

Inter**Lab**[®]

FCC Measurement/Technical Report on

WLAN transceiver
WiBear11n-DF1

FCC ID PV7-WIBEAR11N-DF1
IC: 7738A-WB11NDF1

Report Reference: MDE_UBLOX_1624_FCCc

Test Laboratory:

7layers GmbH
Borsigstrasse 11
40880 Ratingen
Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/

Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered:

Düsseldorf HRB 75554
USt-Id.-Nr./VAT-No. DE203159652
Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas
Group Company
www.7layers.com

Table of Contents

0 Summary	3
0.1 Technical Report Summary	3
0.2 Measurement Summary	4
Revision History	7
1 Administrative Data	8
1.1 Testing Laboratory	8
1.2 Project Data	8
1.3 Applicant Data	8
1.4 Manufacturer Data	8
2 Test object Data	9
2.1 General EUT Description	9
2.2 EUT Main components	10
2.3 Ancillary Equipment	10
2.4 Auxiliary Equipment	11
2.5 EUT Setups	11
2.6 Operating Modes	12
2.7 Product labelling	12
3 Test Results	13
3.1 Conducted emissions (AC power line)	13
3.2 Occupied bandwidth	15
3.3 Peak power output	18
3.4 Spurious RF conducted emissions	20
3.5 Spurious radiated emissions	24
3.6 Band edge compliance	31
3.7 Power density	36
4 Test Equipment	39
5 Photo Report	48
6 Setup Drawings	48
7 FCC and IC Correlation of measurement requirements	49
8 Measurement Uncertainties	50
9 Annex measurement plots	51
9.1 Conducted emissions (AC power line)	51
9.2 Occupied bandwidth	52
9.3 Peak power output	56
9.4 Band edge compliance	60
9.5 Spurious RF conducted emission	64
9.6 Power density	69

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005"

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.10–2014 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C		§ 15.207			
Conducted emissions (AC power line)					
The measurement was performed according to ANSI C63.4					
OP-Mode	Setup	Port	Final Result		
op-mode 2b	Setup_03	DC port	passed		
op-mode 2b	Setup_04	DC port	passed		
FCC Part 15, Subpart C		§ 15.247 (a) (1)			
Occupied bandwidth					
The measurement was performed according to FCC § 15.31					
OP-Mode	Setup	Port	Final Result		
op-mode 1b	Setup_02	Antenna connector	passed		
op-mode 1g	Setup_02	Antenna connector	passed		
op-mode 1n	Setup_02	Antenna connector	passed		
op-mode 2b	Setup_02	Antenna connector	passed		
op-mode 2g	Setup_02	Antenna connector	passed		
op-mode 2n	Setup_02	Antenna connector	passed		
op-mode 3b	Setup_02	Antenna connector	passed		
op-mode 3g	Setup_02	Antenna connector	passed		
op-mode 3n	Setup_02	Antenna connector	passed		
op-mode 1n+	Setup_02	Antenna connector	passed		
op-mode 2n+	Setup_02	Antenna connector	passed		
op-mode 3n+	Setup_02	Antenna connector	passed		

FCC Part 15, Subpart C**§ 15.247 (b) (1)****Peak power output**

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Antenna connector	passed
op-mode 1g	Setup_02	Antenna connector	passed
op-mode 1n	Setup_02	Antenna connector	passed
op-mode 2b	Setup_02	Antenna connector	passed
op-mode 2g	Setup_02	Antenna connector	passed
op-mode 2n	Setup_02	Antenna connector	passed
op-mode 3b	Setup_02	Antenna connector	passed
op-mode 3g	Setup_02	Antenna connector	passed
op-mode 3n	Setup_02	Antenna connector	passed
op-mode 1n+	Setup_02	Antenna connector	passed
op-mode 2n+	Setup_02	Antenna connector	passed
op-mode 3n+	Setup_02	Antenna connector	passed

FCC Part 15, Subpart C**§ 15.247 (d), § 15.35 (b), § 15.207****Spurious conducted emissions**

