

2.4 Test Data

ENGINEERING TEST REPORT ON RA54 KODEN MARINE RADAR

APPLICANT: KODEN ELECTRONICS CO., LTD
EQUIPMENT: MARINE RADAR
TEST SITE: UENOHARA-FACTORY OF KODEN ELECTRONICS CO., LTD
TEST DATE: July in 2001
To: Whom it concern

Good engineering practice were followed while performing test for FCC type acceptance application, and the result are accurate.

Respectfully,

Report Prepared by:

S. Iwasawa

S. Iwasawa
Engineer of Design Section

Approved by:

H. Iida

H. Iida
Manager
Design Section

Table of contents

Data for the acceptance of the Koden Marine Radar Type RA54

List of Exhibit

Exhibit Number

- 1 RF Power Output (2.985)
- 2 Modulation Characteristics (2.987)
- 3 Occupied Bandwidth (2.989)
- 4 Spurious Emissions at Antenna Terminal (2.991)
- 5 Spurious Emissions Field Strength (2.993)
- 6 Frequency Stability (2.995)

Foreword

The following information is being submitted in compliance with paragraphs 2.983, 2.985, 2.987, 2.989, 2.991, 2.993 and 2.995 as provided by part 83 of the FCC Rules and Regulations for Type Acceptance of the Koden Marine Radar, Type RA54.

All testing was performed by the Koden Electronics Co., Ltd.

Uenohara Factory, 5278, Uenohara, Uenohara-Machi, Kitatsuru-Gun, Yamanashi, 409-0112, Japan.

STANDARD TEST CONDITIONS

and

ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedure were observed during the testing:

ROOM TEMPERATURE	= 25 +/- 5 Degree-Centigrade
ROOM HUMIDITY	= 20 to 50%

Prior to testing, the E.U.T. was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

MEASUREMENT DATA, unless otherwise noted, are WORST CASE measurements.

Exhibit 1

RF POWER OUTPUT (2.985)

Type of Transmission: P0N
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30 MHz
Frequency Source: Fixed Cavity Resonator
Pulse Rate: 500 Hz to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>
1.	X-Band Directional Coupler	Hewlett-Packard	X752D
2.	Variable Attenuator	Hewlett-Packard	X382A
3.	Power Meter	ANRITSU	ML83A
4.	Crystal Detector	Hewlett-Packard	423B
5.	Oscilloscope	TEKTRONIX	2445
6.	Frequency meter	Hewlett-Packard	X532B
7.	X-Band Dummy Load	NIHON KOSHUHA	WDL095

TEST PROCEDURE

The Marine Radar is capable of generating the following pulses:

80ns x 2000Hz, 300ns x 1500Hz, 0.6us x 1000Hz, 1.0us x 500Hz

The Power output for each of these combinations was measured by using the following procedure:

- (1) Set up the equipment as shown in Fig.1.
- (2) Record reading of Power Meter.
- (3) Calculate mean power according to attenuation.
- (4) Measure and record pulse width and P.R.F. by using oscilloscope and frequency counter.
- (5) Calculate peak power as follows:

$$P_0 = P_m / (F_r \times T)$$

P_0 : Peak Power, P_m : Mean Power, F_r : P.R.F.*

T : Pulse Width, * P.R.F. : Pulse Repetition Frequency

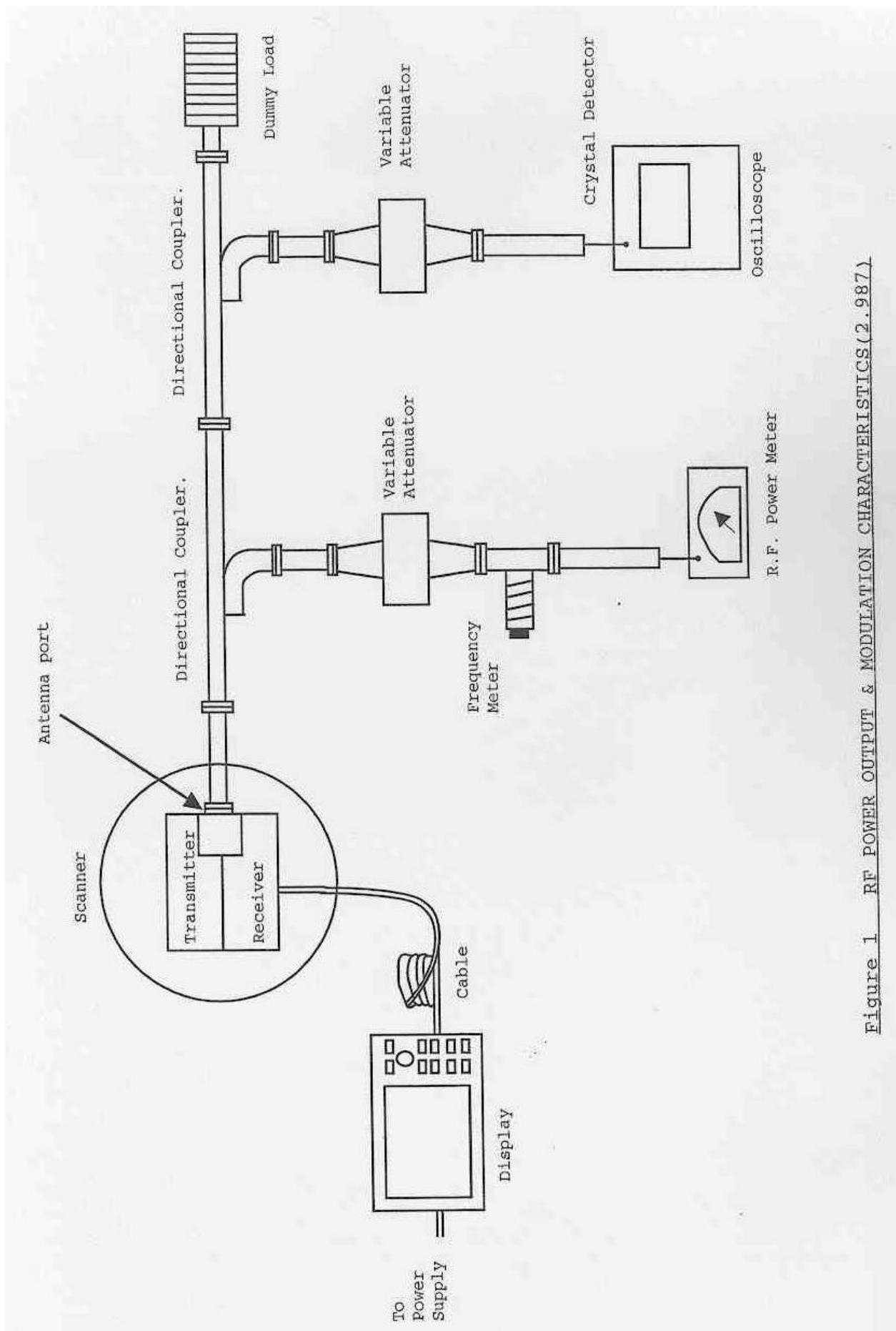


Figure 1 RF POWER OUTPUT & MODULATION CHARACTERISTICS (2.987)

Exhibit 1

TEST RESULT

<u>Transmit Pulse width and P.R.F.</u>	<u>Measured Mean Power</u>	<u>Measured Pulse width</u>	<u>Measured P.R.F.</u>	<u>Calculated Peak power Output</u>
80ns X 2000Hz	1.79W	86ns	2020Hz	10.3kW
300ns X 1500Hz	4.76W	262ns	1488Hz	12.2kW
600ns X 1000Hz	6.25W	512ns	992Hz	12.3kW
1000ns X 500Hz	6.37W	1003ns	496	12.8kW

Exhibit 2

MODULATION CHARACTERISTICS (2.987)

Type of Transmission: P0N
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30MHz
Frequency Source: Fixed Cavity Resonator
Pulse Rate: 500 to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>
1.	X-Band Directional Coupler	Hewlett-Packard	X752D
2.	Variable Attenuator	Hewlett-Packard	X382A
3.	Power Meter	ANRITSU	ML83A
4.	Crystal Detector	Hewlett-Packard	423B
5.	Oscilloscope	TEKTRONIX	2445
6.	Frequency meter	Hewlett-Packard	X532B
7.	X-Band Dummy Load	NIHON KOSHUHA	WDL095

TEST PROCEDURES

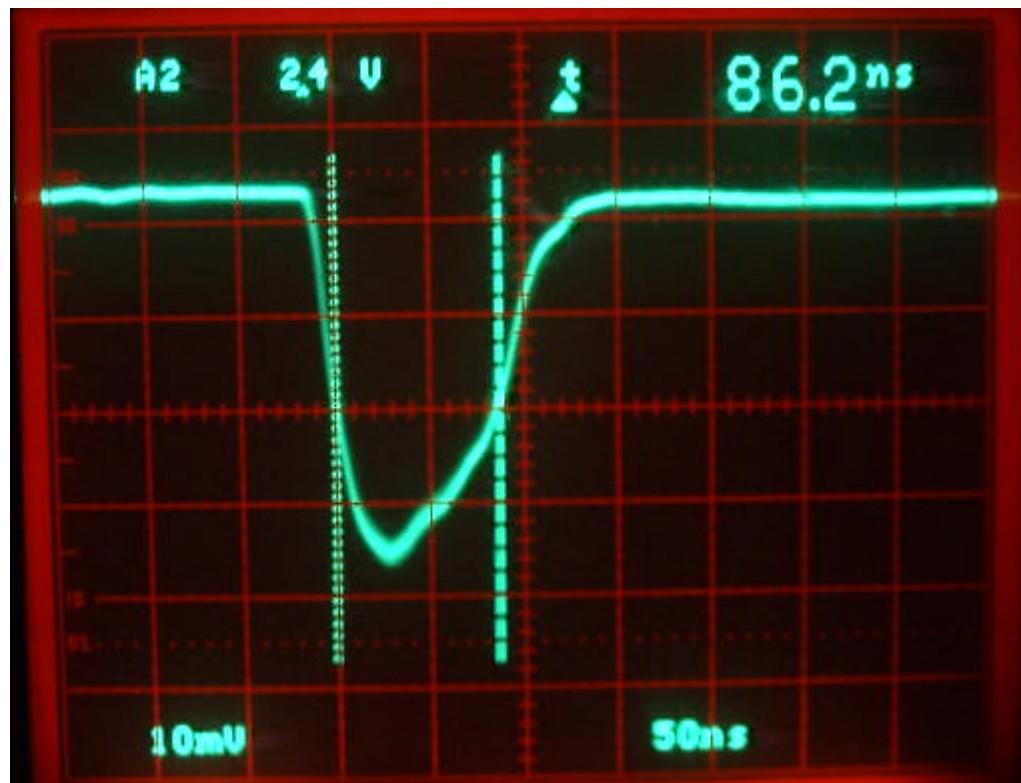
The Marine Radar is capable of generating the following pulses:

0.08 us x 2000 Hz, 0.3 us x 1500 Hz, 0.6 us x 1000 Hz, 1.0 us x 500 Hz

The Modulation characteristics for each of these combinations was measured by using the following procedure:

- (1) Set up the equipment as shown in Fig.1.
- (2) Obtain a convenient display on the oscilloscope and adjust peak to the suitable cursor line.
- (3) Decrease variable attenuator 3 dB, and measure the pulse width at the cursor line.
- (4) Photograph the oscilloscope display.
- (5) Note and record the Frequency Readout of the counter as "Pulse Repetition Frequency".

Exhibit 2


TEST RESULT

Modulation Characteristics
(Detected Pulse)

(1) Short Pulse

Pulse width (-3 dB) = 0.086 us

Pulse repetition Frequency = 2020 Hz

50 ns/div.

