 4 | MEASU  | REMENT SYSTEM                                      | 11   |
|   | 4.1    | Specific Absorption Rate (SAR) Definition          | 11   |
|   | 4.2    | DASY SAR System                                    | 12   |
| 5 | SYSTE  | M VERIFICATION                                     | 19   |
|   | 5.1    | Purpose of System Check                            | 19   |
|   | 5.2    | System Check Setup                                 | 19   |
| 6 | TEST P | OSITION CONFIGURATIONS                             | 20   |
|   | 6.1    | Laptop Exposure Condition                          | 20   |
|   | 6.2    | Tablet Exposure Condition                          | 21   |
| 7 | MEASU  | REMENT PROCEDURE                                   | . 22 |



|    | 7.1    | Measurement Process Diagram                   | . 22 |
|----|--------|-----------------------------------------------|------|
|    | 7.2    | SAR Scan General Requirement                  | . 23 |
|    | 7.3    | Measurement Procedure                         | . 24 |
|    | 7.4    | Area & Zoom Scan Procedure                    | . 24 |
|    | 7.5    | Interim Procedures for WLAN 6E                | . 24 |
| 8  | CONDU  | JCTED RF OUPUT POWER                          | . 25 |
|    | 8.1    | WIFI                                          | . 25 |
| 9  | TEST E | XCLUSION CONSIDERATION                        | . 31 |
|    | 9.1    | Tablet Mode antenna location sketch           | . 31 |
| 10 | TEST R | ESULT                                         | . 32 |
|    | 10.1   | WIFI 6GHz                                     | . 32 |
| 11 | SAR Me | easurement Variability                        | . 34 |
| 12 | SIMUL  | TANEOUS TRANSMISSION                          | . 35 |
|    | 12.1   | Simultaneous Transmission Mode Considerations | . 35 |
|    | 12.2   | Sum SAR of Simultaneous Transmission          | . 36 |
| 13 | TEST E | QUIPMENTS LIST                                | . 37 |
| 1Α | NNEX A | SIMULATING LIQUID VERIFICATION RESULT         | . 38 |
| ΙA | NNEX B | SYSTEM CHECK RESULT                           | . 39 |
| 1Α | NNEX C | TEST DATA                                     | . 42 |
| 1Α | NNEX D | EUT EXTERNAL PHOTOS                           | . 46 |
| 1Α | NNEX E | SAR TEST SETUP PHOTOS                         | . 46 |
| 1Α | NNEX F | CALIBRATION REPORT                            | . 46 |
| ΔΝ | INEX G | TUNE-UP PROCEDURE                             | 46   |



## 1 GENERAL INFORMATION

## 1.1 Test Laboratory

| Name         | Shenzhen BALUN Technology Co., Ltd.                              |
|--------------|------------------------------------------------------------------|
| Addross      | Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, |
| Address      | Nanshan District, Shenzhen, Guangdong Province, P. R. China      |
| Phone Number | +86 755 6685 0100                                                |

## 1.2 Test Location

| Name          | Shenzhen BALUN Technology Co., Ltd.                                  |  |  |
|---------------|----------------------------------------------------------------------|--|--|
| Name          | Sherizhen Balon Technology Co., Ltd.                                 |  |  |
|               | ☑ Block B, 1/F, Baisha Science and Technology Park, Shahe Xi         |  |  |
|               | Road, Nanshan District, Shenzhen, Guangdong Province, P. R.          |  |  |
| Location      | China                                                                |  |  |
|               | ☐ 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, |  |  |
|               | No. 1008, Songbai Road, Yangguang Community, Xili Sub-district,      |  |  |
|               | Nanshan District, Shenzhen, Guangdong Province, P. R. China          |  |  |
| Accreditation | The laboratory is a testing organization accredited by FCC as a      |  |  |
| Certificate   | accredited testing laboratory. The designation number is CN1196.     |  |  |

## 1.3 Test Environment Condition

| Ambient Temperature | 18°C to 25°C |
|---------------------|--------------|
| Ambient Relative    | 200/ to 700/ |
| Humidity            | 30% to 70%   |



## **2 PRODUCT INFORMATION**

## 2.1 Applicant Information

| Applicant | MobileDemand, LC                                                  |
|-----------|-------------------------------------------------------------------|
| Address   | 1501 Boyson Square Drive, Suite 101, Hiawatha, Iowa, 52233 United |
| Address   | States                                                            |

### 2.2 Manufacturer Information

|  | Manufacturer | MobileDemand, LC                                                  |  |  |
|--|--------------|-------------------------------------------------------------------|--|--|
|  | Address      | 1501 Boyson Square Drive, Suite 101, Hiawatha, Iowa, 52233 United |  |  |
|  | Address      | States                                                            |  |  |

## 2.3 General Description for Equipment under Test (EUT)

| EUT Name              | Tablet   |
|-----------------------|----------|
| Model Name Under Test | FLEX 12B |
| Series Model Name     | N/A      |
| Description of Model  | N/A      |
| Name Differentiation  | N/A      |
| Hardware Version      | N/A      |
| Software Version      | N/A      |
| Dimensions (Approx.)  | N/A      |
| Weight (Approx.)      | N/A      |

## 2.4 Ancillary Equipment

Note: Not application.



## 2.5 Technical Information

| Network and Wireless | CC MIEL 002 44 - 002 44 - 001 44 - 001 14 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 15 - 001 |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| connectivity         | 6G WIFI 802.11a, 802.11ax(HE20/40/80/160), U-NII-5/6/7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

The requirement for the following technical information of the EUT was tested in this report:

| Operating Mode    | 6G WLAN                                  |                     |                       |  |
|-------------------|------------------------------------------|---------------------|-----------------------|--|
|                   | 000 44-                                  | 5925 MF             | 5925 MHz ~ 6425 MHz   |  |
| Eroguanay Panga   | 802.11a                                  | 6425 MF             | 6425 MHz ~ 6525 MHz   |  |
| Frequency Range   | /ax(HE20/HE40/HE<br>80/HE160)            | 6525 MHz ~ 6875 MHz |                       |  |
|                   |                                          | 6875 MHz ~ 7125 MHz |                       |  |
| Antenna Type      | FPC Antenna                              |                     |                       |  |
| Hotspot Function  | N/A                                      |                     |                       |  |
| Exposure Category | General Population/Uncontrolled exposure |                     |                       |  |
| Product Type      | Portable Device                          | Portable Device     |                       |  |
| EUT Type          | ☑ Production unit                        |                     | ☐ Identical prototype |  |



## 3 SUMMARY OF TEST RESULT

## 3.1 Test Standards

| No. | Identity                     | Document Title                                                                                                                                                                                                                                                                  |  |
|-----|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | 47 CFR Part 2.1093           | Radiofrequency radiation exposure evaluation: portable devices                                                                                                                                                                                                                  |  |
| 2   | ANSI C95.1-1992              | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz                                                                                                                                                      |  |
| 3   | KDB 447498 D04<br>v01        | 447498 D04 Interim General RF Exposure Guidance v01                                                                                                                                                                                                                             |  |
| 4   | FCC KDB 865664<br>D02 v01r02 | RF Exposure Reporting                                                                                                                                                                                                                                                           |  |
| 5   | KDB 248227 D01<br>v02r02     | SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters                                                                                                                                                                                                                               |  |
| 6   | KDB 616217<br>D04v01r02      | SAR for laptop and tablets                                                                                                                                                                                                                                                      |  |
| 7   | IEC/IEEE 62209-<br>1528:2020 | Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) |  |