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Antenna connector	passed
op-mode 1g	Setup_02	Antenna connector	passed
op-mode 1n	Setup_02	Antenna connector	passed
op-mode 2b	Setup_02	Antenna connector	passed
op-mode 2g	Setup_02	Antenna connector	passed
op-mode 2n	Setup_02	Antenna connector	passed
op-mode 3b	Setup_02	Antenna connector	passed
op-mode 3g	Setup_02	Antenna connector	passed
op-mode 3n	Setup_02	Antenna connector	passed
op-mode 1n+	Setup_02	Antenna connector	passed
op-mode 2n+	Setup_02	Antenna connector	passed
op-mode 3n+	Setup_02	Antenna connector	passed

FCC Part 15, Subpart C**§ 15.247 (d), § 15.35 (b), § 15.209**

Spurious radiated emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	Enclosure	passed
op-mode 2b	Setup_01	Enclosure	passed
op-mode 3b	Setup_01	Enclosure	passed
op-mode 1g	Setup_01	Enclosure	passed
op-mode 2g	Setup_01	Enclosure	passed
op-mode 3g	Setup_01	Enclosure	passed
op-mode 1n	Setup_01	Enclosure	passed
op-mode 2n	Setup_01	Enclosure	passed
op-mode 3n	Setup_01	Enclosure	passed

FCC Part 15, Subpart C**§ 15.247 (d)**

Band edge compliance

The measurement was performed according to FCC § 15.31 / ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Antenna connector	passed
op-mode 1g	Setup_02	Antenna connector	passed
op-mode 1n	Setup_02	Antenna connector	passed
op-mode 3b	Setup_02	Antenna connector	passed
op-mode 3g	Setup_02	Antenna connector	passed
op-mode 3n	Setup_02	Antenna connector	passed
op-mode 1n+	Setup_02	Antenna connector	passed
op-mode 3n+	Setup_01	Antenna connector	passed
op-mode 3b	Setup_02	Enclosure	passed
op-mode 3g	Setup_02	Enclosure	passed
op-mode 3n	Setup_02	Enclosure	passed

FCC Part 15, Subpart C**§ 15.247 (e)****Power density**

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	Antenna connector	passed
op-mode 1g	Setup_02	Antenna connector	passed
op-mode 1n	Setup_02	Antenna connector	passed
op-mode 2b	Setup_02	Antenna connector	passed
op-mode 2g	Setup_02	Antenna connector	passed
op-mode 2n	Setup_02	Antenna connector	passed
op-mode 3b	Setup_02	Antenna connector	passed
op-mode 3g	Setup_02	Antenna connector	passed
op-mode 3n	Setup_02	Antenna connector	passed
op-mode 1n+	Setup_02	Antenna connector	passed
op-mode 2n+	Setup_02	Antenna connector	passed
op-mode 3n+	Setup_02	Antenna connector	passed

N/A not applicable (the EUT is powered by DC)

Revision History

Report version control			
Version	Release date	Change Description	Version validity
initial	2014-03-07	Report reference: MDE_LESSW_1302_FCCa	valid
rev1	2016-05-25	<ul style="list-style-type: none">- FCC – IC correlation table updated (references to RSS-247)- Editorial changes- Setup drawing for conducted tests added- Measurement uncertainties added- Customer company name and address updated- Analysis made to determine the changes made between RSS-210 and RSS-247. It was determined that no additional retesting was required and the original results are valid.- Removed UNII-3 results- Corrected EIRP Values in output power measurement and updated table format	valid

Responsible for
Accreditation Scope:Responsible
for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG
Address: Borsigstr. 11
40880 Ratingen
Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:
Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka
Dipl.-Ing. Robert Machulec
Dipl.-Ing. Thomas Hoell
Dipl.-Ing. Andreas Petz
Dipl.-Ing. Marco Kullik

Report Template Version: 2012-08-27

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Marco Kullik
Date of Test(s): 2013-12-10 to 2014-02-23
Date of Report: 2016-05-24