Exhibit 2


TEST RESULT

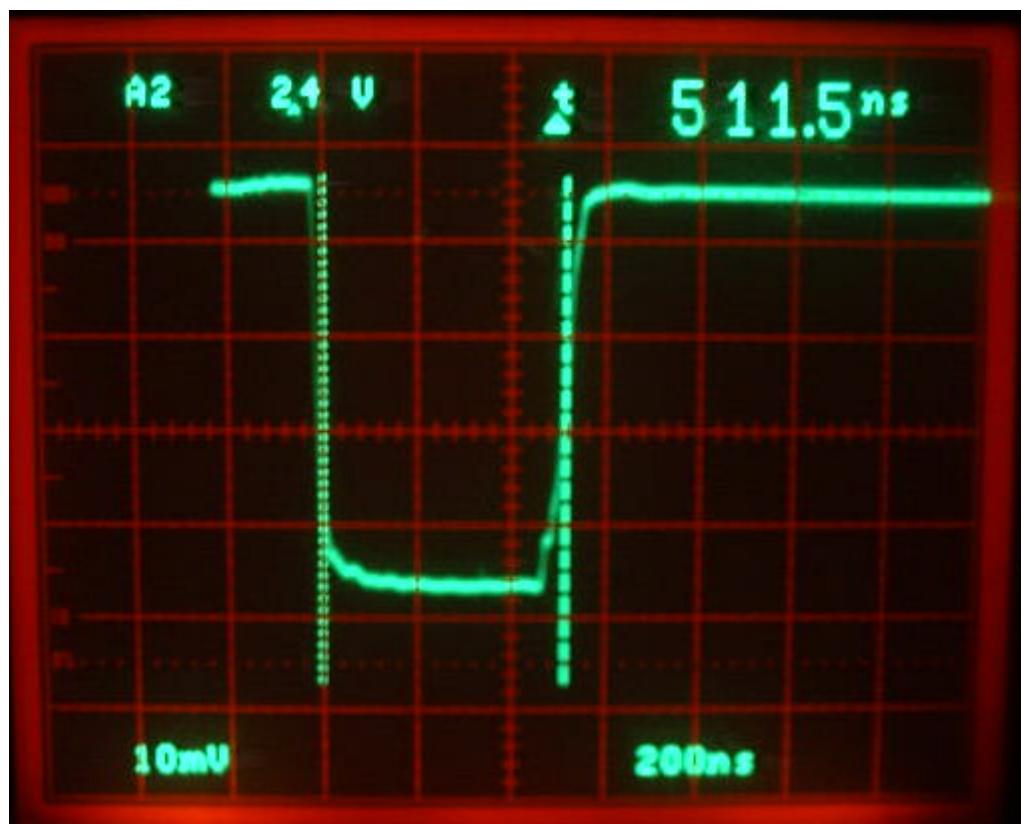
Modulation Characteristics
(Detected Pulse)

(2) Middle Pulse-1

Pulse width (-3 dB) = 0.262 us

Pulse repetition Frequency = 1488 Hz

50 ns/div.


TEST RESULT

Modulation Characteristics
(Detected Pulse)

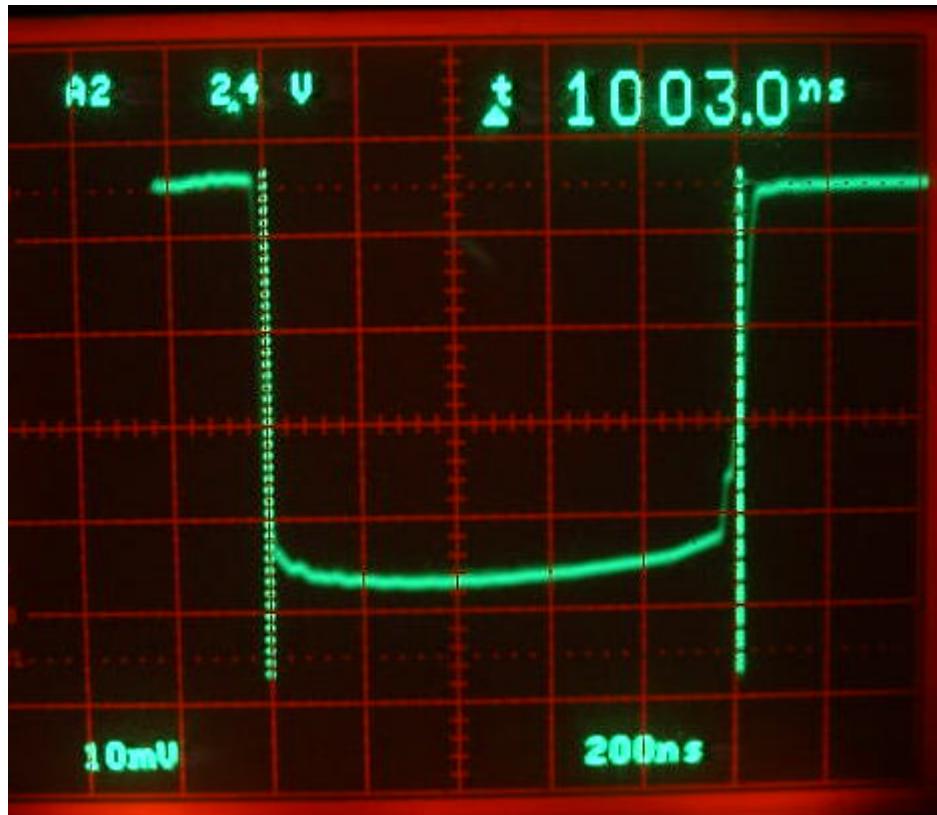
(3) Middle Pulse-2

Pulse width (-3 dB) = 0.512 us

Pulse repetition Frequency = 992 Hz

200 ns/div.

Exhibit 2


TEST RESULT

Modulation Characteristics
(Detected Pulse)

(4) Long Pulse

Pulse width (-3 dB) = 1.003 us

Pulse repetition Frequency = 496 Hz

200 ns/div.

Exhibit 3

OCCUPIED BANDWIDTH (2.989)

Type of Transmission: P0N
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30 MHz
Frequency Source: Fixed Cavity Resonator
Pulse Rate: 500 Hz to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>
1.	X-Band Directional Coupler	Hewlett-Packard	X752D
2.	Variable Attenuator	Hewlett-Packard	X382A
3.	X-Band Dummy Load	NIHON KOSHUHA	WDL095
4.	Spectrum Analyzer	Hewlett-Packard	8566B

TEST PROCEDURE

The Marine Radar is capable of generating the following pulses:

0.08 us x 2000 Hz, 0.3 us x 1500 Hz, 0.6 us x 1000 Hz, 1.0 us x 500 Hz

The occupied bandwidth for each of these combinations was measured by using the following procedure:

- (1) Connect the equipment as shown in Fig.3.
- (2) Adjust center frequency, span reference level of spectrum analyzer and attenuator if necessary, such that the display nearly fills the screen.
- (3) Measure and record spectrum and bandwidth

The bandwidth is calculated so that the total powers lower than the lowest frequency in the bandwidth and higher than the highest frequency in the bandwidth occupy 0.5% of the transmitted total power respectively.

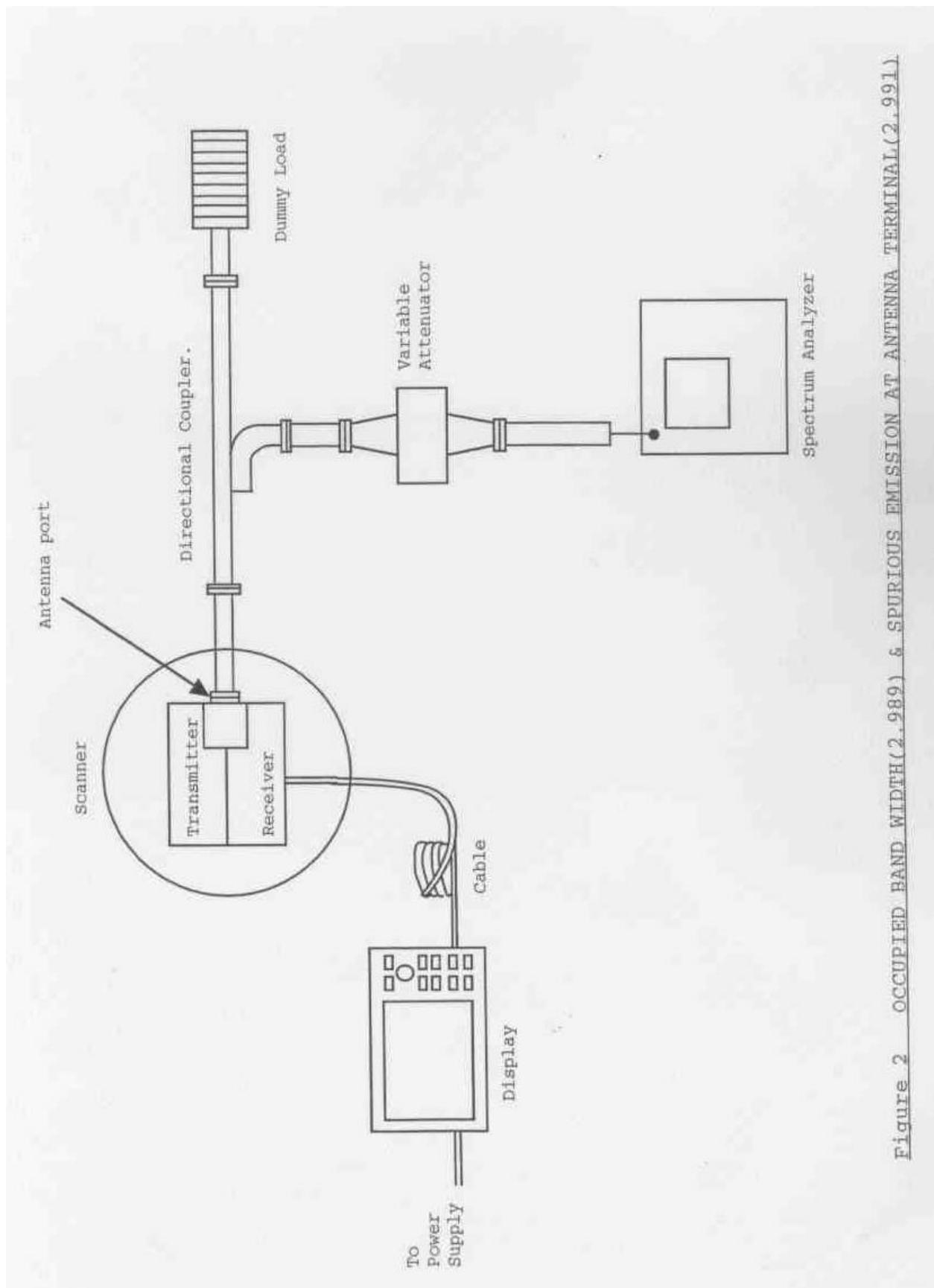
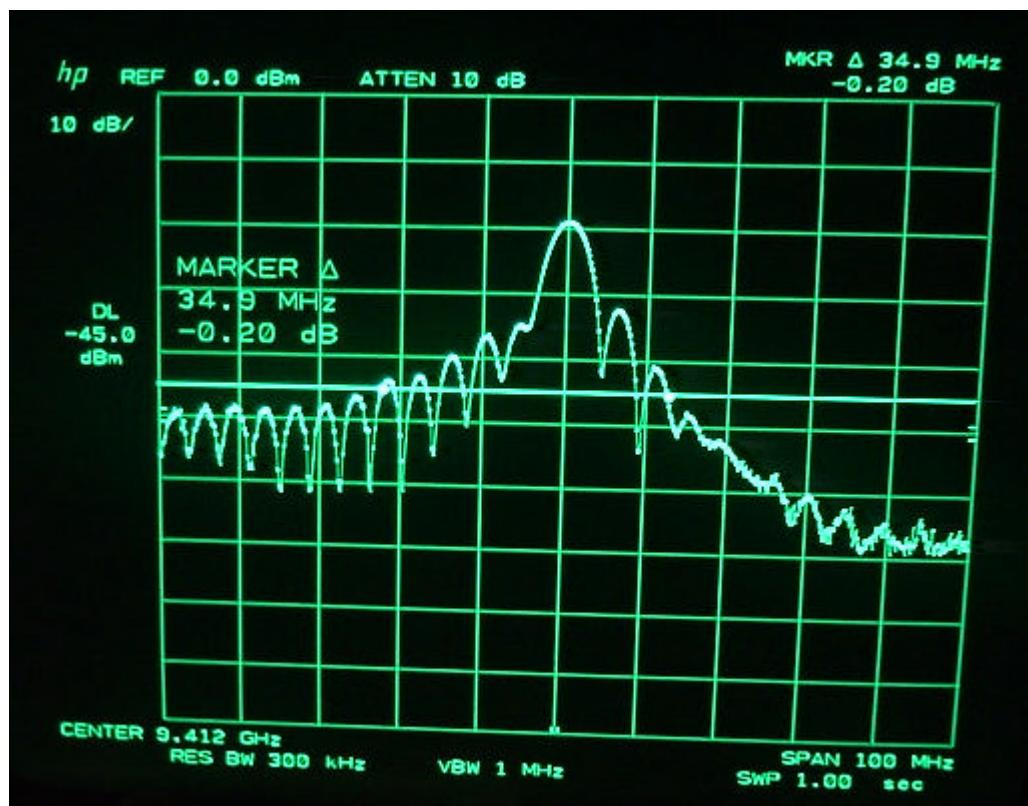