### 3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

|                                        | SAR Value (W/Kg)      |                    |  |
|----------------------------------------|-----------------------|--------------------|--|
| Body Position                          | General Population/   | Occupational/      |  |
|                                        | Uncontrolled Exposure | ControlledExposure |  |
| Whole-Body SAR                         | 0.08                  | 0.4                |  |
| (averaged over the entire body)        | 0.08                  | 0.4                |  |
| Partial-Body SAR                       | 1.60                  | 8.0                |  |
| (averaged over any 1 gram of tissue)   | 1.00                  | 8.0                |  |
| SAR for hands, wrists, feet and        |                       |                    |  |
| ankles                                 | 4.0                   | 20.0               |  |
| (averaged over any 10 grams of tissue) |                       |                    |  |

#### NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Report No.: BL-SZ23C0597-701



## 3.3 Test Result Summary

## 3.3.1 Highest SAR (1 g Value)

|                |         |         | Maximum    | Maximum    |
|----------------|---------|---------|------------|------------|
| Equipment      | Band    | Antenna | Scaled SAR | Report SAR |
| Class          | Dand    | Antenna | (W/kg)     | (W/kg)     |
|                |         |         | Body (0mm) | Body (0mm) |
| U-NII-5/6/7/8  | 6G WLAN | 1       | 0.37       | 0.46       |
| U-INII-5/0/1/6 | 6G WLAN | 2       | 0.46       | 0.46       |
| Limit (W/kg)   |         |         | 1.60       |            |
| Verdict        |         |         | Pass       |            |

## 3.3.2 Highest Simultaneous Transmission SAR Values (1 g Value)

| Equipment Class | Maximum<br>Scaled SAR |
|-----------------|-----------------------|
|                 | (W/kg)<br>Body (0mm)  |
| NII             | 0.83                  |
| Limit (W/kg)    | 1.6                   |
| Verdict         | Pass                  |

Note: The simultaneous transmission SAR detail please refer to section 12.

Report No.: BL-SZ23C0597-701



## 3.4 Test Uncertainty

According to KDB 865664 D01, when the highest measured 1 g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval.

The maximum 1 g SAR for the EUT in this report is 0.46 W/kg, which is lower than 1.5 W/kg, so the extensive SAR measurement uncertainty analysis is not required in this report.



### 4 MEASUREMENT SYSTEM

### 4.1 Specific Absorption Rate (SAR) Definition

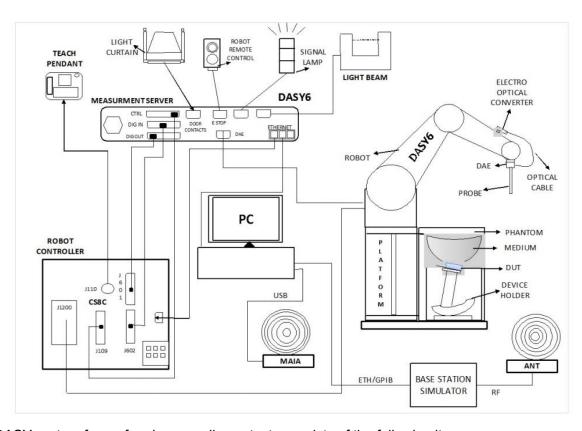
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ( $\rho$ ). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$


Where:  $\sigma$  is the conductivity of the tissue,

pis the mass density of the tissue and E is the RMS electrical field strength.



## 4.2 DASY SAR System

### 4.2.1 DASY SAR System Diagram



The DASY system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is
  battery powered with standard or rechargeable batteries. The signal is optically transmitted to the
  EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server.
- 6. The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
- 7. DASY software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.



#### 4.2.2 Robot

The Dasy SAR system uses the high precision robots. Symmetrical design with triangular core Built-in optical fiber for surface detection system For the 6-axis controller system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application:



- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Low maintenance costs
  (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements
   (brush less synchron motors; no stepper motors)
- Low ELF interference (motor control \_elds shielded via the closed metallic construction shields)



#### 4.2.3 E-Field Probe

The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4- SN: 7607 with following specifications is used.

Construction Symmetrical design with triangular core Built-in optical fiber for surface detection system

Built-in shielding against static charges PEEK enclosure material (resistant to organic

solvents, e.g., glycolether)

Calibration ISO/IEC 17025 calibration service available

Frequency 4 MHz to 10 GHz; Linearity: ± 0.2 dB

Directivity ± 0.2 dB in HSL (rotation around probe axis); ± 0.4 dB in HSL (rotation normal to probe

axis)

Dynamic range  $5 \mu W/g$  to > 100 mW/g; Linearity:  $\pm 0.2 dB$ 

Dimensions Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from

probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic

scanning in arbitrary phantoms (EX3DV4)



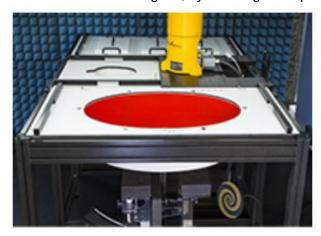
#### **E-Field Probe Calibration Process**

Probe calibration is realized, in compliance with IEC/IEEE 62209-1528 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC/IEEE 62209-1528 annexe technique using reference guide at the five frequencies.



### 4.2.4 Data Acquisition Electronics

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.




- Input Impedance: 200MOhm
- The Inputs: Symmetrical and Floating
- Commom Mode Rejection: Above 80dB



### 4.2.5 Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of below 10 GHz. ELI V8.0 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI V8.0 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.



·Flat phantom

### **Photo of Phantom SN2159**

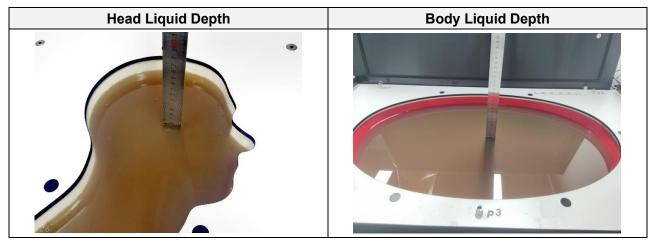


| Serial Number    | Shell Thickness (mm) | Major ellipse axis (mm) | Minor axis(mm) |
|------------------|----------------------|-------------------------|----------------|
| SN 2159 ELI V8.0 | $2.0 \pm 0.2$        | 600                     | 400            |



#### 4.2.6 Device Holder

The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA"s only. If necessary an additional support of polystyrene material is used. Larger DUT"s (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.




The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°.



### 4.2.7 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

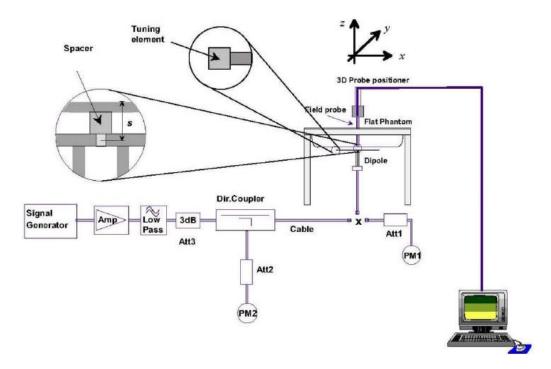


The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

The following table gives the recipes for tissue simulating liquid.

| TSL           | Manufacturer / Model      | Freq Range<br>(MHz) | Main Ingredients                                                                                          |
|---------------|---------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|
| Head WideBand | SPEAG HBBL600-<br>10000V6 | 600-10000           | Ethanediol, Sodium petroleum sulfonate, Hexylene Glycol / 2-Methyl-pentane-2.4- diol, Alkoxylated alcohol |



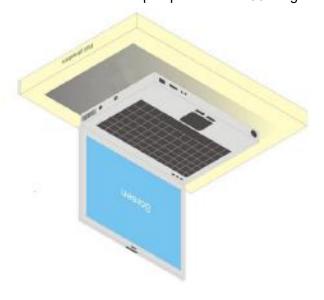

### 5 SYSTEM VERIFICATION

### 5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

### 5.2 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:






## **6 TEST POSITION CONFIGURATIONS**

## **6.1 Laptop Exposure Condition**

This DUT should consider one position which is bottom of laptop touching with phantom 0 mm air gap and the screen portion of the device shall be an open position at a 90° angle.