1.3 Applicant Data

Company Name: u-blox Berlin GmbH
Address: Rudower Chaussee 9
12489 Berlin
Germany
Contact Person: Dr. Daniel Dietterle

1.4 Manufacturer Data

Company Name: PRETTL Electronics AG
Address: Robert-Bosch-Straße 10,
01454 Radeberg, Germany
Contact Person: Kerstin Sauer

2 Test object Data

2.1 General EUT Description

Equipment under Test:	IEEE 802.11a/b/g/n WLAN transceiver
Type Designation:	WiBear11n – DF1
Kind of Device:	Transceiver module
(optional)	
Voltage Type:	DC
Voltage Level:	1.8 V and 3.3 V
Tested Modulation Type:	DBPSK; OFDM; BPSK; OFDM; 64-QAM

General product description:

The EUT is industrial universal module, targeted for integration into different Original Equipment Manufacturer products. The module is designed for both - simultaneous and independent operation of the following:

IEEE 802.11a/b/g/n payload data rates for Wireless Local Area Network (WLAN), Bluetooth 3.0+High Speed (HS) and Bluetooth 2.1+EDR. It provides a complete end-to-end solution for low power applications. It includes an integrated MAC/Baseband processor and RF front-end components, and can connect to a host processor via SDIO interface.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 a/b/g/n, 2.5 and 5 GHz) and Bluetooth module with one joint antenna connector for WLAN and Bluetooth. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 a/b/g/n modes, working in 2.4 GHz and 5 GHz bands. In IEEE 802.11n mode, it was tested with 20 MHz and 40 MHz channel bandwidth.

The EUT provides the following ports:

Ports

- Antenna connector
- DC port
- Data port
- Enclosure

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: LS000a01)	WLAN transceiver	WiBear11n - DF1	AN00J93172 C433 8004 5499	mounted on evaluation board #20 Ver. C4	14.44.35.p200	-
Remark: EUT A is equipped with joint antenna connector.						
EUT B (Code: LS000b01)	WLAN transceiver	WiBear11n - DF1	AN00J93172 C433 8004 5500	mounted on evaluation board #7 Ver. C4	14.44.35.p200	-
Remark: EUT B is equipped with a dual-band integral antenna A10194 with antenna gain = 1.8 dBi at 2.4 – 2.5 GHz frequency range and 4.1 dBi in 4.9 – 5.9 MHz frequency range.						
EUT C (Code: LS000s01)	WLAN transceiver	WiBear11n - DF1	AN00J93172 C433 8004 5520	mounted on evaluation board #19 Ver. C4	14.44.35.p200	-
Remark: EUT C is equipped with a dual-band integral antenna A10194 with antenna gain = 1.8 dBi at 2.4 – 2.5 GHz frequency range and 4.1 dBi in 4.9 – 5.9 MHz frequency range.						
EUT D (Code: LS000x01)	WLAN transceiver	WiBear11n - DF1	AN00J93172 C433 8004 5559	mounted on evaluation board #8 Ver. C4	14.44.35.p200	-
Remark: EUT D is equipped with joint antenna connector.						

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
-	-	-	-	-	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1	Laptop Acer TravelMate 5720	Model: 2205	LXTK20603274 4008D6A2000	—	WinXP Prof.EN	—
AUX2	AC/DC Adapter for AUX1 Acer/LITEON	Model PA-1900-24	870923010AR	Rev A06	—	—
AUX3	cable & adapter board & SDIO connector to the host PC	Lesswire AG HOST SDIO	SDIO 1	—	—	—
AUX4	evaluation board with antenna connector and antenna disabled.	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#20	—	—	—
AUX5	evaluation board with antenna (gain = 4.1 dBi) enabled and antenna connector (open).	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#7	—	—	—
AUX6	evaluation board with antenna (gain = 4.1 dBi) enabled and antenna connector (open).	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#19	—	—	—
AUX7	evaluation board with antenna connector and antenna disabled.	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#8	—	—	—
AUX8	DC Power Supply	Philips PE 1540	WB2045	—	—	—