Figure 2 OCCUPIED BAND WIDTH(2.989) & SPURIOUS EMISSION AT ANTENNA TERMINAL(2.991)

Exhibit 3

TEST RESULT

Transmission Spectrum of 0.08 us X 2000 Hz

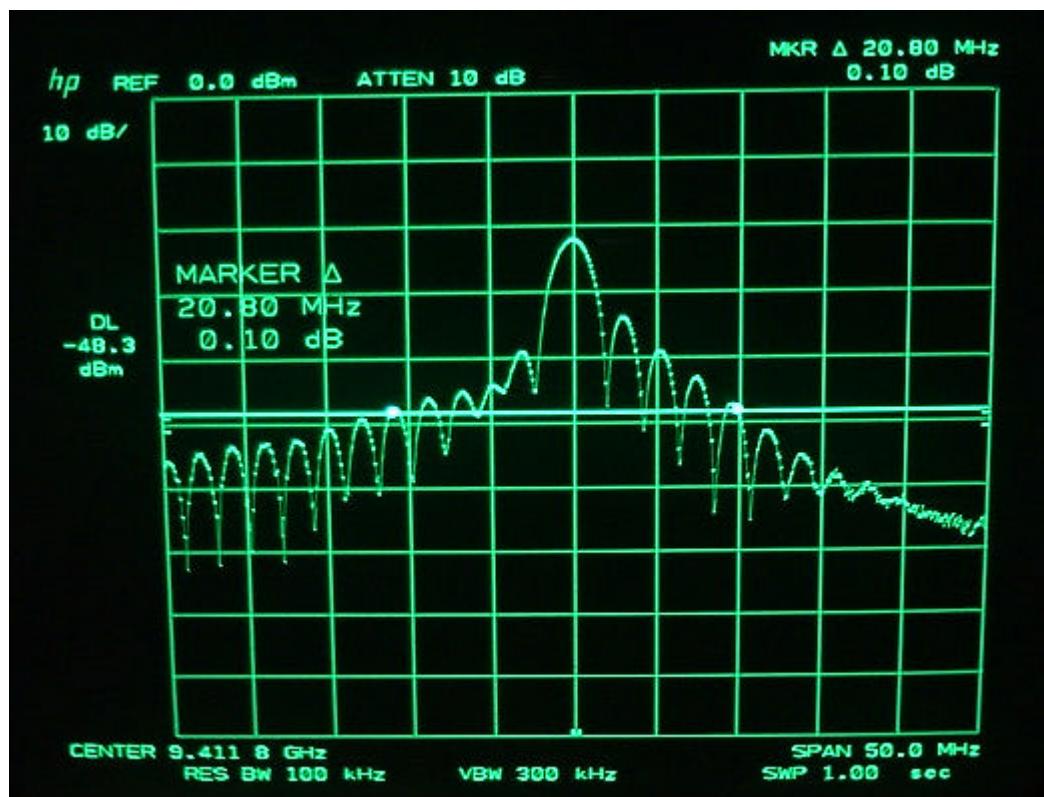

Center frequency	:	9.413GHz
Frequency span	:	200 MHz/div.
Level	:	10 dB/div.
Resolution band width	:	1 MHz/div.
Video band width	:	3 MHz/div.
Sweep time	:	1.0 sec

Occupied band width : 102.7 MHz

Exhibit 3

TEST RESULT

Transmission Spectrum of 0.3 us X 1500 Hz

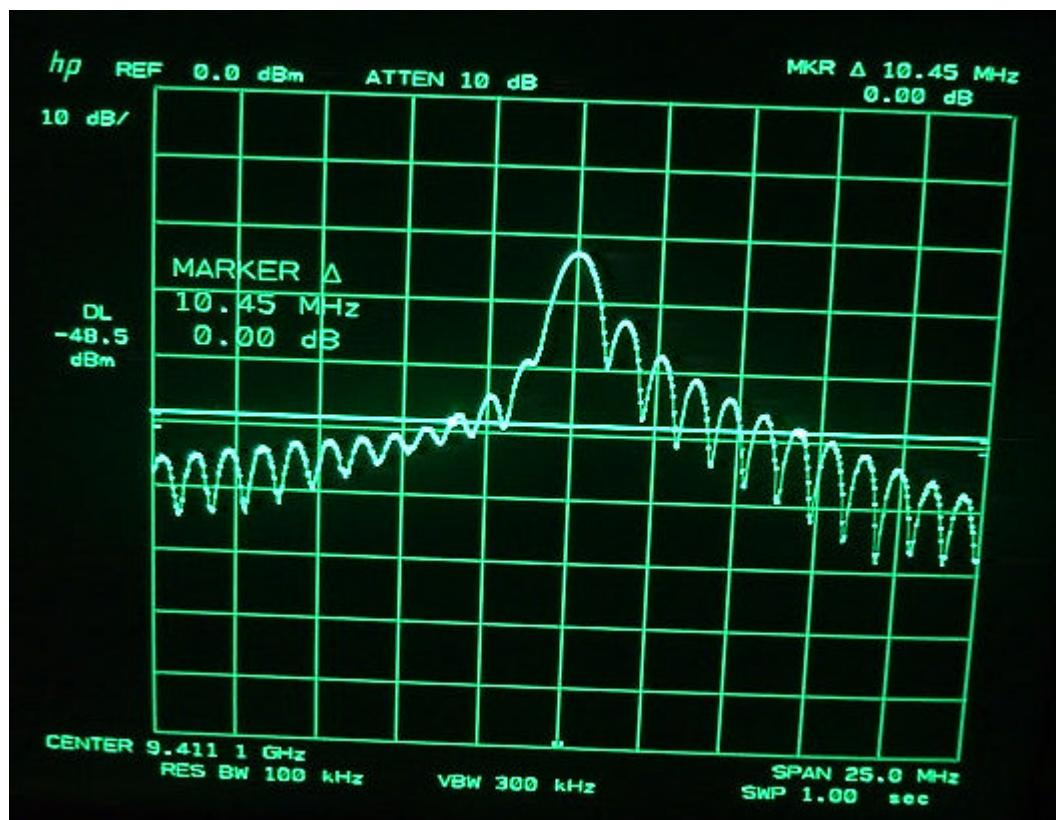

Center frequency	:	9.412GHz
Frequency span	:	100 MHz/div.
Level	:	10 dB/div.
Resolution band width	:	300 kHz/div.
Video band width	:	1 MHz/div.
Sweep time	:	1.0 sec/div.

Occupied band width : 34.9 MHz

Exhibit 3

TEST RESULT

Transmission Spectrum of 0.6 us X 1000 Hz


Center frequency	:	9.411GHz
Frequency span	:	50 MHz/div.
Level	:	10 dB/div.
Resolution band width	:	100 kHz/div.
Video band width	:	300 kHz/div.
Sweep time	:	1.0 sec/div.

Occupied band width : 20.8 MHz

Exhibit 3

TEST RESULT

Transmission Spectrum of 1.0 us X 500 Hz

Center frequency	:	9.411GHz
Frequency span	:	25 MHz/div.
Level	:	10 dB/div.
Resolution band width	:	100 kHz/div.
Video band width	:	300 kHz/div.
Sweep time	:	1.0 sec/div.

Occupied band width : 10.45 MHz

Exhibit 3

TEST RESULT

Pulse x rate	Bandwidth
0.08 us X 2000 Hz	102.7 MHz
0.3 us X 1500 Hz	34.9 MHz
0.6 us X 1000 Hz	20.8 MHz
1.0 us X 500 Hz	10.45 MHz

Exhibit 4

SPURIOUS EMISSION AT ANTENNA TERMINAL (2.991)

Type of Transmission: PON
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30MHz
Frequency Source: Fixed cavity resonator
Pulse Rate: 500 Hz to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>
1.	Directional Coupler	Hewlett-Packard	X752D
2.	Variable Attenuator	Hewlett-Packard	X382A
3.	Spectrum Analyzer	Hewlett-Packard	8566B

TEST PROCEDURE

The Marine Radar is capable of generating the following pulse:

0.08 us x 2000 Hz, 0.3 us x 1500 Hz, 0.6 us x 1000 Hz, 1.0 us x 500 Hz

The spurious emission at the antenna terminal for each of these combinations were measured by using the following procedure:

- (1) Set up the equipment as shown in Fig.2
- (2) At first, the 0 dB reference level for the main Pulse was established.
- (3) The spectrum was searched over the range 0 to 22 GHz using spectrum analyzer.

NOTE

The FCC limit is calculated as follows:

Spurious limit (L)=43 + 10 Log P, in dB below the transmitter output power, where P is the mean power output in watts (See Exhibit 1).

Exhibit 4

TEST RESULT

9410 MHz	0 dB
2nd	-64 dB

All other spurious and harmonics up to 22 GHz were found to be than -70dB below maximum mean power, and/or 13 dB below limit.

Limit: $-(43 + 10 \log 6.37) = -51.0 \text{ dB}$

mean power: 6.37 watts at 1.0 us X 500 Hz.

Exhibit 5

SPRIOS EMISSIONS FIELD STRENGTH (2.993)

Type of Transmission: P0N
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30 MHz
Frequency Source: Fixed cavity resonator
Pulse Rate: 500 Hz to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>
1.	EMI Measuring system	Anritsu	ME2601A
2.	Antenna(10 kHz to 30 MHz)	AIL TECH	95010-1
3.	Antenna(30 MHz to 200 MHz)	EMCO	3104(Biconical)
4.	Antenna(200 MHz to 1 GHz)	EMCO	3164(Log-Periodic)
5.	Antenna(1 GHz to 23 GHz)	EMCO	3115(Double Ridged Guide)
6.	Spectrum analyzer	Anritsu	MS710C
7.	Mains Network	Anritsu	MN424B
8.	Pre Amplifier	8447D	Hewlett-Packard

CALIBRATION

All test equipment is calibrated and maintained by Koden Quality Assurance Dept.

TEST PROCEDURE

The Marine Radar is capable of generating the following pulses:

80ns x 2000Hz, 300ns x 1500Hz, 0.6us x 1000Hz, 1.0us x 500Hz

The spurious emissions field strength for each of these combination was measured using following procedure.

- (1) Set up the equipment as shown in Fig.3.
- (2) Using the automatic EMI Measuring System, measure and record the spurious radiated emissions from 150 kHz to 1 GHz. The computer in the Measuring system program automatically adds antenna factors and cable losses to the raw voltage measurements to obtain field strength units.
- (3) Set up the equipment as shown in Fig.4.
- (4) Measure and record spurious radiated emissions from 1 GHz to 18GHz (antenna

limit). Observe and note any emissions from 1GHz to 18 GHz.