## **6.2 Tablet Exposure Condition**

This DUT was tested in four different positions. They are back side, left edge, right edge and top edge in these positions, the surface of DUT is touching with phantom 0mm.

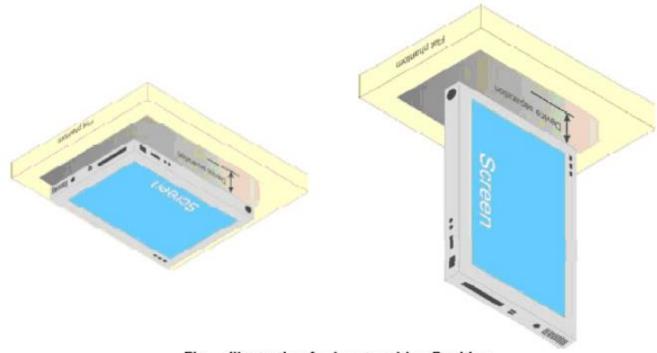
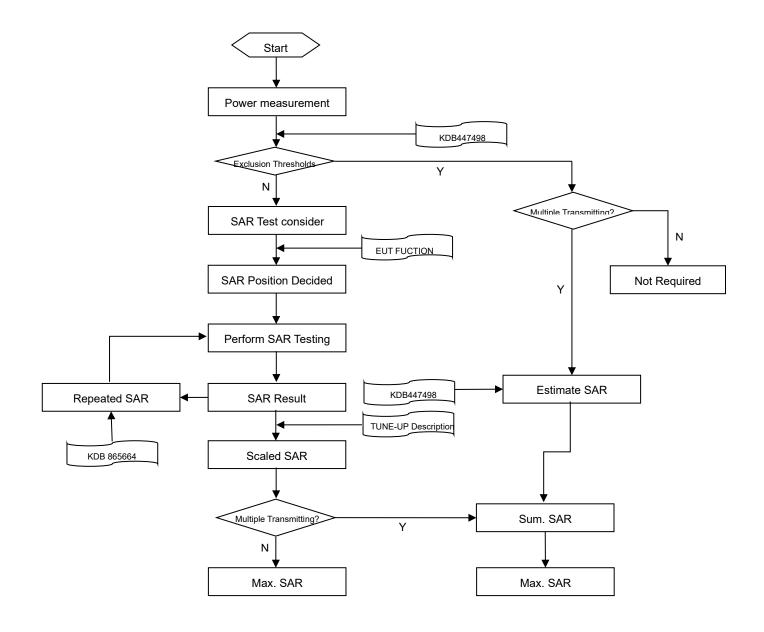




Fig Illustration for Lap-touching Position



## 7 MEASUREMENT PROCEDURE

## 7.1 Measurement Process Diagram





## 7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Boththe probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

|                           |                           |                        | ≤3GHz                          | >3GHz                           |  |
|---------------------------|---------------------------|------------------------|--------------------------------|---------------------------------|--|
| Maximum distance from o   |                           | •                      | 5±1 mm                         | ½·δ·ln(2)±0.5 mm                |  |
| (geometric center of prob |                           | ·                      |                                |                                 |  |
| Maximum probe angle fro   | •                         | is to phantom surface  | 30°±1°                         | 20°±1°                          |  |
| normal at the measureme   | ent location              |                        |                                |                                 |  |
|                           |                           |                        | ≤ 2 GHz: ≤ 15 mm               | 3–4 GHz: ≤ 12 mm                |  |
|                           |                           |                        | 2 – 3 GHz: ≤ 12 mm             | 4 – 6 GHz: ≤ 10 mm              |  |
|                           |                           |                        | When the x or y dimension of t | he test device, in the          |  |
| Maximum area scan spat    | tial resolutior           | n: Δx Area , Δy Area   | measurement plane orientation  | n, is smaller than the above,   |  |
|                           |                           |                        | the measurement resolution m   | ust be ≤ the corresponding x or |  |
|                           |                           |                        | y dimension of the test device | with at least one measurement   |  |
|                           |                           |                        | point on the test device.      |                                 |  |
| Mayimum zaam aaan and     | atial recolution          | on: Av Zoom Av Zoom    | ≤ 2 GHz: ≤ 8 mm                | 3–4 GHz: ≤ 5 mm*                |  |
| Maximum zoom scan spa     | aliai resolulio           | л. дх 20011, ду 20011  | 2 –3 GHz: ≤ 5 mm*              | 4 – 6 GHz: ≤ 4 mm*              |  |
|                           |                           |                        |                                | 3–4 GHz: ≤ 4 mm                 |  |
|                           | uniform grid: Δz Zoom (n) |                        | ≤ 5 mm                         | 4–5 GHz: ≤ 3 mm                 |  |
| Maximum zoom scan         |                           |                        |                                | 5–6 GHz: ≤ 2 mm                 |  |
| spatial resolution,       |                           | Δz Zoom (1): between   |                                | 3–4 GHz: ≤ 3 mm                 |  |
| normal to phantom         |                           | 1st two points closest | ≤ 4 mm                         | 4–5 GHz: ≤ 2.5 mm               |  |
| surface                   | graded                    | to phantom surface     |                                | 5–6 GHz: ≤ 2 mm                 |  |
|                           | grid                      | Δz Zoom (n>1):         |                                |                                 |  |
|                           |                           | between subsequent     | ≤ 1.5·Δz 2                     | Zoom (n-1)                      |  |
|                           |                           | points                 |                                |                                 |  |
| Minimum zoom              |                           |                        |                                | 3–4 GHz: ≥ 28 mm                |  |
| scan volume               |                           | x, y, z                | ≥30 mm                         | 4–5 GHz: ≥ 25 mm                |  |
| Joan Volumo               |                           |                        |                                | 5–6 GHz: ≥ 22 mm                |  |

#### Note:

- 1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- 2. \* When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: BL-SZ23C0597-701



### 7.3 Measurement Procedure

The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm \* 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 \* 30 \* 30 mm or 32 \* 32 \*32 mm is assessed by measuring 5 or 8 \* 5 or 8\*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

### 7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

### 7.5 Interim Procedures for WLAN 6E

Interim procedures for FCC radio frequency (RF) exposure evaluations of U-NII 6-7 GHz band portable devices have been made available during the TCB workshop in April 2021. The procedure is summarized below:

- a. Evaluate SAR / APD with DASY6 Module SAR V16.0 or higher. The configurations to be tested are defined in the relevant Knowledge Database (KDB). The psSAR and absorbed psPD are reported.
- b. 2. For the configuration with the highest SAR, evaluate the incident power density with DASY6 Module mmWave V2.4.2 or higher. The incident psPD must be adjusted per amount that the measurement uncertainty exceeds 30% before it is included in the test report.