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AUX1 to AUX4	setup for radiated measurements
Setup_02	EUT B + AUX1 to AUX3 + AUX5	setup for the test conducted emissions into the radio lab
Setup_03	EUT C + AUX1 to AUX3 + AUX6 + AUX8	setup for conducted emissions (AC power line) test
Setup_04	EUT C + AUX3 + AUX6	setup for conducted emissions (AC power line) test
Setup_05	EUT D + AUX1 to AUX3 + AUX7	setup for spurious emissions conducted measurements above 25 GHz

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 1 Mbps (channel 1) 20 MHz channel bandwidth
op-mode 1g	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 6 Mbps (channel 1) 20 MHz channel bandwidth
op-mode 1n	TX-mode, the EUT transmits on the lowest channel (2412 MHz)	Worst case data rate 72.2 Mbps (channel 1) 20 MHz channel bandwidth
op-mode 2b	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 1 Mbps (channel 6) 20 MHz channel bandwidth
op-mode 2g	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 6 Mbps (channel 6) 20 MHz channel bandwidth
op-mode 2n	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 72.2 Mbps (channel 6) 20 MHz channel bandwidth
op-mode 3b	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 1 Mbps (channel 11) 20 MHz channel bandwidth
op-mode 3g	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 6 Mbps (channel 11) 20 MHz channel bandwidth
op-mode 3n	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 72.2 Mbps (channel 11) 20 MHz channel bandwidth
op-mode 1n+	TX-mode, the EUT transmits on the channel 3 (2422 MHz)	Worst case data rate 150 Mbps (channel 3) 40 MHz channel bandwidth
op-mode 2n+	TX-mode, the EUT transmits on the mid channel (2437 MHz)	Worst case data rate 150 Mbps (channel 6) 40 MHz channel bandwidth
op-mode 3n+	TX-mode, the EUT transmits on the highest channel (2462 MHz)	Worst case data rate 150 Mbps (channel 11) 40 MHz channel bandwidth

2.6.1 Special software used for testing

Marvell Labtool SW is used to set the EUT at different operating modes.

2.7 Product labelling

Please refer to the documentation of the applicant.

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

0.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H} \parallel 50 \text{ Ohm}$ Line Impedance Stabilization Network (LISN) which meets the requirements of ANSI C63.4 Annex B, in the frequency range of the measurements. The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold
- Frequency range: 150 kHz – 30 MHz
- Frequency steps: 5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead - reference ground (PE grounded)
- 2) Phase lead - reference ground (PE grounded)
- 3) Neutral lead - reference ground (PE floating)
- 4) Phase lead - reference ground (PE floating)

The highest value is reported.

0.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dB μ V)	AV Limit (dB μ V)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

0.1.3 Test Protocol

Temperature: 23 °C
Air Pressure: 1009 hPa
Humidity: 38 %

Op. Mode	Setup	Port
op-mode 2b	Setup_04	DC port

Power line	Frequency MHz	Measured value QP dB μ V	Measured value AV dB μ V	QP Limit dB μ V	AV Limit dB μ V	Margin QP dB	Margin AV dB
N	–	–	–	–	–	–	–
L	–	–	–	–	–	–	–

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. Please see annex for the measurement plot.
The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. high power consumption.

0.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2b	passed

3.2 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

3.2.3 Test Protocol

Temperature: 23.5 °C
Air Pressure: 1018 hPa
Humidity: 38.5 %

Op. Mode	Setup	Port
op-mode 1b	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
10.104		20 MHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
16.416		20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 1n	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
17.676		20 MHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2b	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
10.164		20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
16.416		20 MHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2n	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
17.736		20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Antenna connector
6 dB bandwidth MHz		Remarks
10.164		20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Antenna connector

6 dB bandwidth MHz	Remarks
16.416	20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Antenna connector

6 dB bandwidth MHz	Remarks
17.796	20 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 1n+	Setup_02	Antenna connector

6 dB bandwidth MHz	Remarks
36.573	40 MHz channel bandwidth

Op. Mode	Setup	Port
op-mode 2n+	Setup_02	Antenna connector

6 dB bandwidth MHz	Remarks
36.573	40 MHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3n+	Setup_02	Antenna connector