(5) Calculate the field strength of spurious emissions from 1 GHz to 18 GHz by add in antenna factor (including cable loss) to the observed reading. The 3115(Double Ridged Guide) antenna gain and cable loss is calculated by the Table-5.1 below.

(6) Set up the equipment as shown in Fig.5.

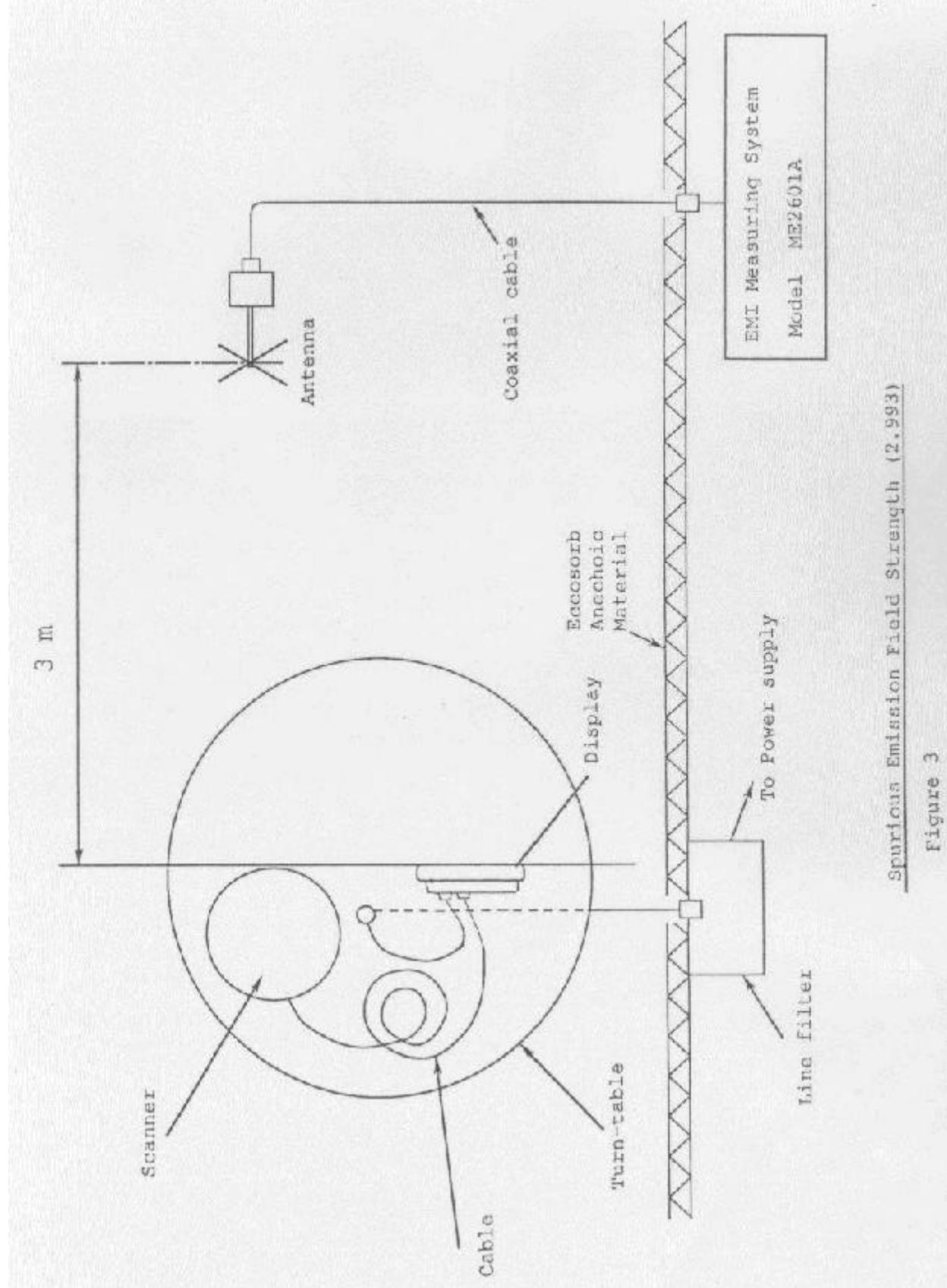
(7) Using the spectrum analyzer, measure and record terminal interference voltage from 10 kHz to 30 MHz.

Table-5.1 3115(Double Ridged Guide) Antenna Gain and Cable Loss

Frequency(GHz)	3115 Antenna Gain(dBi)	Cable Loss(dB/m)	Wave Length(m)
1 - 2	8.2	0.4	0.20
2 - 3	8.9	0.5	0.12
3 - 4	9.0	0.7	0.09
4 - 5	10.2	0.8	0.07
5 - 6	8.8	0.9	0.05
6 - 7	10.9	1.0	0.04
7 - 8	10.1	1.1	0.04
8 - 9	10.7	1.2	0.03
9 - 10	11.3	1.2	0.03
10 - 11	11.1	1.3	0.03
11 - 12	11.9	1.4	0.02
12 - 13	13.5	1.5	0.02
13 - 14	12.0	1.6	0.02
14 - 15	12.6	1.6	0.02
15 - 16	15.8	1.7	0.02
16 - 17	15.8	1.8	0.02
17 - 18	11.0	1.8	0.02

Note

Spurious emission limit is calculated as follows:


Limit (L) = $43 + 10 \log P$, in dB below the fundamental field strength, where P is the mean power output in watts (See Exhibit 1).

$$\text{Limit: } -(43 + 10 \log 6.37) = -51.0 \text{ dB}$$

mean power: 6.37 watts at 1.0 us X 500 Hz

Test result(All data)

	Frequency	Measurement Level	Ratio to Main Transmission	Refer to
Spurious Emission Field Strength	9.410GHz	124dB _u /m	0dB	Figure 4
	150kHz to 30MHz	Max. 57.0dB _u /m	-67.0dB	Figure 3
	30MHz to 1GHz	Max. 48.8dB _u /m	-75.2dB	Figure 3
	1GHz to 18GHz	Max. 60dB _u /m	-64dB	Figure 4
Terminal Interference Voltage	10kHz to 30MHz	58.5dB _{uV}	(-65.5dB)	Figure 5

Spurious Emission Field Strength (2.993)

Figure 3

SPURIOUS EMISSIONS FIELD STRENGTH (2.993) (1GHz - 18GHz)

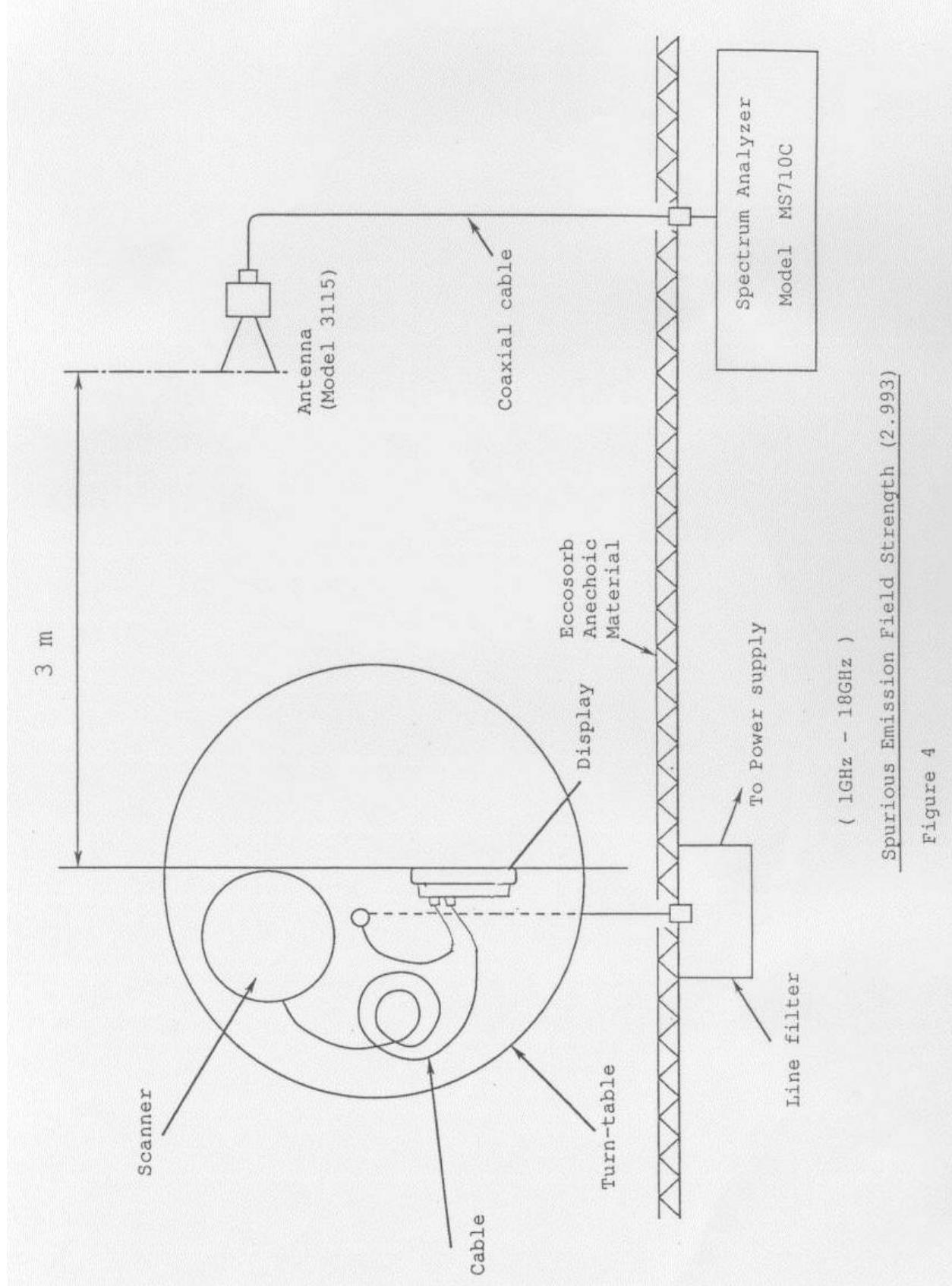
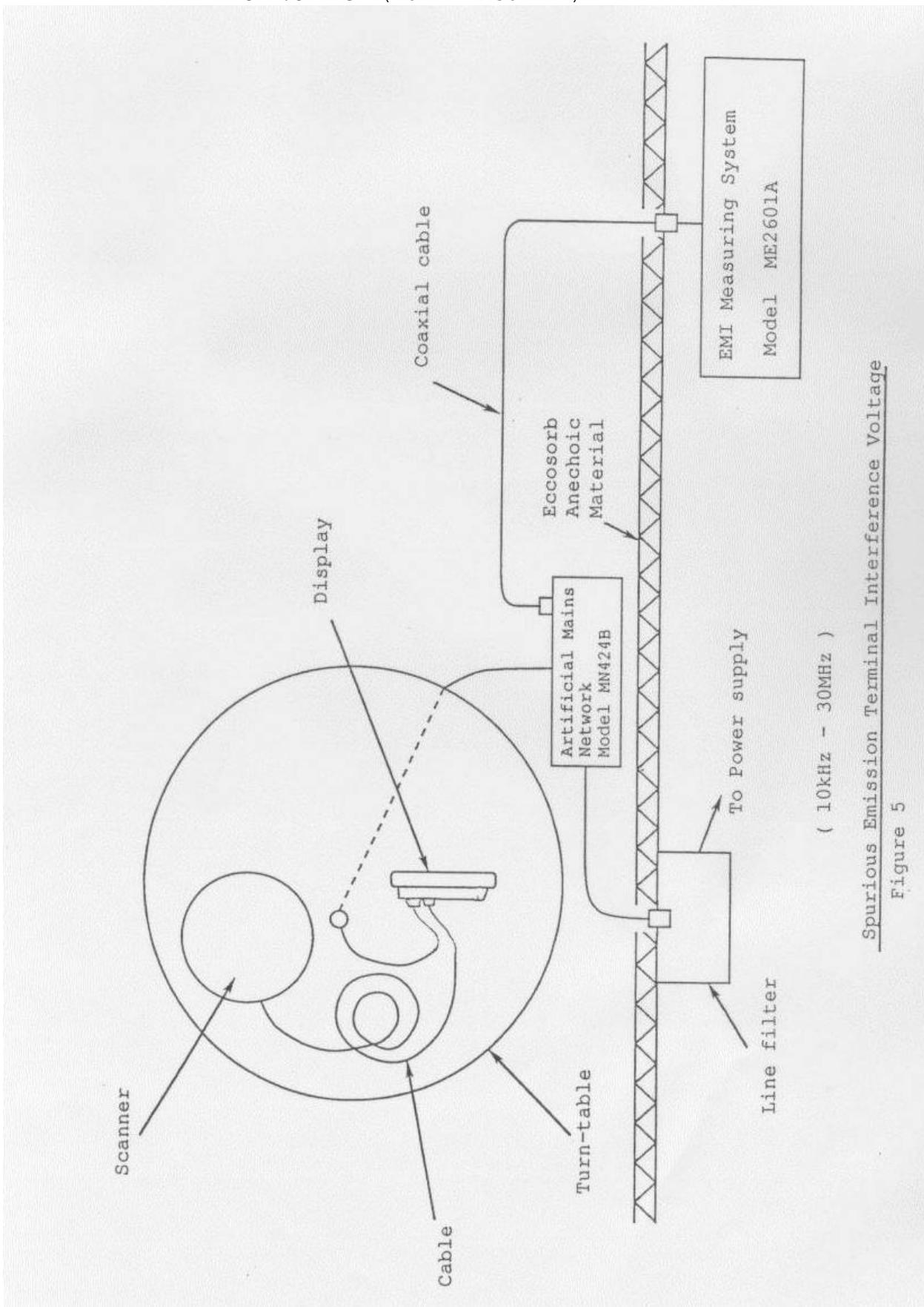