## **8 CONDUCTED RF OUPUT POWER**

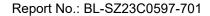
## 8.1 WIFI

## 8.1.1 6G WIFI (Antenna 1)

| Band        | Mada                   | Ob      | Freq. | Average Power | Tune-up Power | SAR Test |
|-------------|------------------------|---------|-------|---------------|---------------|----------|
| (GHz)       | Mode                   | Channel | (MHz) | (dBm)         | Limit (dBm)   | Require. |
|             |                        | 1       | 5955  | 0.75          | 2.00          | No       |
|             |                        | 45      | 6175  | 1.09          | 2.00          | No       |
|             |                        | 93      | 6415  | 0.60          | 2.00          | No       |
|             |                        | 97      | 6435  | 0.58          | 2.00          | No       |
|             |                        | 105     | 6475  | 0.67          | 2.00          | No       |
|             | 000 44 (11500)         | 113     | 6515  | 0.93          | 2.00          | No       |
|             | 802.11ax(HE20)<br>(SU) | 117     | 6535  | 0.90          | 2.00          | No       |
|             | (30)                   | 149     | 6695  | 1.24          | 2.00          | No       |
|             |                        | 181     | 6855  | 1.25          | 2.00          | No       |
|             |                        | 185     | 6875  | 1.01          | 2.00          | No       |
|             |                        | 189     | 6895  | 1.24          | 2.00          | No       |
|             |                        | 209     | 6995  | 0.79          | 2.00          | No       |
|             |                        | 233     | 7115  | 0.60          | 1.00          | No       |
|             |                        | 3       | 5965  | 3.24          | 5.00          | No       |
|             |                        | 51      | 6205  | 3.74          | 5.00          | No       |
|             |                        | 91      | 6405  | 3.32          | 5.00          | No       |
| 6           |                        | 99      | 6445  | 3.42          | 5.00          | No       |
| (5.925~7.12 |                        | 107     | 6485  | 3.67          | 5.00          | No       |
| 5)          |                        | 115     | 6525  | 3.80          | 5.00          | No       |
|             | 802.11ax(HE40)<br>(SU) | 123     | 6565  | 3.91          | 5.00          | No       |
|             | (30)                   | 147     | 6685  | 4.00          | 5.00          | No       |
|             |                        | 179     | 6845  | 3.98          | 5.00          | No       |
|             |                        | 187     | 6885  | 3.95          | 5.00          | No       |
|             |                        | 195     | 6925  | 3.94          | 5.00          | No       |
|             |                        | 211     | 7005  | 3.77          | 5.00          | No       |
|             |                        | 227     | 7085  | 3.78          | 5.00          | No       |
|             |                        | 7       | 5985  | 6.55          | 7.00          | No       |
|             |                        | 55      | 6225  | 6.57          | 7.00          | No       |
|             | [                      | 87      | 6385  | 6.25          | 7.00          | No       |
|             | 000 44 (17-00)         | 103     | 6465  | 6.33          | 7.00          | No       |
|             | 802.11ax(HE80)<br>(SU) | 119     | 6545  | 6.58          | 7.00          | No       |
|             | (30)                   | 135     | 6625  | 6.43          | 7.00          | No       |
|             | <b> </b>               | 151     | 6705  | 6.59          | 7.00          | No       |
|             |                        | 167     | 6785  | 7.02          | 8.00          | No       |
|             | <u> </u>               | 183     | 6865  | 6.58          | 7.00          | No       |



|  |                         | 199 | 6945 | 6.70 | 7.00  | No  |
|--|-------------------------|-----|------|------|-------|-----|
|  |                         | 215 | 7025 | 6.67 | 7.00  | No  |
|  |                         | 15  | 6025 | 8.80 | 10.00 | Yes |
|  |                         | 47  | 6185 | 8.92 | 10.00 | Yes |
|  | 802.11ax(HE160)<br>(SU) | 79  | 6345 | 8.55 | 10.00 | Yes |
|  |                         | 111 | 6505 | 8.67 | 10.00 | Yes |
|  |                         | 143 | 6665 | 8.82 | 10.00 | Yes |
|  |                         | 175 | 6825 | 9.40 | 10.00 | Yes |
|  |                         | 207 | 6985 | 8.69 | 10.00 | Yes |


Note: When multiple channel bandwidth configurations in a frequency band have the same maximum tune-up output power, the test configuration is determined by applying the following steps sequentially.

<sup>1)</sup> The largest channel bandwidth configuration is selected between the multiple configurations in a frequency band with the same maximum tune-up output power.



## 8.1.2 6G WIFI(Antenna 2)

| Band        |                            | 01 1    | Freq. | Average Power | Tune-up Power | SAR Test |
|-------------|----------------------------|---------|-------|---------------|---------------|----------|
| (GHz)       | Mode                       | Channel | (MHz) | (dBm)         | Limit (dBm)   | Require. |
|             |                            | 1       | 5955  | 0.74          | 2.00          | No       |
|             |                            | 45      | 6175  | 0.78          | 2.00          | No       |
|             |                            | 93      | 6415  | 0.94          | 2.00          | No       |
|             |                            | 97      | 6435  | 1.04          | 2.00          | No       |
|             |                            | 105     | 6475  | 1.04          | 2.00          | No       |
|             |                            | 113     | 6515  | 1.36          | 2.00          | No       |
|             | 802.11ax(HE20) (SU)        | 117     | 6535  | 1.16          | 2.00          | No       |
|             | (30)                       | 149     | 6695  | 1.16          | 2.00          | No       |
|             |                            | 181     | 6855  | 1.29          | 2.00          | No       |
|             |                            | 185     | 6875  | 1.30          | 2.00          | No       |
|             |                            | 189     | 6895  | 1.27          | 2.00          | No       |
|             | [                          | 209     | 6995  | 1.20          | 2.00          | No       |
|             |                            | 233     | 7115  | -0.53         | 1.00          | No       |
|             |                            | 3       | 5965  | 3.05          | 5.00          | No       |
|             |                            | 51      | 6205  | 3.29          | 5.00          | No       |
|             |                            | 91      | 6405  | 3.30          | 5.00          | No       |
|             |                            | 99      | 6445  | 3.53          | 5.00          | No       |
|             |                            | 107     | 6485  | 3.56          | 5.00          | No       |
| 6           |                            | 115     | 6525  | 3.79          | 5.00          | No       |
| (5.925~7.12 | 802.11ax(HE40) -<br>(SU) - | 123     | 6565  | 3.70          | 5.00          | No       |
| 5)          | (30)                       | 147     | 6685  | 3.47          | 5.00          | No       |
|             |                            | 179     | 6845  | 3.47          | 5.00          | No       |
|             |                            | 187     | 6885  | 3.76          | 5.00          | No       |
|             |                            | 195     | 6925  | 3.70          | 5.00          | No       |
|             |                            | 211     | 7005  | 3.59          | 5.00          | No       |
|             |                            | 227     | 7085  | 3.84          | 5.00          | No       |
|             |                            | 7       | 5985  | 5.95          | 7.00          | No       |
|             |                            | 55      | 6225  | 6.10          | 7.00          | No       |
|             |                            | 87      | 6385  | 6.09          | 7.00          | No       |
|             |                            | 103     | 6465  | 6.19          | 7.00          | No       |
|             | 000 44 (UE00)              | 119     | 6545  | 6.38          | 7.00          | No       |
|             | 802.11ax(HE80) -<br>(SU) - | 135     | 6625  | 6.10          | 7.00          | No       |
|             | (30)                       | 151     | 6705  | 5.99          | 7.00          | No       |
|             | [                          | 167     | 6785  | 6.41          | 8.00          | No       |
|             | [                          | 183     | 6865  | 6.10          | 7.00          | No       |
|             | [                          | 199     | 6945  | 6.23          | 7.00          | No       |
|             |                            | 215     | 7025  | 6.34          | 7.00          | No       |
|             | 802.11ax(HE160)            | 15      | 6025  | 8.49          | 10.00         | Yes      |
|             | (SU)                       | 47      | 6185  | 8.31          | 10.00         | Yes      |





| 79  | 6345 | 8.32 | 10.00 | Yes |
|-----|------|------|-------|-----|
| 111 | 6505 | 8.85 | 10.00 | Yes |
| 143 | 6665 | 8.50 | 10.00 | Yes |
| 175 | 6825 | 9.10 | 10.00 | Yes |
| 207 | 6985 | 8.82 | 10.00 | Yes |

Note: When multiple channel bandwidth configurations in a frequency band have the same maximum tune-up output power, the test configuration is determined by applying the following steps sequentially.