6 dB bandwidth MHz	Remarks
36.674	40 MHz channel bandwidth

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 1n+	passed
	op-mode 2n+	passed
	op-mode 3n+	passed

3.3 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Detector: RMS

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

3.3.3 Test Protocol

Temperature: 23.5°C
Air Pressure: 1018hPa
Humidity: 39%

OP Mode	Conducted Power	Gain	EIRP
1b	20.3	1.8	22.1
2b	24	1.8	25.8
3b	20.4	1.8	22.2
1g	24.3	1.8	26.1
2g	24.5	1.8	26.3
3g	24.3	1.8	26.1
1n	24.4	1.8	26.2
2n	24.6	1.8	26.4
3n	20.4	1.8	22.2
1n+	25.8	1.8	27.6
2n+	25.4	1.8	27.2
3n+	25.8	1.8	27.6

Remark: Please see annex for the measurement plot.

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 1n+	passed
	op-mode 2n+	passed
	op-mode 3n+	passed

3.4 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Detector: Peak-Maxhold
- Frequency range: 30 – 40000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.4.3 Test Protocol

Temperature: 23.5°C
Air Pressure: 1018hPa
Humidity: 38%

Op. Mode	Setup	Port		
op-mode 1b	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-27.8	6.5	-12.3	14.3

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 1g	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-27.1	3.7	-16.3	10.8

Remark: No further spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 1n	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-27	4.1	-15.9	11.1

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 2b	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.6	7.7	-12.3	14.3

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 2g	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.9	3.4	-16.6	10.3

Remark: No further spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 2n	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.9	3.7	-16.3	10.6

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 3b	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.9	7.6	-12.4	14.5

Remark: No further spurious emissions in the range 20 dB below the limit found.

Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3g	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.9	3.1	-16.9	10

Remark: No further spurious emissions in the range 20 dB below the limit found.

Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3n	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-27.1	3.2	-16.8	10.3

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 1n+	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
-	-	-	-	-

Remark: No spurious emissions in the range 20 dB below the limit found.

Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 2n+	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
-	-	-	-	-

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port		
op-mode 3n+	Setup_02	Antenna connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
30	-26.9	3.1	-16.9	10

Remark: No further spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Remark: In the same op-mode and **Setup_05** EUT D was tested in frequency range from 25 to 40 GHz.
In both setups, no spurious emissions in the range 20 dB below the limit were found.
Please see annex for the measurement plots.

Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 1n+	passed
	op-mode 2n+	passed
	op-mode 3n+	passed

3.5 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 - 0.15 MHz and 0.15 – 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 – 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 - 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 30 – 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs
- Turntable angle range: -180° to 180°
- Turntable step size: 90°
- Height variation range: 1 – 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 45°
- Height variation range: 1 – 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved.

This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by $\pm 22.5^\circ$ around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: $\pm 22.5^\circ$ around the determined value
- Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.5.3 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Calculated Limits(dB μ V/m @10m)	Limits(dB μ V/m @10m)
0.009 – 0.49	2400/F(kHz)	300	59.1 dB (48.5 – 13.8) + 30 dB	78.5 – 43.8
0.49 – 1.705	24000/F(kHz)	30	19.1 dB (48.9 – 23.0) + 10 dB	58.9 – 33.0
1.705 – 30	30	30	19.1 dB 29.5 + 10 dB	39.5

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit (dB μ V/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b), there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.5.4 Test Protocol

Temperature: 23 °C
 Air Pressure: 1019 hPa
 Humidity: 42 %

3.5.4.1 Measurement up to 30 MHz

Op. Mode	Setup	Port					
op-mode 2b	Setup_01	Enclosure					
Antenna Position	Frequency MHz	Corrected value dB μ V/m	Limit dB μ V/m		Margin dB		
		PK	AV	PK	AV	PK	AV
–	–	–	–	–	–	–	–

Remark: No spurious emissions in the range 20 dB below the limit found.