Figure 4

SPURIOUS EMISSIONS FIELD STRENGTH (2.993)

TERMINAL INTERFERENCE VOLTAGE (10kHz - 30MHz)

4. TEST RESULTS**4.1 ELECTRIC FIELD STRENGTH****4.1.1 TEST RESULTS OF MAGNETIC FIELD STRENGTH****4.1.1.1 STANDBY**

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : Standby
 Date : 20 Apr.2001
 Condition : 24°C 48%

QUASI-PEAK LEVEL

FREQ MHz	FSM dBuV	CL dB	AF dB	EFS dBuV/m	MRGN dB	Limit dBuV/m	Note
0.1500	44.1	0.0	10.0	54.1	25.9	80.0	Q.
0.2000	46.5	0.0	10.0	56.5	11.9	68.4	Q.
0.3000	37.9	0.0	10.0	47.9	4.1	52.0	Q.
0.4000	35.0	0.0	10.0	45.0	5.9	50.9	Q.
0.5000	32.9	0.0	10.0	42.9	7.1	50.0	Q.
0.7500	28.3	0.0	10.0	38.3	10.1	48.4	Q.
1.0000	26.6	0.0	10.0	36.6	10.7	47.3	Q.
2.0000	18.5	0.1	10.0	28.6	16.0	44.6	Q.
3.0000	14.8	0.1	10.0	24.9	18.1	43.0	Q.
4.0000	12.3	0.1	10.0	22.4	19.5	41.9	Q.
5.0000	10.2	0.1	10.0	20.3	20.7	41.0	Q.
7.5000	7.0	0.1	10.0	17.1	22.3	39.4	Q.
10.0000	4.8	0.1	10.0	14.9	23.4	38.3	Q.
15.0000	2.0	0.1	9.5	11.6	25.1	36.7	Q.
19.6715	12.5	0.1	9.0	21.6	14.0	35.6	Q.
19.7816	13.2	0.1	9.0	22.3	13.3	35.6	Q.
19.8910	12.9	0.1	9.0	22.0	13.6	35.6	Q.
20.0000	6.3	0.1	9.0	15.4	20.2	35.6	Q.
20.0071	12.1	0.1	9.0	21.2	14.4	35.6	Q.
25.0000	1.0	0.1	7.9	9.0	25.7	34.7	Q.
30.0000	4.1	0.1	6.8	11.0	23.0	34.0	Q.

FSM : Field Strength Meter Reading
 CL : Cable Loss
 AF : Antenna Factor
 EFS : Electric Field Strength (EFS=FSM+CL+AF)
 MRGN : Margin (MRGN=Limit-EFS)
 Q : CISPR Quasi-Peak
 L : Loop Antenna
 M6 : Maximum Six Data

4.1.1.2 S-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, S-Pulse
 Date : 20 Apr. 2001
 Condition : 24°C 48%

QUASI-PEAK LEVEL

FREQ MHz	FSM dBuV	CL dB	AF dB	EFS dBuV/m	MRGN dB	Limit dBuV/m	Note
0.1500	44.6	0.0	10.0	54.6	25.4	80.0	Q,
0.2000	47.0	0.0	10.0	57.0	11.4	68.4	Q,
0.3000	38.1	0.0	10.0	48.1	3.9	52.0	Q,
0.4000	35.0	0.0	10.0	45.0	5.9	50.9	Q,
0.5000	33.0	0.0	10.0	43.0	7.0	50.0	Q,
0.7500	27.3	0.0	10.0	37.3	11.1	48.4	Q,
1.0000	26.8	0.0	10.0	36.8	10.5	47.3	Q,
2.0000	18.4	0.1	10.0	28.5	16.1	44.6	Q,
3.0000	14.8	0.1	10.0	24.9	18.1	43.0	Q,
4.0000	12.2	0.1	10.0	22.3	19.6	41.9	Q,
5.0000	10.3	0.1	10.0	20.4	20.6	41.0	Q,
7.5000	6.8	0.1	10.0	16.9	22.5	39.4	Q,
10.0000	4.8	0.1	10.0	14.9	23.4	38.3	Q,
15.0000	2.0	0.1	9.5	11.6	25.1	36.7	Q,
19.7599	13.3	0.1	9.0	22.4	13.2	35.6	Q,
19.8663	13.5	0.1	9.0	22.6	13.0	35.6	Q,
19.9798	12.9	0.1	9.0	22.0	13.6	35.6	Q,
20.0000	4.6	0.1	9.0	13.7	21.9	35.6	Q,
25.0000	1.4	0.1	7.9	9.4	25.3	34.7	Q,
30.0000	6.1	0.1	6.8	13.0	21.0	34.0	Q,

FSM : Field Strength Meter Reading
 CL : Cable Loss
 AF : Antenna Factor
 EFS : Electric Field Strength (EFS=FSM+CL+AF)
 MRGN : Margin (MRGN=Limit-EFS)
 Q : CISPR Quasi-Peak
 L : Loop Antenna
 M6 : Maximum Six Data

4.1.1.3 L-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, L-Pulse
 Date : 20 Apr. 2001
 Condition : 24°C 48%

QUASI-PEAK LEVEL

FREQ MHz	FSM dBuV	CL dB	AF dB	EFS dBuV/m	MRGN dB	Limit dBuV/m	Note
0.1500	45.2	0.0	10.0	55.2	24.8	80.0	Q,
0.2000	47.0	0.0	10.0	57.0	11.4	68.4	Q,
0.3000	37.6	0.0	10.0	47.6	4.4	52.0	Q,
0.4000	35.3	0.0	10.0	45.3	5.6	50.9	Q,
0.5000	33.4	0.0	10.0	43.4	6.6	50.0	Q,
0.7500	29.2	0.0	10.0	39.2	9.2	48.4	Q,
1.0000	28.5	0.0	10.0	38.5	8.8	47.3	Q,
2.0000	18.5	0.1	10.0	28.6	16.0	44.6	Q,
3.0000	15.0	0.1	10.0	25.1	17.9	43.0	Q,
4.0000	12.3	0.1	10.0	22.4	19.5	41.9	Q,
5.0000	10.5	0.1	10.0	20.6	20.4	41.0	Q,
7.5000	7.0	0.1	10.0	17.1	22.3	39.4	Q,
10.0000	4.9	0.1	10.0	15.0	23.3	38.3	Q,
15.0000	2.1	0.1	9.5	11.7	25.0	36.7	Q,
19.6637	12.7	0.1	9.0	21.8	13.8	35.7	Q,
19.7771	13.5	0.1	9.0	22.6	13.0	35.6	Q,
19.8903	13.2	0.1	9.0	22.3	13.3	35.6	Q,
20.0000	7.0	0.1	9.0	16.1	19.5	35.6	Q,
20.0181	12.7	0.1	9.0	21.8	13.8	35.6	Q,
25.0000	1.8	0.1	7.9	9.8	24.9	34.7	Q,
30.0000	6.9	0.1	6.8	13.8	20.2	34.0	Q,

FSM : Field Strength Meter Reading
 CL : Cable Loss
 AF : Antenna Factor
 EFS : Electric Field Strength (EFS=FSM+CL+AF)
 MRGN : Margin (MRGN=Limit-EFS)
 Q : CISPR Quasi-Peak
 L : Loop Antenna
 M6 : Maximum Six Data

4.1.2 TEST RESULTS OF ELECTRIC FIELD STRENGTH
4.1.2.1 STANDBY

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : Standby
 Date : 13 Apr. 2001
 Condition : 23°C 46%

(VERTICAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.596	50.8	25.0	2.0	0.5	6.9	35.2	18.8	54.0	334	1.0	Q,
157.434	15.7	25.0	2.9	0.8	10.6	5.0	18.5	23.5	127	2.0	Q,
159.613	25.2	25.0	2.6	0.8	10.4	14.1	9.4	23.5	153	2.0	Q,
161.692	24.7	25.0	2.4	0.8	10.3	13.2	10.3	23.5	218	1.0	Q,
201.597	41.9	25.0	-0.2	0.9	9.3	26.9	27.1	54.0	278	1.0	Q,
251.994	51.9	25.0	0.8	1.1	12.6	41.4	12.6	54.0	352	1.6	Q,
327.604	46.7	25.0	-0.5	1.3	14.4	36.8	17.2	54.0	169	1.5	Q,
453.607	44.9	25.0	-0.2	1.6	17.1	38.4	15.6	54.0	189	2.0	Q,
529.205	48.4	25.0	0.2	1.8	18.9	44.2	9.8	54.0	344	1.0	Q,
554.405	49.0	25.0	0.2	1.8	19.6	45.7	8.3	54.0	15	1.0	Q,
579.606	51.9	25.0	-0.1	1.9	19.8	48.4	5.6	54.0	15	1.9	Q,
629.999	48.6	25.0	-0.3	2.0	20.1	45.4	8.6	54.0	14	2.0	Q,

(HORIZONTAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.596	51.1	25.0	-4.3	0.5	6.9	29.2	24.8	54.0	97	2.0	Q,
157.434	19.0	25.0	1.8	0.8	10.6	7.2	16.3	23.5	326	2.0	Q,
159.613	25.3	25.0	1.9	0.8	10.4	13.5	10.0	23.5	115	2.0	Q,
161.692	28.0	25.0	2.0	0.8	10.3	16.1	7.4	23.5	142	2.0	Q,
201.597	50.8	25.0	1.8	0.9	9.3	37.8	16.2	54.0	355	1.0	Q,
251.994	52.7	25.0	0.3	1.1	12.6	41.7	12.3	54.0	236	1.0	Q,
327.604	50.6	25.0	-0.1	1.3	14.4	41.2	12.8	54.0	349	1.0	Q,
453.607	45.4	25.0	0.3	1.7	17.1	39.5	14.5	54.0	265	2.0	Q,
529.205	50.1	25.0	0.5	1.8	19.0	46.4	7.6	54.0	0	1.1	Q,
554.405	48.6	25.0	0.4	1.8	19.6	45.4	8.6	54.0	357	1.1	Q,
579.606	49.3	25.0	0.4	1.9	19.8	46.3	7.7	54.0	356	1.9	Q,
629.999	43.8	25.0	-0.5	2.0	20.1	40.4	13.6	54.0	77	1.9	Q,