1) The largest channel bandwidth configuration is selected between the multiple configurations in a frequency band with the same maximum tune-up output power.

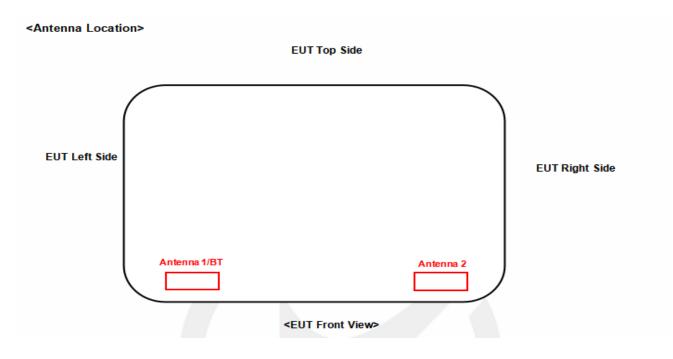


## 8.1.3 6G WIFI (MIMO)

| Band        |                        |         | Freq. | Average Power | Tune-up Power | SAR Test |
|-------------|------------------------|---------|-------|---------------|---------------|----------|
| (GHz)       | Mode                   | Channel | (MHz) | (dBm)         | Limit (dBm)   | Require. |
|             |                        | 1       | 5955  | 3.76          | 5.00          | No       |
|             |                        | 45      | 6175  | 3.95          | 5.00          | No       |
|             |                        | 93      | 6415  | 3.78          | 5.00          | No       |
|             |                        | 97      | 6435  | 3.83          | 5.00          | No       |
|             |                        | 105     | 6475  | 3.87          | 5.00          | No       |
|             |                        | 113     | 6515  | 4.16          | 5.00          | No       |
|             | 802.11ax(HE20)<br>(SU) | 117     | 6535  | 4.04          | 5.00          | No       |
|             | (50)                   | 149     | 6695  | 4.21          | 5.00          | No       |
|             |                        | 181     | 6855  | 4.28          | 5.00          | No       |
|             |                        | 185     | 6875  | 4.17          | 5.00          | No       |
|             |                        | 189     | 6895  | 4.27          | 5.00          | No       |
|             |                        | 209     | 6995  | 4.01          | 5.00          | No       |
|             |                        | 233     | 7115  | 3.08          | 4.00          | No       |
|             |                        | 3       | 5965  | 6.16          | 8.00          | No       |
|             |                        | 51      | 6205  | 6.53          | 8.00          | No       |
|             |                        | 91      | 6405  | 6.32          | 8.00          | No       |
|             | 802.11ax(HE40)         | 99      | 6445  | 6.49          | 8.00          | No       |
|             |                        | 107     | 6485  | 6.63          | 8.00          | No       |
| 6           |                        | 115     | 6525  | 6.81          | 8.00          | No       |
| (5.925~7.12 |                        | 123     | 6565  | 6.82          | 8.00          | No       |
| 5)          | (SU)                   | 147     | 6685  | 6.75          | 8.00          | No       |
|             |                        | 179     | 6845  | 6.74          | 8.00          | No       |
|             |                        | 187     | 6885  | 6.87          | 8.00          | No       |
|             |                        | 195     | 6925  | 6.83          | 8.00          | No       |
|             |                        | 211     | 7005  | 6.69          | 8.00          | No       |
|             |                        | 227     | 7085  | 6.82          | 8.00          | No       |
|             |                        | 7       | 5985  | 9.27          | 10.00         | No       |
|             |                        | 55      | 6225  | 9.35          | 10.00         | No       |
|             |                        | 87      | 6385  | 9.18          | 10.00         | No       |
|             |                        | 103     | 6465  | 9.27          | 10.00         | No       |
|             | 000 44 (UE00)          | 119     | 6545  | 9.49          | 10.00         | No       |
|             | 802.11ax(HE80)<br>(SU) | 135     | 6625  | 9.28          | 10.00         | No       |
|             | (30)                   | 151     | 6705  | 9.31          | 10.00         | No       |
|             | [                      | 167     | 6785  | 9.74          | 11.00         | No       |
|             | [                      | 183     | 6865  | 9.36          | 10.00         | No       |
|             |                        | 199     | 6945  | 9.48          | 10.00         | No       |
|             |                        | 215     | 7025  | 9.52          | 10.00         | No       |
|             | 802.11ax(HE160)        | 15      | 6025  | 11.66         | 13.00         | No       |
|             | (SU)                   | 47      | 6185  | 11.64         | 13.00         | No       |






| 79  | 6345 | 11.45 | 13.00 | No |
|-----|------|-------|-------|----|
| 111 | 6505 | 11.77 | 13.00 | No |
| 143 | 6665 | 11.67 | 13.00 | No |
| 175 | 6825 | 12.26 | 13.00 | No |
| 207 | 6985 | 11.77 | 13.00 | No |

Note: For WiFi SAR testing was performed on single antenna RF power in SISO mode that is larger to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission used more conservative "Max. (main ant) + Max. (aux. ant) " method to determine SAR compliance. When the sum of 1-g SISO transmission SAR measurement is <1.6 W/kg, MIMO SAR test is not required.

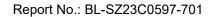


## 9 TEST EXCLUSION CONSIDERATION

### 9.1 Tablet Mode antenna location sketch



| Antenna   | Support Bands |
|-----------|---------------|
| Antenna 1 | WLAN6G        |
| Antenna 2 | WLAN6G        |