3.5.4.2 Measurement above 30 MHz

Op. Mode	Setup	Port					
op-mode 1b	Setup_01	Enclosure					
Polarisation	Frequency MHz	Corrected value dB μ V/m	Limit dB μ V/m		Margin dB		
		QP	PK	AV	QP	PK	AV
Hor. + Vert.	–	–	–	–	74.0	54.0	–

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port					
op-mode 2b	Setup_01	Enclosure					
Polarisation	Frequency MHz	Corrected value dB μ V/m	Limit dB μ V/m		Margin dB		
		QP	PK	AV	QP	PK	AV
Hor. + Vert.	–	–	–	–	74.0	54.0	–

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port					
op-mode 3b	Setup_01	Enclosure					
Polarisation	Frequency MHz	Corrected value dB μ V/m	Limit dB μ V/m		Margin dB		
		QP	PK	AV	QP	PK	AV
Hor. + Vert.	–	–	–	–	74.0	54.0	–

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 1g	Setup_01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	—	—	—	—	—	74.0	54.0	—	—

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 2g	Setup_01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	—	—	—	—	—	74.0	54.0	—	—

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 3g	Setup_01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	—	—	—	—	—	74.0	54.0	—	—

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 1n	Setup_01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	—	—	—	—	—	74.0	54.0	—	—

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port
op-mode 2n	Setup_01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	—	—	—	—	—	74.0	54.0	—	—

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Op. Mode	Setup	Port							
op-mode 3n	Setup_01	Enclosure							
Polari-sation	Frequency MHz	Corrected value dB μ V/m	Limit dB μ V/m	Margin dB					
Hor. + Vert.	-	-	74.0	54.0	-	-	-	QP/PK	AV

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

Remark: No spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 15 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

3.5.5 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 2b	passed
	op-mode 3b	passed
	op-mode 1g	passed
	op-mode 2g	passed
	op-mode 3g	passed
	op-mode 1n	passed
	op-mode 2n	passed
	op-mode 3n	passed

3.6 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement . For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For WLAN transmitter working in 2.4 GHz band:

- lowest channel - ch. 1 = 2412 MHz with channel bandwidth of 20 MHz.

For WLAN transmitter working in 5 GHz band:

- lowest U-NII-3 sub-band channel - ch. 149 = 5745 MHz with channel bandwidth of 20 MHz,

- lowest U-NII-3 sub-band channel - ch. 151 – 5755 MHz with channel bandwidth of 40 MHz.

The lower band edge is 2400 MHz for 2.4 GH band transmitter and 5725 MHz for 5 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For the WLAN transmitter working in 2.4 GHz band:

- highest channel - ch. 11 = 2462 MHz with channel bandwidth of 20 MHz.

For the WLAN transmitter working in 5 GHz,

- highest U-NII-3 sub-band channel - ch. 165 = 5825 MHz with channel bandwidth of 20 MHz,

- highest U-NII-3 sub-band channel - ch. 159 = 5795 MHz with channel bandwidth of 40 MHz.

The higher band edge is 2483.5 MHz for 2.4 GH band transmitter and 5850 MHz for 5 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW / VBW = 100 / 300 kHz

2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance.

EMI receiver settings for radiated measurement:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS

averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.6.3 Test Protocol

3.6.3.1 Lower band edge

Conducted measurement

Temperature: 23.5°C
Air Pressure: 1018hPa
Humidity: 39%

Op. Mode	Setup	Port		
op-mode 1b	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-41.1	6.5	-13.5	27.6

Op. Mode	Setup	Port		
op-mode 1g	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-34.4	3.7	-16.3	18.1

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 1n	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-37.5	4.1	-15.9	21.6

Op. Mode	Setup	Port		
op-mode 1n+	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-36.9	0.2	-19.8	17.1

Remark: Please see annex for the measurement plot.