MFSM : Maximum Field Strength Meter Reading
 PAG : Pre-Amplifier Gain
 SAL : Site Attenuation Loss
 CL : Cable Loss
 AF : Antenna Factor
 MEFS : Maximum Electric Field Strength (MEFS=MFSM-PAG+SAL+CL+AF)
 MRGN : Margin (MRGN=Limit-MEFS)
 DIR : Direction of Turn Table
 ANT.H : Antenna Height
 Q : CISPR Quasi-Peak
 B : Broad Band Dipole Antenna
 D : Dipole Antenna
 M6 : Maximum Six Data

4.1.2.2 S-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, S-Pulse
 Date : 13 Apr. 2001
 Condition : 24°C 46%

(VERTICAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.597	52.2	25.0	2.0	0.5	6.9	36.6	17.4	54.0	350	1.0	Q,
157.438	22.7	25.0	2.9	0.8	10.6	12.0	11.5	23.5	206	1.0	Q,
159.602	24.2	25.0	2.6	0.8	10.4	13.1	10.4	23.5	189	1.0	Q,
161.692	21.4	25.0	2.4	0.8	10.3	9.9	13.6	23.5	141	2.0	Q,
201.600	42.9	25.0	-0.2	0.9	9.3	27.9	26.1	54.0	146	1.0	Q,
252.003	50.2	25.0	0.8	1.1	12.6	39.7	14.3	54.0	272	1.5	Q,
277.200	46.4	25.0	-0.2	1.1	13.1	35.5	18.5	54.0	237	1.0	Q,
327.602	47.1	25.0	-0.5	1.3	14.4	37.2	16.8	54.0	170	1.4	Q,
453.604	45.1	25.0	-0.2	1.6	17.1	38.6	15.4	54.0	180	2.0	Q,
529.201	47.6	25.0	0.2	1.8	18.9	43.4	10.6	54.0	355	1.8	Q,
579.604	52.2	25.0	-0.1	1.9	19.8	48.7	5.3	54.0	6	2.0	Q,
604.804	49.4	25.0	-0.5	1.9	19.9	45.8	8.2	54.0	11	1.0	Q,
630.006	48.9	25.0	-0.3	2.0	20.1	45.7	8.3	54.0	15	2.0	Q,

(HORIZONTAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.597	51.2	25.0	-4.3	0.5	6.9	29.3	24.7	54.0	83	2.0	Q,
157.438	23.3	25.0	1.8	0.8	10.6	11.5	12.0	23.5	329	2.0	Q,
159.602	22.0	25.0	1.9	0.8	10.4	10.2	13.3	23.5	120	1.8	Q,
161.692	23.9	25.0	2.0	0.8	10.3	12.0	11.5	23.5	330	2.0	Q,
201.600	51.6	25.0	1.8	0.9	9.3	38.6	15.4	54.0	2	1.0	Q,
252.003	54.5	25.0	0.3	1.1	12.6	43.5	10.5	54.0	228	1.0	Q,
277.200	51.3	25.0	-0.9	1.1	13.1	39.7	14.3	54.0	221	1.0	Q,
327.602	50.7	25.0	0.3	1.3	14.5	41.8	12.2	54.0	354	1.0	Q,
453.604	45.3	25.0	0.3	1.7	17.1	39.4	14.6	54.0	272	1.9	Q,
529.201	49.3	25.0	0.5	1.8	18.9	45.5	8.5	54.0	15	1.2	Q,
579.604	51.1	25.0	0.3	1.9	19.8	48.1	5.9	54.0	7	1.2	Q,
604.804	43.6	25.0	0.2	1.9	19.9	40.6	13.4	54.0	1	1.1	Q,
630.006	40.9	25.0	-0.5	2.0	20.1	37.5	16.5	54.0	341	1.9	Q,

MFSM : Maximum Field Strength Meter Reading
 PAG : Pre-Amplifier Gain
 SAL : Site Attenuation Loss
 CL : Cable Loss
 AF : Antenna Factor
 MEFS : Maximum Electric Field Strength (MEFS=MFSM+PAG+SAL+CL+AF)
 MRGN : Margin (MRGN=Limit-MEFS)
 DIR : Direction of Turn Table
 ANT.H : Antenna Height
 Q : CISPR Quasi-Peak
 B : Broad Band Dipole Antenna
 D : Dipole Antenna
 M6 : Maximum Six Data

4.1.2.3 L-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, L-Pulse
 Date : 13 Apr. 2001
 Condition : 22°C 46%

(VERTICAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.597	54.0	25.0	2.0	0.5	6.9	38.4	15.6	54.0	10	1.0	Q,
157.304	28.7	25.0	2.9	0.8	10.6	18.0	5.5	23.5	198	1.0	Q,
159.603	25.3	25.0	2.6	0.8	10.4	14.2	9.3	23.5	203	1.0	Q,
161.702	21.0	25.0	2.4	0.8	10.3	9.5	14.0	23.5	211	1.0	Q,
163.801	27.0	25.0	2.2	0.8	10.1	15.1	8.4	23.5	172	2.0	Q,
226.796	46.6	25.0	0.4	1.0	11.0	34.0	20.0	54.0	1	2.0	Q,
251.996	52.4	25.0	0.8	1.1	12.6	41.9	12.1	54.0	359	1.6	Q,
277.200	47.3	25.0	-0.2	1.1	13.1	36.4	17.6	54.0	8	1.4	Q,
453.602	45.7	25.0	-0.2	1.6	17.1	39.2	14.8	54.0	180	2.0	Q,
529.206	47.6	25.0	0.2	1.8	18.9	43.4	10.6	54.0	356	1.7	Q,
579.607	52.3	25.0	-0.1	1.9	19.8	48.8	5.2	54.0	7	2.0	Q,
604.800	50.4	25.0	-0.5	1.9	19.9	46.8	7.2	54.0	339	2.0	Q,

(HORIZONTAL POLARIZATION)

FREQ MHz	MFSM dBuV	PAG dB	SAL dB	CL dB	AF dB	MEFS dBuV/m	MRGN dB	Limit dBuV/m	DIR deg	ANT.H m	Note
75.597	51.8	25.0	-4.3	0.5	6.9	29.9	24.1	54.0	89	2.0	Q,
157.304	25.8	25.0	1.8	0.8	10.6	14.0	9.5	23.5	235	1.9	Q,
159.603	25.9	25.0	1.9	0.8	10.4	14.1	9.4	23.5	110	2.0	Q,
161.702	20.5	25.0	2.0	0.8	10.3	8.6	14.9	23.5	322	2.0	Q,
163.801	26.9	25.0	2.0	0.8	10.1	14.8	8.7	23.5	128	2.0	Q,
226.796	50.4	25.0	1.6	1.0	11.0	39.0	15.0	54.0	29	1.0	Q,
251.996	52.5	25.0	0.3	1.1	12.6	41.5	12.5	54.0	245	1.0	Q,
277.200	51.3	25.0	-1.3	1.1	13.3	39.4	14.6	54.0	206	1.0	Q,
453.602	48.2	25.0	0.3	1.7	17.1	42.3	11.7	54.0	314	1.6	Q,
529.206	50.7	25.0	0.5	1.8	18.9	46.9	7.1	54.0	348	1.2	Q,
579.607	51.4	25.0	0.3	1.9	19.8	48.4	5.6	54.0	0	1.2	Q,
604.800	44.8	25.0	0.2	1.9	19.9	41.8	12.2	54.0	342	1.2	Q,

MFSM : Maximum Field Strength Meter Reading
 PAG : Pre-Amplifier Gain
 SAL : Site Attenuation Loss
 CL : Cable Loss
 AF : Antenna Factor
 MEFS : Maximum Electric Field Strength (MEFS=MFSM-PAG+SAL+CL+AF)
 MRGN : Margin (MRGN=Limit-MEFS)
 DIR : Direction of Turn Table
 ANT.H : Antenna Height
 Q : CISPR Quasi-Peak
 B : Broad Band Dipole Antenna
 D : Dipole Antenna
 M6 : Maximum Six Data

(Terminal Interference Voltage 10 kHz - 30 MHz)

4.2 CONDUCTED POWER-LINE STRENGTH

4.2.1 STANDBY

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : Standby
 Date : 11 May. 2001
 Condition : 22°C 55%

QUASI-PEAK LEVEL (ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN dB	Limit dBuV	Note
0.0386	56.4	0.0	0.6	57.0	18.0	75.1	Q,
0.0802	27.8	0.0	0.2	28.0	33.5	61.6	Q,
0.1220	30.1	0.0	0.1	30.2	23.6	53.8	Q,
0.1643	31.3	0.0	0.1	31.4	27.5	58.9	Q,
0.2506	26.0	0.0	0.0	26.0	27.9	53.9	Q,
2.4736	32.2	0.1	0.1	32.4	17.6	50.0	Q,
2.5490	30.5	0.1	0.1	30.7	19.3	50.0	Q,
2.5901	31.8	0.1	0.1	32.0	18.0	50.0	Q,
2.6386	28.5	0.1	0.1	28.7	21.3	50.0	Q,
22.4485	26.8	0.1	0.7	27.6	22.4	50.0	Q,

QUASI-PEAK LEVEL (OTHER ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN 6.11662	Limit dBuV	Note
0.0386	49.3	0.0	0.6	49.9	25.1	75.1	Q,
0.0802	19.8	0.0	0.2	20.0	41.5	61.6	Q,
0.1220	20.9	0.0	0.1	21.0	32.8	53.8	Q,
0.1643	24.6	0.0	0.1	24.7	34.2	58.9	Q,
0.2506	38.5	0.0	0.0	38.5	15.4	53.9	Q,
2.4736	32.5	0.1	0.1	32.7	17.3	50.0	Q,
2.5490	31.2	0.1	0.1	31.4	18.6	50.0	Q,
2.5901	32.3	0.1	0.1	32.5	17.5	50.0	Q,
2.6386	29.6	0.1	0.1	29.8	20.2	50.0	Q,
22.4485	22.3	0.1	0.5	22.9	27.1	50.0	Q,

FSM : Field Strength Meter Reading

CL : Cable Loss

LISN : LISN Factor

CPLS : Conducted Power-Line Strength (CPLS=FSM+CL+LISN)

MRGN : Margin (MRGN=Limit-CPLS)

Q : CISPR Quasi-Peak

4.2.2 S-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, S-Pulse
 Date : 14 May, 2001
 Condition : 22°C 51%

QUASI-PEAK LEVEL (ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN dB	Limit dBuV	Note
0.0414	57.9	0.0	0.6	58.5	15.3	73.8	Q,
0.1268	35.2	0.0	0.1	35.3	17.8	53.1	Q,
0.1697	31.6	0.0	0.1	31.7	26.9	58.5	Q,
0.2551	29.3	0.0	0.0	29.3	24.4	53.7	Q,
2.4606	31.0	0.1	0.1	31.2	18.8	50.0	Q,
2.5031	36.2	0.1	0.1	36.4	13.6	50.0	Q,
2.5693	32.5	0.1	0.1	32.7	17.3	50.0	Q,
12.1894	25.5	0.1	0.4	26.0	24.0	50.0	Q,
20.7625	23.5	0.1	0.7	24.3	25.7	50.0	Q,

QUASI-PEAK LEVEL (OTHER ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN 6.11662	Limit dBuV	Note
0.0414	48.4	0.0	0.6	49.0	24.8	73.8	Q,
0.1268	18.5	0.0	0.1	18.6	34.5	53.1	Q,
0.1697	25.6	0.0	0.1	25.7	32.9	58.5	Q,
0.2551	23.4	0.0	0.0	23.4	30.3	53.7	Q,
2.4606	31.8	0.1	0.1	32.0	18.0	50.0	Q,
2.5031	37.1	0.1	0.1	37.3	12.7	50.0	Q,
2.6141	32.8	0.1	0.1	33.0	17.0	50.0	Q,
12.1984	26.5	0.1	0.3	26.9	23.1	50.0	Q,
20.7625	25.5	0.1	0.5	26.1	23.9	50.0	Q,

FSM : Field Strength Meter Reading

CL : Cable Loss

LISN : LISN Factor

CPLS : Conducted Power-Line Strength (CPLS=FSM+CL+LISN)

MRGN : Margin (MRGN=Limit-CPLS)

Q : CISPR Quasi-Peak

4.2.3 L-PULSE

Product : Marine Radar
 Model : RA54
 Serial No. : E4360001
 Rating : 24VDC
 Mode : TX ON, L-Pulse
 Date : 14 May. 2001
 Condition : 22°C 51%

QUASI-PEAK LEVEL (ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN dB	Limit dBuV	Note
0.0401	57.1	0.0	0.6	57.7	16.6	74.3	Q.
0.1251	34.0	0.0	0.1	34.1	19.2	53.4	Q.
0.1687	30.7	0.0	0.1	30.8	27.8	58.6	Q.
0.2530	30.8	0.0	0.0	30.8	23.0	53.8	Q.
0.3378	30.5	0.0	0.0	30.5	19.9	50.4	Q.
2.4628	36.3	0.1	0.1	36.5	13.5	50.0	Q.
2.5049	37.3	0.1	0.1	37.5	12.5	50.0	Q.
2.6166	33.5	0.1	0.1	33.7	16.3	50.0	Q.
12.5331	23.4	0.1	0.4	23.9	26.1	50.0	Q.
20.4415	22.6	0.1	0.7	23.4	26.6	50.0	Q.