## **10 TEST RESULT**

### **10.1WIFI 6GHz**

## 10.1.1 WIFI 6GHz SAR

| Fre.<br>Band | Mode          | Test<br>State | Antenna | Position       | Dist.<br>(mm) | Ch. | Freq.<br>(MHz) | Power<br>Drift(dB) | 1 g Meas<br>SAR(W/kg) | Meas. Power (dBm) | Max. tune-up<br>power(dBm) | Scaling<br>Factor | Duty<br>cycle<br>(%) | Duty<br>cycle<br>Factor | 1g<br>Scaled<br>SAR<br>(W/kg) | Measured<br>APD<br>W/m2 | Scaled<br>APD<br>W/m2 | Meas. |
|--------------|---------------|---------------|---------|----------------|---------------|-----|----------------|--------------------|-----------------------|-------------------|----------------------------|-------------------|----------------------|-------------------------|-------------------------------|-------------------------|-----------------------|-------|
| Войу         |               |               |         | Front<br>Side  | 0             | 175 | 6825           | 0.03               | 0.156                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.209                         | 0.656                   | 0.879                 | /     |
|              |               |               |         | Back           | 0             | 175 | 6825           | 0.01               | 0.000                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.000                         | 0.000                   | 0.000                 | /     |
|              |               |               |         | Left<br>Edge   | 0             | 175 | 6825           | 0.04               | 0.024                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.032                         | 0.133                   | 0.178                 | /     |
|              |               |               |         | Right<br>Edge  | 0             | 175 | 6825           | -0.15              | 0.017                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.023                         | 0.056                   | 0.075                 | /     |
|              |               |               |         | Top<br>Edge    | 0             | 175 | 6825           | 0.03               | 0.000                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.000                         | 0.000                   | 0.000                 | /     |
|              | 802.11        |               | 1       | Bottom<br>Edge | 0             | 175 | 6825           | 0.09               | 0.036                 | 9.40              | 10.00                      | 1.148             | 85.71                | 1.167                   | 0.048                         | 0.167                   | 0.224                 | /     |
|              |               | Tablet        |         | Front<br>Side  | 0             | 15  | 6025           | -0.09              | 0.096                 | 8.80              | 10.00                      | 1.318             | 85.71                | 1.167                   | 0.148                         | 0.485                   | 0.746                 | /     |
| 6G           |               |               |         | Front<br>Side  | 0             | 47  | 6185           | 0.02               | 0.067                 | 8.92              | 10.00                      | 1.282             | 85.71                | 1.167                   | 0.100                         | 0.345                   | 0.516                 | /     |
| 66           | ax<br>(HE160) |               |         | Front<br>Side  | 0             | 79  | 6345           | -0.09              | 0.071                 | 8.55              | 10.00                      | 1.396             | 85.71                | 1.167                   | 0.116                         | 0.388                   | 0.632                 | /     |
|              |               |               |         | Front<br>Side  | 0             | 111 | 6505           | -0.07              | 0.238                 | 8.67              | 10.00                      | 1.358             | 88.24                | 1.133                   | 0.366                         | 1.170                   | 1.800                 | 1#    |
|              |               |               |         | Front<br>Side  | 0             | 143 | 6665           | -0.01              | 0.034                 | 8.82              | 10.00                      | 1.312             | 85.71                | 1.167                   | 0.052                         | 0.188                   | 0.288                 | /     |
|              |               |               |         | Front<br>Side  | 0             | 207 | 6985           | 0.00               | 0.019                 | 8.69              | 10.00                      | 1.352             | 85.71                | 1.167                   | 0.030                         | 0.103                   | 0.163                 | /     |
|              |               |               |         | Front<br>Side  | 0             | 175 | 6825           | -0.03              | 0.144                 | 9.10              | 10.00                      | 1.230             | 85.29                | 1.172                   | 0.208                         | 0.556                   | 0.802                 | /     |
|              |               | Tablet        | 2       | Back<br>Side   | 0             | 175 | 6825           | 0.02               | 0.038                 | 9.10              | 10.00                      | 1.230             | 85.29                | 1.172                   | 0.055                         | 0.174                   | 0.251                 | /     |
|              |               |               | blet 2  | Left<br>Edge   | 0             | 175 | 6825           | 0.06               | 0.000                 | 9.10              | 10.00                      | 1.230             | 85.29                | 1.172                   | 0.000                         | 0.000                   | 0.000                 | /     |
|              |               |               |         | Right<br>Edge  | 0             | 175 | 6825           | 0.03               | 0.004                 | 9.10              | 10.00                      | 1.230             | 85.29                | 1.172                   | 0.006                         | 0.023                   | 0.033                 | /     |





|  |  |  |  | Top<br>Edge    | 0 | 175 | 6825 | 0.04  | 0.000 | 9.10 | 10.00 | 1.230 | 85.29 | 1.172 | 0.000 | 0.000 | 0.000 | /  |
|--|--|--|--|----------------|---|-----|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|----|
|  |  |  |  | Bottom<br>Edge | 0 | 175 | 6825 | 0.06  | 0.000 | 9.10 | 10.00 | 1.230 | 85.29 | 1.172 | 0.000 | 0.000 | 0.000 | /  |
|  |  |  |  | Front<br>Side  | 0 | 15  | 6025 | 0.03  | 0.233 | 8.49 | 10.00 | 1.416 | 85.71 | 1.167 | 0.385 | 1.050 | 1.735 | /  |
|  |  |  |  | Front<br>Side  | 0 | 47  | 6185 | 0.02  | 0.268 | 8.31 | 10.00 | 1.476 | 85.71 | 1.167 | 0.462 | 1.190 | 2.050 | 2# |
|  |  |  |  | Front<br>Side  | 0 | 79  | 6345 | 0.01  | 0.122 | 8.32 | 10.00 | 1.472 | 85.71 | 1.167 | 0.210 | 0.565 | 0.971 | /  |
|  |  |  |  | Front<br>Side  | 0 | 111 | 6505 | -0.01 | 0.276 | 8.85 | 10.00 | 1.303 | 85.29 | 1.172 | 0.421 | 1.110 | 1.695 | /  |
|  |  |  |  | Front<br>Side  | 0 | 143 | 6665 | 0.04  | 0.227 | 8.50 | 10.00 | 1.413 | 85.71 | 1.167 | 0.374 | 0.322 | 0.531 | /  |
|  |  |  |  | Front<br>Side  | 0 | 207 | 6985 | -0.04 | 0.152 | 8.82 | 10.00 | 1.312 | 85.29 | 1.172 | 0.234 | 0.635 | 0.976 | /  |

Note: Refer to ANNEX C for the detailed test data for each test configuration.



## 11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are  $\leq 1.45$  W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is  $\leq 1.10$ , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Note: For 1g SAR, the highest measured 1g SAR is 0.276< 0.80 W/kg, repeated measurement is not required.



### 12 SIMULTANEOUS TRANSMISSION

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR). According KDB 447498 D04, simultaneous transmission:

- a) SPLSR = (SAR1 + SAR2)<sup>A1.5</sup> / R<sub>i</sub> (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)<sup>2</sup> + (y1-y2)<sup>2</sup> + (z1-z2)<sup>2</sup>], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. SAR1 is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition. SAR2 is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition as the first.
- b) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
- c) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

### 12.1 Simultaneous Transmission Mode Considerations

| No. | Simultaneous Tx Combination                   | Body |
|-----|-----------------------------------------------|------|
| 1   | WLAN 6GHz (Antenna 1) + WLAN 6GHz (Antenna 2) | Yes  |



## 12.2Sum SAR of Simultaneous Transmission

## 12.2.1 Body Simultaneous Transmission SAR Evaluation for WLAN Antenna

|                  |                                                                                                                    |             | Stand ale   | one SAR     | CLIM CAD |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------|--|--|--|--|--|--|
| State            | Po                                                                                                                 | sition      | 1           | 2           | SUM SAR  |  |  |  |  |  |  |
| State            | 1 0.                                                                                                               | Silion      | WLAN 6GHz   | WLAN 6GHz   | Sum SAR  |  |  |  |  |  |  |
|                  |                                                                                                                    |             | (Antenna 1) | (Antenna 2) | (1+2)    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Front Side  | 0.366       | 0.462       | 0.828    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Back Side   | 0.000       | 0.055       | 0.055    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Left Edge   | 0.032       | 0.000       | 0.032    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Right Edge  | 0.023       | 0.006       | 0.029    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Top Edge    | 0.000       | 0.000       | 0.000    |  |  |  |  |  |  |
| Body             | Tablet                                                                                                             | Bottom Edge | 0.048       | 0.000       | 0.048    |  |  |  |  |  |  |
| Note: 1: The hig | Note: 1: The highest Summed 1g SAR is 0.828W/Kg < 1.6 W/kg, so Simultaneous Transmission SAR test is not required. |             |             |             |          |  |  |  |  |  |  |



## 13 TEST EQUIPMENTS LIST

| Description                   | Manufacturer | Model     | Serial No./Version | Cal. Date  | Cal. Due   |
|-------------------------------|--------------|-----------|--------------------|------------|------------|
| PC                            | Dell         | N/A       | N/A                | N/A        | N/A        |
| Test Software                 | Speag        | DASY6     | 16.0.0.116         | N/A        | N/A        |
| 6.5GHz Validation Dipole      | Speag        | D6.5GHzV2 | SN: 1037           | 2021/07/01 | 2024/07/01 |
| E-Field Probe                 | Speag        | EX3DV4    | SN: 7607           | 2023/07/04 | 2024/07/03 |
| Data Acquisition Electronicsr | Speag        | DAE4      | SN: 878            | 2023/03/23 | 2024/03/22 |
| Signal Generator              | R&S          | SMB100A   | 177746             | 2023/05/10 | 2024/05/09 |
| Power Meter                   | R&S          | NRVD-B2   | 835843/014         | 2023/09/05 | 2024/09/04 |
| Power Sensor                  | R&S          | NRV-Z4    | 100381             | 2023/09/05 | 2024/09/04 |
| Power Sensor                  | R&S          | NRV-Z2    | 100211             | 2023/09/05 | 2024/09/04 |
| Network Analyzer              | Agilent      | E5071C    | MY46103472         | 2023/11/14 | 2024/11/14 |
| Thermometer                   | Elitech      | RC-4      | EF5238001628       | 2023/10/09 | 2024/10/09 |
| Thermometer                   | Elitech      | RC-4HC    | EF7239002652       | 2023/11/17 | 2024/11/17 |
| Power Amplifier               | SATIMO       | 6552B     | 22374              | N/A        | N/A        |
| Dielectric Probe Kit          | Speag        | DAK3.5    | SN: 1312           | N/A        | N/A        |
| Phantom                       | Speag        | ELI V8.0  | SN: 2159           | N/A        | N/A        |
| Attenuator                    | COM-MW       | ZA-S1-31  | 1305003187         | N/A        | N/A        |
| Directional coupler           | AA-MCS       | AAMCS-UDC | 000272             | N/A        | N/A        |

Note: For dipole antennas, BALUN has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss in within 20% of calibrated measurement.
- 4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement.



## ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using a DAK3.5 Dielectric Probe Kit.

| Date                                                               | Liquid<br>Type | Fre.<br>(MHz) | Temp.<br>(°C) | Meas. Conductivity (σ) (S/m) | Meas. Permittivity (ε) | Target Conductivity (σ) (S/m) | Target<br>Permittivity<br>(ε) | Conductivity Tolerance (%) | Permittivity Tolerance (%) |  |
|--------------------------------------------------------------------|----------------|---------------|---------------|------------------------------|------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|--|
| 2023.12.20                                                         | Head           | 6500          | 21.6          | 6.07                         | 34.46                  | 6.07                          | 34.46                         | 0.00                       | 0.00                       |  |
| Note: The tolerance limit of Conductivity and Permittivity is± 5%. |                |               |               |                              |                        |                               |                               |                            |                            |  |

Report No.: BL-SZ23C0597-701



## ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %(for 1 g).

| Data                                                 | Liquid | Freq. | Power | Measured   | Normalized SAR | Dipole SAR | Tolerance |  |  |
|------------------------------------------------------|--------|-------|-------|------------|----------------|------------|-----------|--|--|
| Date                                                 | Туре   | (MHz) | (mW)  | SAR (W/kg) | (W/kg)         | (W/kg)     | (%)       |  |  |
| 2023.12.20                                           | Head   | 6500  | 100   | 29.50      | 295.00         | 286.00     | 3.15      |  |  |
| Note: The tolerance limit of System validation ±10%. |        |       |       |            |                |            |           |  |  |



# System Performance Check Data (6500MHz)

### **Device under Test Properties**

Model, Manufacturer Dimensions [mm] DUT Type
D6.5GHzV2, SPEAG 10.0 x 10.0 x 3.0 Dipole

### **Exposure Conditions**

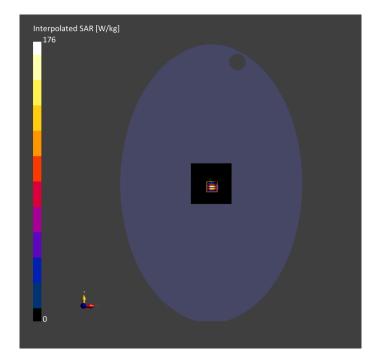
| Phantom      | Position, | Band      | Group, | Frequency | Conversion | TSL          | TSL          | Ambient    | Liquid     |
|--------------|-----------|-----------|--------|-----------|------------|--------------|--------------|------------|------------|
| Section, TSL | Test      |           | UID    | [MHz],    | Factor     | Conductivity | Permittivity | Temperatur | Temperatur |
|              | Distance  |           |        | Channel   |            | [S/m]        |              | е          | е          |
|              | [mm]      |           |        | Number    |            |              |              | [℃]        | [℃]        |
| Flat,        |           | Validatio | CW,    | 6500.0,   | 5.38       | 6.07         | 34.5         | 22.5       | 21.6       |
| HSL          |           | n band    | 0      | 6500      |            |              |              |            |            |

#### **Hardware Setup**

 Phantom
 TSL, Measured Date
 Probe, Calibration Date
 DAE, Calibration Date

 ELI V8.0 (20deg probe tilt) HBBL-600-10000
 2023-12-20
 EX3DV4 - SN7607, 2023-07-04
 DAE4 Sn878, 2023-03-23

2159


Scan Setup Measurement Results

|                   | Area Scan   | Zoom Scan          |                  | Area Scan     | Zoom Scan     |
|-------------------|-------------|--------------------|------------------|---------------|---------------|
| Grid Extents [mm] | 85.0 x 85.0 | 22.0 x 22.0 x 22.0 | Date             | 2023-12-20    | 2023-12-20    |
| Grid Steps [mm]   | 8.5 x 8.5   | 3.4 x 3.4 x 1.4    | psSAR1g [W/kg]   | 29.3          | 29.5          |
| Sensor Surface    | 3.0         | 1.4                | psSAR10g [W/kg]  | 5.17          | 5.33          |
| [mm]              |             |                    | Power Drift [dB] | -0.11         | 0.06          |
| Graded Grid       | Yes         | Yes                | Power Scaling    | Disabled      | Disabled      |
| Grading Ratio     | 1.5         | 1.4                | Scaling Factor   |               |               |
| MAIA              | N/A         | N/A                | [dB]             |               |               |
| Surface Detection | All points  | All points         | TSL Correction   | No correction | No correction |
| Scan Method       | Measured    | Measured           | M2/M1 [%]        |               | 49.7          |
|                   |             |                    | Dist 3dB         |               | 4.6           |

PPeak [mm]

Web: www.titcgroup.com Template No.: TRP-FCC DASY-Body-2 (2023-01-30)







## ANNEX C TEST DATA

# Meas.1 Body Plane with Front Side 0mm on 111 Channel in IEEE802.11ax160 Mode with Antenna 1 Device under Test Properties

| Model, Manufacturer | Dimensions [mm]     | DUT Type |
|---------------------|---------------------|----------|
| Device,             | 285.0 x 185.0 x 8.0 | Tablet   |