QUASI-PEAK LEVEL (OTHER ONE)

FREQ MHz	FSM dBuV	CL dB	LISN dB	CPLS dBuV	MRGN 6.11662	Limit dBuV	Note
0.0401	48.4	0.0	0.6	49.0	25.3	74.3	Q.
0.1251	18.6	0.0	0.1	18.7	34.6	53.4	Q.
0.1687	25.1	0.0	0.1	25.2	33.4	58.6	Q.
0.2530	24.2	0.0	0.0	24.2	29.6	53.8	Q.
0.3378	24.4	0.0	0.0	24.4	26.0	50.4	Q.
2.4628	32.2	0.1	0.1	32.4	17.6	50.0	Q.
2.5049	38.3	0.1	0.1	38.5	11.5	50.0	Q.
2.6166	34.1	0.1	0.1	34.3	15.7	50.0	Q.
12.5331	25.8	0.1	0.3	26.2	23.8	50.0	Q.
20.4415	26.0	0.1	0.5	26.6	23.4	50.0	Q.

FSM : Field Strength Meter Reading

CL : Cable Loss

LISN : LISN Factor

CPLS : Conducted Power-Line Strength (CPLS=FSM+CL+LISN)

MRGN : Margin (MRGN=Limit-CPLS)

Q : CISPR Quasi-Peak

FIG 1 ***** Test Results of Magnetic Field Strength *****
per EN60945 (Frequency Range from 150kHz to 30MHz)

Product : Marine Radar
Model : RA54
Serial No. : E4360001
Rating : 24VDC
Mode : Standby
Date : 20 Apr. 2001
Condition : 24°C 48%

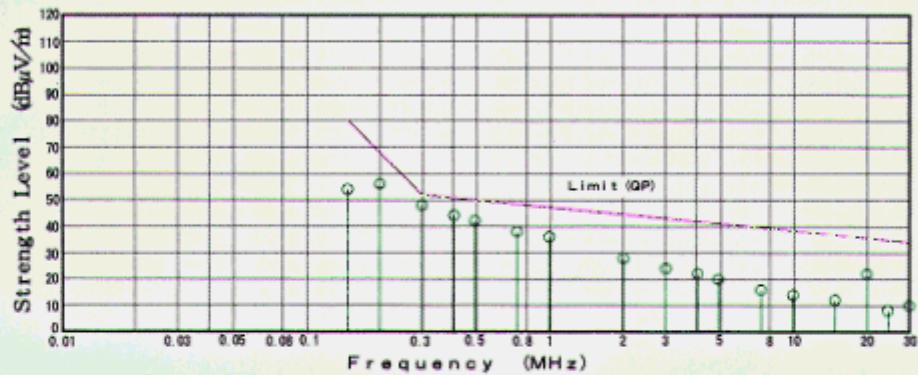


FIG 2 ***** Test Results of Magnetic Field Strength *****
per EN60945 (Frequency Range from 150kHz to 30MHz)

Rating : 24VDC
Mode : TX ON, S-Pulse
Date : 20 Apr. 2001
Condition : 24°C 48%

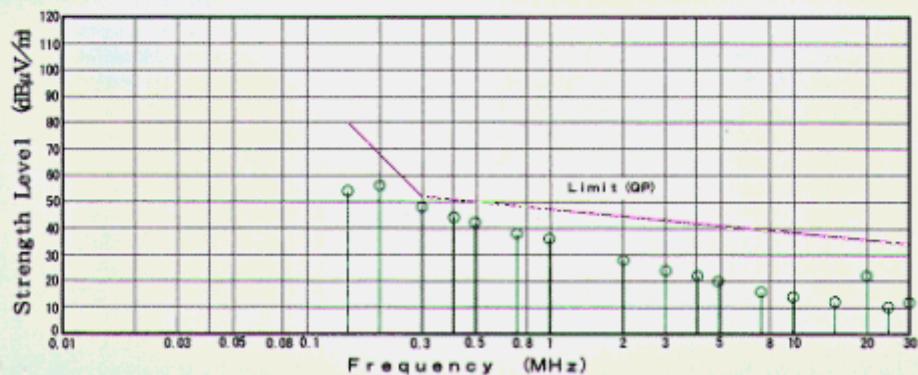


FIG 3 ***** Test Results of Magnetic Field Strength *****
per EN60945 (Frequency Range from 150kHz to 30MHz)

Rating : 24VDC
Mode : TX ON, 1-Pulse
Date : 20 Apr. 2001
Condition : 24°C 48%

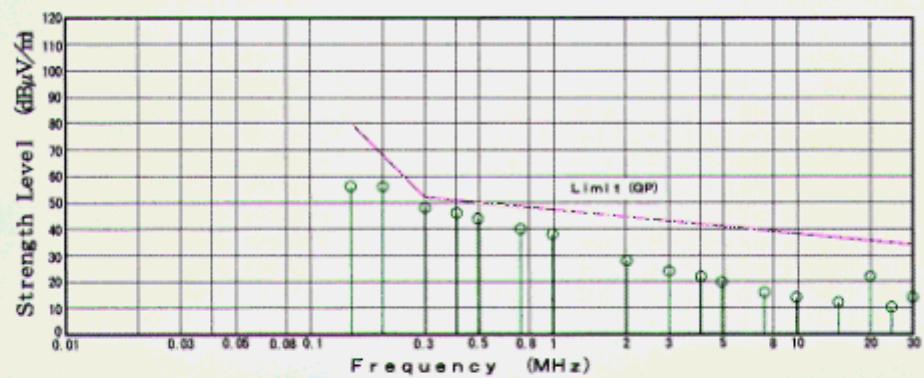


FIG 4 ***** Test Results of Electric Field Strength *****
per EN60945 (Frequency Range from 30MHz to 1000MHz)

Product : Marine Radar
Model : RA54
Serial No. : E4360001
Rating : 24VDC
Mode : Standby
Date : 13 Apr. 2001
Condition : 23°C 46%
x: Vertical Polarization
o: Horizontal Polarization

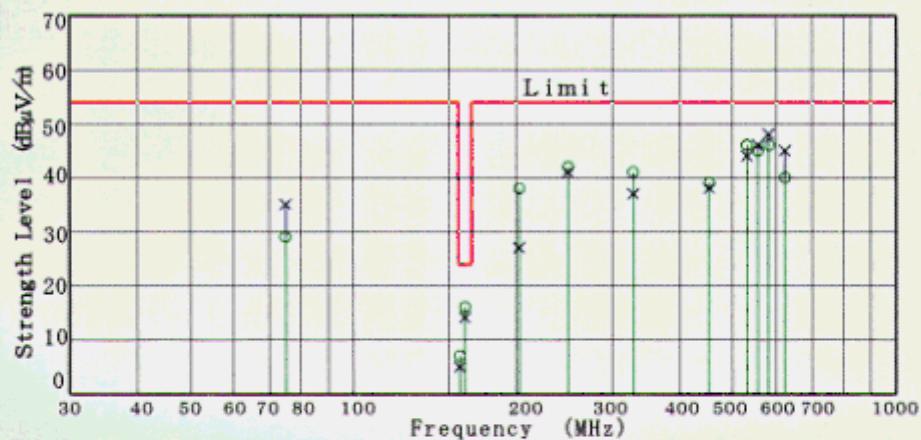


FIG 5 ***** Test Results of Electric Field Strength *****
per EN60945 (Frequency Range from 30MHz to 1000MHz)

Rating : 24VDC
Mode : TX ON, S-Pulse
Date : 13 Apr. 2001
Condition : 24°C 46%
x: Vertical Polarization
o: Horizontal Polarization

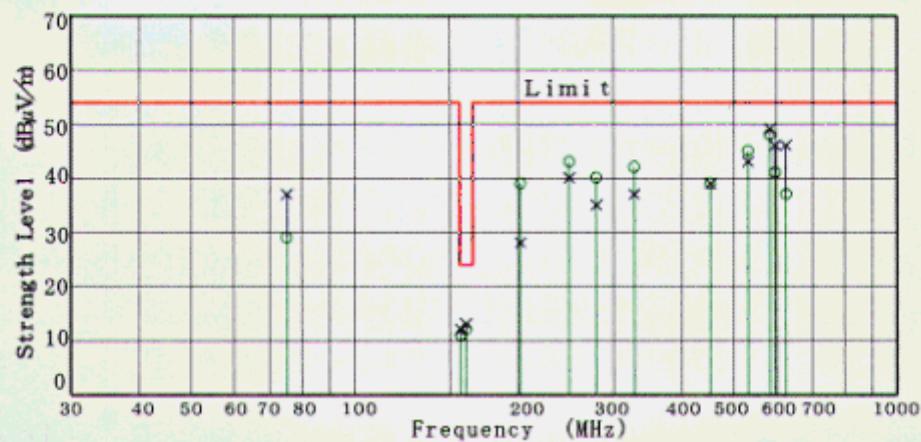


FIG 6 ***** Test Results of Electric Field Strength *****
per EN60945 (Frequency Range from 30MHz to 1000MHz)

Rating : 24VDC
Mode : TX ON, 1-Pulse
Date : 13 Apr. 2001
Condition : 22°C 46%
x: Vertical Polarization
o: Horizontal Polarization

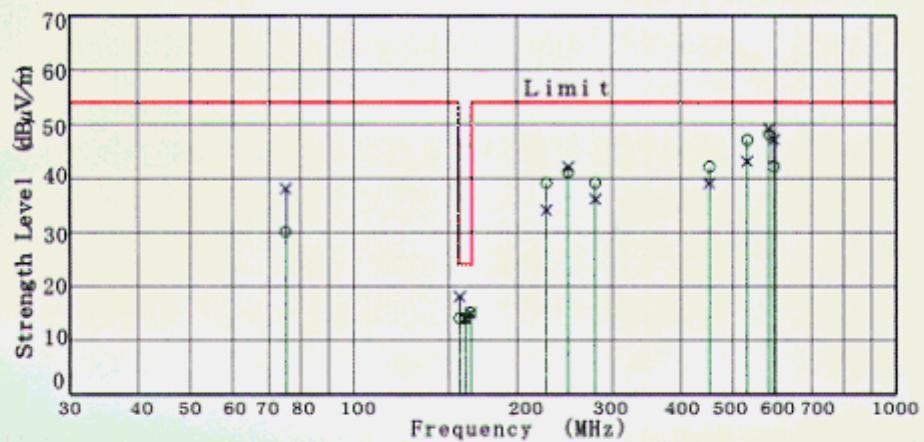


FIG 7 ***** Test Results of Conducted Power-Line Strength *****
per EN60945 (Frequency Range from 10kHz to 30MHz)