### **Exposure Conditions**

| Phanto   | Position | Ban   | Group  | Frequenc | Conversio | TSL         | TSL         | Ambient    | Liquid     |
|----------|----------|-------|--------|----------|-----------|-------------|-------------|------------|------------|
| m        | , Test   | d     | ,      | y [MHz], | n Factor  | Conductivit | Permittivit | Temperatur | Temperatur |
| Section, | Distanc  |       | UID    | Channel  |           | y [S/m]     | у           | е          | е          |
| TSL      | e [mm]   |       |        | Number   |           |             |             | [°C]       | [°C]       |
| Flat,    | FRONT,   | U-    | WLAN,  | 6505.0,  | 5.38      | 6.11        | 34.4        | 22.5       | 21.6       |
| HSL      | 0.00     | NII-6 | 10755- | 111      |           |             |             |            |            |
|          |          |       | AAC    |          |           |             |             |            |            |

### **Hardware Setup**

| Phantom                       | TSL, Measured Da | nte        | Probe, Calibration Date     | DAE, Calibration Date  |  |  |
|-------------------------------|------------------|------------|-----------------------------|------------------------|--|--|
| ELI V8.0 (20deg probe tilt) - | HBBL-600-10000   | 2023-12-20 | EX3DV4 - SN7607, 2023-07-04 | DAE4 Sn878, 2023-03-23 |  |  |
| 2159                          |                  |            |                             |                        |  |  |

### Scan Setup

### **Measurement Results**

|           |          | Area Scan     | Zoom Scan          |                      | Area Scan     | Zoom Scan     |
|-----------|----------|---------------|--------------------|----------------------|---------------|---------------|
| Grid      | Extents  | 102.0 x 102.0 | 27.2 x 27.2 x 22.0 | Date                 | 2023-12-20    | 2023-12-20    |
| [mm]      |          |               |                    | psSAR1g              | 0.209         | 0.238         |
| Grid Ste  | eps [mm] | 8.5 x 8.5     | 3.4 x 3.4 x 1.4    | [W/kg]               |               |               |
| Sensor    | Surface  | 3.0           | 1.4                | psSAR10g             | 0.045         | 0.048         |
| [mm]      |          |               |                    | [W/kg]               |               |               |
| Graded    | Grid     | Yes           | Yes                | APD 4cm <sup>2</sup> |               | 1.17          |
| Grading   | Ratio    | 1.5           | 1.4                | [W/m <sup>2</sup> ]  |               |               |
| MAIA      |          | Υ             | Υ                  | Power Drift [dB]     | -0.10         | -0.07         |
| Surface   |          | VMS + 6p      | VMS + 6p           | Power Scaling        | Disabled      | Disabled      |
| Detection | on       |               |                    | Scaling Factor       |               |               |
| Scan M    | ethod    | Measured      | Measured           | [dB]                 |               |               |
|           |          |               |                    | TSL Correction       | No correction | No correction |
|           |          |               |                    | M2/M1 [%]            |               | 41.6          |
|           |          |               |                    | Dist 3dB Peak        |               | 3.8           |
|           |          |               |                    | [mm]                 |               |               |

Tel: +86-755-66850100

E-mail: qc@baluntek.com

Page No. 42 / 47

Web: www.titcgroup.com

Template No.: TRP-FCC DASY-Body-2 (2023-01-30)







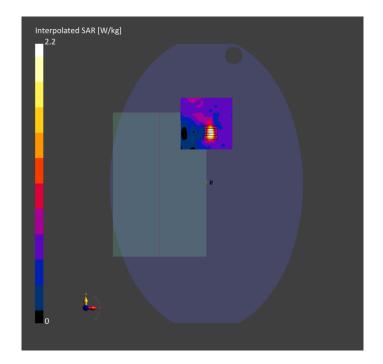
# Meas.2 Body Plane with Front Side 0mm on 47 Channel in IEEE802.11ax160 Mode with Antenna 2 Device under Test Properties

| Model, Manufacturer | Dimensions [mm]     | DUT Type |
|---------------------|---------------------|----------|
| Device,             | 285.0 x 185.0 x 8.0 | Tablet   |

### **Exposure Conditions**

| Phanto   | Position | Ban   | Group  | Frequenc | Conversio | TSL         | TSL         | Ambient    | Liquid     |
|----------|----------|-------|--------|----------|-----------|-------------|-------------|------------|------------|
| m        | , Test   | d     | ,      | y [MHz], | n Factor  | Conductivit | Permittivit | Temperatur | Temperatur |
| Section, | Distanc  |       | UID    | Channel  |           | y [S/m]     | у           | е          | е          |
| TSL      | e [mm]   |       |        | Number   |           |             |             | [°C]       | [°C]       |
| Flat,    | BACK,    | U-    | WLAN,  | 6185.0,  | 5.38      | 5.79        | 34.0        | 22.5       | 21.6       |
| HSL      | 0.00     | NII-5 | 10755- | 47       |           |             |             |            |            |
|          |          |       | AAC    |          |           |             |             |            |            |

### **Hardware Setup**


| Phantom                       | TSL, Measured Date        | Probe, Calibration Date     | DAE, Calibration Date  |
|-------------------------------|---------------------------|-----------------------------|------------------------|
| ELI V8.0 (20deg probe tilt) - | HBBL-600-10000 2023-12-20 | EX3DV4 - SN7607, 2023-07-04 | DAE4 Sn878, 2023-03-23 |
| 2150                          |                           |                             |                        |

### Scan Setup

### **Measurement Results**

| oun outup       |               |                    |                      |               |               |
|-----------------|---------------|--------------------|----------------------|---------------|---------------|
|                 | Area Scan     | Zoom Scan          |                      | Area Scan     | Zoom Scan     |
| Grid Extents    | 102.0 x 102.0 | 27.2 x 27.2 x 22.0 | Date                 | 2023-12-20    | 2023-12-20    |
| [mm]            |               |                    | psSAR1g              | 0.250         | 0.268         |
| Grid Steps [mm] | 8.5 x 8.5     | 3.4 x 3.4 x 1.4    | [W/kg]               |               |               |
| Sensor Surface  | 3.0           | 1.4                | psSAR10g             | 0.075         | 0.049         |
| [mm]            |               |                    | [W/kg]               |               |               |
| Graded Grid     | Yes           | Yes                | APD 4cm <sup>2</sup> |               | 1.19          |
| Grading Ratio   | 1.5           | 1.4                | [W/m <sup>2</sup> ]  |               |               |
| MAIA            | Υ             | N/A                | Power Drift [dB]     | -0.01         | 0.02          |
| Surface         | VMS + 6p      | VMS + 6p           | Power Scaling        | Disabled      | Disabled      |
| Detection       |               |                    | Scaling Factor       |               |               |
| Scan Method     | Measured      | Measured           | [dB]                 |               |               |
|                 |               |                    | TSL Correction       | No correction | No correction |
|                 |               |                    | M2/M1 [%]            |               | 39.4          |
|                 |               |                    | Dist 3dB Peak        |               | 2.7           |
|                 |               |                    | [mm]                 |               |               |
|                 |               |                    |                      |               |               |







## ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ23C0597-AW.pdf".

## ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ23C0597-AS-1.pdf".

## ANNEX F CALIBRATION REPORT

Please refer the document "BL-SZ23C0597-AC-1.pdf".

### ANNEX G TUNE-UP PROCEDURE

Please refer the document "BL-SZ23C0597-AT-1.pdf".



### Statement

- 1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
- 2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
- 3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
- 4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
- 5. The test data and results are only valid for the tested samples provided by the customer.
- 6. This report shall not be partially reproduced without the written permission of the laboratory.
- 7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

-- END OF REPORT--