Product : Marine Radar
Model : RA54
Serial No. : E4360001
Rating : 24VDC
Mode : Standby
Date : 11 May, 2001
Condition : 22°C 55%
x: Between One Conductor of Power-Line and Ground
o: Between Other Conductor of Power-Line and Ground

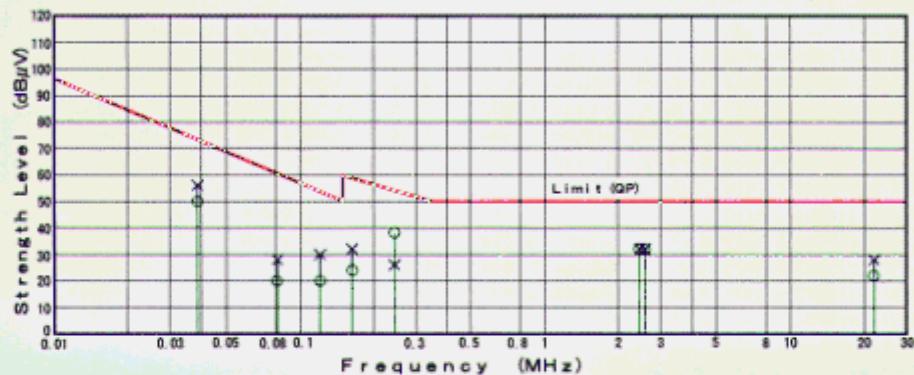


FIG 8 ***** Test Results of Conducted Power-Line Strength *****
per EN60945 (Frequency Range from 10kHz to 30MHz)

Rating : 24VDC
Mode : TX ON, S-Pulse
Date : 14 May, 2001
Condition : 22°C 51%
x: Between One Conductor of Power-Line and Ground
o: Between Other Conductor of Power-Line and Ground

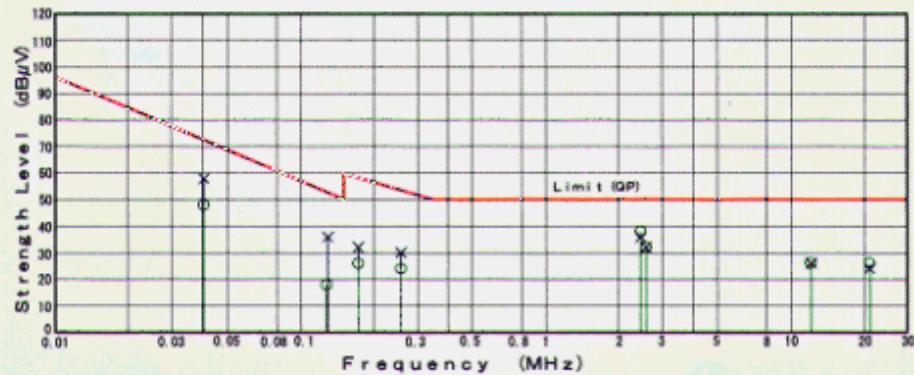


FIG 9 ***** Test Results of Conducted Power-Line Strength *****
per EN60945 (Frequency Range from 10kHz to 30MHz)

Rating : 24VDC
Mode : TX ON, L-Pulse
Date : 14 May, 2001
Condition : 22°C 51%
x: Between One Conductor of Power-Line and Ground
o: Between Other Conductor of Power-Line and Ground

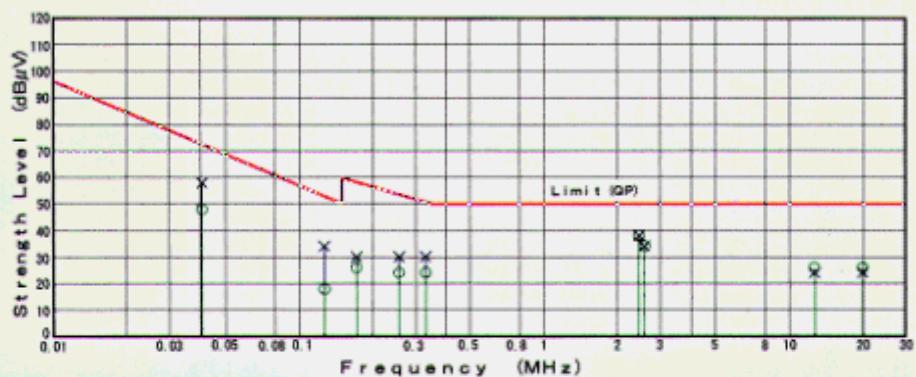


Exhibit 6

FREQUENCY STABILITY (2.995)

Type of Transmission: P0N
Type of Modulation: Pulse
Frequency Band: 9410 MHz +/- 30 MHz
Pulse Rate: 500 Hz to 2000 Hz, Selectable as a function of Range
Pulse Width: 0.08 us to 1.0 us, Selectable as a function of Range

TEST EQUIPMENT

	Equipment	Manufacturer	Model
1.	Temperature Chamber	TABAI ESPEC	TBL-1.5HW4G2AC
2.	Directional Coupler	Hewlett-Packard	X752D
3.	frequency meter	Hewlett-Packard	X532B
4.	X-Band Dummy Load	NIHON KOSHUHA	WDL095
5.	Variable Attenuator	Hewlett-Packard	X382A
6.	Power Meter	ANRITSU	ML83A

TEST PROCEDURE

The Marine Radar is capable of generating the following pulses:

80ns x 2000Hz, 300ns x 1500Hz, 0.6us x 1000Hz, 1.0us x 500Hz

The circuitry of the Radar contains a key-inhibit timer that prevents transmission unit the magnetron has warmed-up for 2 minutes. Consequently, all data are taken after the 2 minutes warmed-up.

- (1) Set up the equipment in the temperature chamber as shown in Fig.6. Set the chamber to -20 Degree-Centigrade and allow the equipment to stabilize.
- (2) Turn the equipment on and measure the transmitted frequency using the resonant cavity frequency meter. Measure each the pulse types at one minute intervals until unit stability is achieved or 10 minutes have elapsed, whichever is longer.
- (3) Increase the chamber temperature by 10 Degree-Centigrade and repeat step 1 and 2.
Continue in 10 Degree-Centigrade increments until 50 Degree-Centigrade has been achieved.
- (4) Measure the output frequency at room ambient temperature following voltages

applied to the power input.

12V input: Apply 10.2V and 13.8V

24V input: Apply 20.4V and 27.6V

32V input: Apply 27.2V and 36.8V

(5) Calculate test frequency limits from the followings;

The frequency of the principal emission must not be nearer to the edge of the authorized band than $1.5/t$ in MHz, (where t is the shortest pulse used, in micro second).

$t = 80\text{ns}(\text{nominal})$

$1.5/t = 18.8 \text{ MHz}$

Band Limit = 9.300000 to 9.500000 GHz

Emission Limit = 9.3188 to 9.4812 GHz

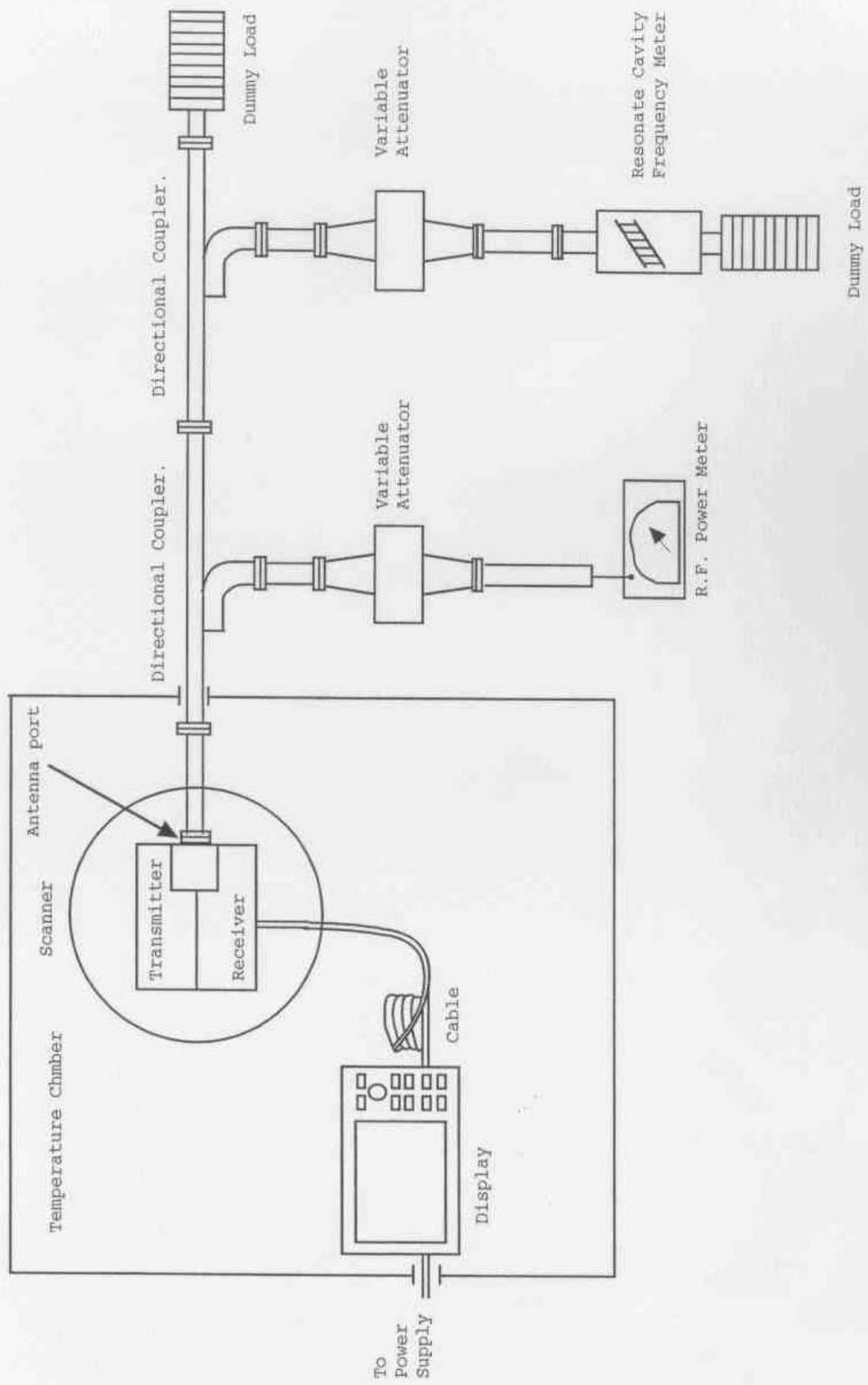


Figure 6 FREQUENCY STABILITY (2.995)

Exhibit 6

TEST DATA

Temperature Stability

Pulse Type	80ns X	300ns X	600ns X	1000ns X
Frequency (GHz)	Initial	Final	Final	Final
Temperature				
(Deg)				
-20	9.422	9.423	9.422	9.419
-10	9.420	9.421	9.419	9.417
0	9.418	9.418	9.417	9.414
+10	9.415	9.417	9.414	9.412
+20	9.412	9.414	9.411	9.411
+30	9.410	9.410	9.408	9.407
+40	9.407	9.408	9.406	9.405
+50	9.405	9.405	9.404	9.403

Voltage Stability

Applied Voltage (Vdc)	Initial Frequency (GHz)	Final Frequency (GHz)
10.2	9.414	9.412
12.0	9.414	9.412
13.8	9.414	9.412
24.0	See note below	
27.2	9.414	9.412
32.0	9.414	9.412
36.8	9.414	9.412

Note: All data taken in the 80 ns X 2000Hz mode.

Note: Qualification at both 12Vdc qualifies 24Vdc input by similarity.

*** Final reading taken 5 minutes following initial reading.