3.6.3.2 Higher band edge

Conducted measurement

Temperature: 23.5°C
Air Pressure: 1018hPa
Humidity: 38%

Op. Mode	Setup	Port		
op-mode 3b	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-41.6	7.6	-12.4	29.2

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3g	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-45.6	3.1	-16.9	28.7

Op. Mode	Setup	Port		
op-mode 3n	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-46.8	3.2	-16.8	30.0

Op. Mode	Setup	Port		
op-mode 3n+	Setup_02	Antenna connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-38	0.4	-19.6	18.4

Remark: Please see annex for the measurement plot.

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 23 °C
Air Pressure: 1019 hPa
Humidity: 42 %

Op. Mode	Setup	Port
op-mode 3b	Setup_01	Enclosure

Frequency MHz	Polaris- sation	Corrected value dB μ V/m		Limit dB μ V/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	49.8	37.5	74.0	54.0	24.2	16.5

Op. Mode	Setup	Port
op-mode 3g	Setup_01	Enclosure

Frequency MHz	Polaris- sation	Corrected value dB μ V/m		Limit dB μ V/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	51.5	31.8	74.0	54.0	22.5	15.9

Op. Mode	Setup	Port
op-mode 3n	Setup_01	Enclosure

Frequency MHz	Polaris- sation	Corrected value dB μ V/m		Limit dB μ V/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	63.0	38.8	74.0	54.0	11.0	15.2

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 1n+	passed
	op-mode 3n+	passed

3.7 Power density

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Detector: Peak-Maxhold
- Resolution Bandwidth (RBW): 3 kHz
- Video Bandwidth (VBW): 30 kHz
- Sweep Time: Coupled

0.1.5 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Protocol

Temperature: 23°C
Air Pressure: 1019hPa
Humidity: 37%

Op. Mode	Setup	Port
op-mode 1b	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-8.2	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 1g	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-7.0	20 kHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1n	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-7.2	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 2b	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-11.6	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-11.4	20 kHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2n	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-11.7	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-10.3	20 kHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-11.5	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3n	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-11.4	20 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 1n+	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-16.3	40 kHz channel bandwidth

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2n+	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-16.5	40 kHz channel bandwidth

Op. Mode	Setup	Port
op-mode 3n+	Setup_02	Antenna connector

Power density dBm/3 kHz	Remarks
-16.7	40 kHz channel bandwidth

3.7.2 Test result: Power density

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 1n+	passed
	op-mode 2n+	passed
	op-mode 3n+	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 2		
Manufacturer:	Frankonia		
Description:	Anechoic Chamber for radiated testing		
Type:	10.58x6.38x6.00 m ³		
	Calibration Details	Last Execution	Next Exec.
	NSA (FCC, IC)	2011/01/10	2014/01/10
	NSA (FCC)	2014/01/09	2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Type	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	none	Frankonia
	Calibration Details	Last Execution	Next Exec.
	FCC listing 96716 3m Part15/18	2011/01/11	2014/01/10
	IC listing 3699A-1 3m	2011/02/07	2014/02/06
	FCC listing 96716 3m Part15/18	2014/01/09	2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1
Manufacturer: Rohde & Schwarz GmbH & Co.KG
Description: EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Type	Serial Number	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2014/01/10 2016/01/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2011/02/08 2014/02/07
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standart Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2
Description: Equipment for emission measurements
Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Type	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2009/06/04 2014/06/03
Biconical dipole	VUBA 9117 Standard Calibration	9117-108	Schwarzbeck 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	Rosenberger Micro-Coax
Double-ridged horn	HF 906 Standard Calibration	357357/001	Rohde & Schwarz GmbH & Co. KG 2012/05/18 2015/05/17
Double-ridged horn	HF 906 Standard Calibration	357357/002	Rohde & Schwarz GmbH & Co. KG 2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz	BBHA 9170		
BBHA 9170			
Log.-per. Antenna	HL 562 Ultralog <i>Calibration Details</i>	100609	Rohde & Schwarz GmbH & Co. KG <i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2012/12/18 2015/12/17
Log.-per. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2 <i>Calibration Details</i>	829324/006	Rohde & Schwarz GmbH & Co. KG <i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Type	Serial Number	Manufacturer
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5-10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 2, Lab 3
Manufacturer: see single devices
Description: Single Devices for various Test Equipment
Type: various
Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider1506A / 93459 N (Aux)		LM390	Weinschel Associates
Broadband Power DividerWA1515 SMA		A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
Calibration Details		Last Execution	Next Exec.
	Customized calibration	2013/12/04	2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
Calibration Details		Last Execution	Next Exec.
	Standard	2012/06/13	2015/06/12
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1, Lab 2, Lab 3
Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Type	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT		100589	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> 2011/11/24 <i>Next Exec.</i> 2014/11/23
	Standard calibration		
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> 2012/01/26 <i>Next Exec.</i> 2014/01/25
	Initial factory calibration		
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> 2011/11/28 <i>Next Exec.</i> 2014/11/27
	Standard calibration		
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	<i>HW/SW Status</i>		<i>Date of Start</i> 2007/07/16 <i>Date of End</i>
	Hardware: B11, B21V14, B21-2, B41, B52V14, B52-2, B53-2, B56V14, B68 3v04, PCMCIA, U65V04		
	Software: K21 4v21, K22 4v21, K23 4v21, K24 4v21, K42 4v21, K43 4v21, K53 4v21, K56 4v22, K57 4v22, K58 4v22, K59 4v22, K61 4v22, K62 4v22, K63 4v22, K64 4v22, K65 4v22, K66 4v22, K67 4v22, K68 4v22, K69 4v22		
	Firmware: μP1 8v50 02.05.06		

Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> 2011/12/07 <i>Next Exec.</i> 2014/12/06
	Standard calibration		
	<i>HW/SW Status</i>		<i>Date of Start</i> 2007/01/02 <i>Date of End</i>
	HW options: B11, B21V14, B21-2, B41, B52V14, B52-2, B53-2, B54V14, B56V14, B68 3v04, B95, PCMCIA, U65V02		
	SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v11, K27 4v10, K28 4v10, K42 4v11, K43 4v11, K53 4v10, K65 4v10, K66 4v10, K68 4v10,		
	Firmware: μP1 8v40 01.12.05		

	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID: Lab 1, Lab 2
Description: Equipment for emission measurements
Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Type	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/05/03 2014/05/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/04/30 2014/04/29
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2011/12/05 2013/12/31
	Standard Calibration		2014/01/07 2016/01/31
	<i>HW/SW Status</i>		<i>Date of Start</i> <i>Date of End</i>
	Firmware-Update 4.34.4 from 3.45 during calibration		2009/12/03

Test Equipment Multimeter 12

Lab ID: Lab 4
Description: Ex-Tech 520
Serial Number: 05157876

Single Devices for Multimeter 12

Single Device Name	Type	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3
Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider WA1515 SMA		A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger FA210A0010003030 Micro Coax FA210A0010003030 SMA/SMA 1,0m		54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/05/03 2014/05/02
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Standard calibration		2013/06/24 2014/06/23
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/04/30 2014/04/29
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2013/02/12 2015/02/11
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Customized calibration		2012/03/12 2014/03/11

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 4
Description: Regulatory Bluetooth RF Tests
Type: Bluetooth RF
Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Type	Serial Number	Manufacturer
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.
Bluetooth Signalling Unit CBT CBT	Standard calibration	100302	Rohde & Schwarz GmbH & Co.KG 2013/08/28 2014/08/27
Power Meter NRVD	NRVD Standard calibration	832025/059	2013/08/26 2014/08/25
Power Sensor NRV Z1 A	PROBE Standard calibration	832279/013	2013/08/28 2014/08/27
Power Supply	NGSM 32/10 Standard calibration	2725	2013/06/14 2015/06/13
Rubidium Frequency Normal MFS	Datum MFS Standard calibration	002	Datum GmbH 2013/08/27 2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Vector Signal Generator	SMIQ03B SMIQ03B Standard calibration	832870/017	2013/06/21 2016/06/20

Test Equipment Shielded Room 02

Lab ID: Lab 1
Manufacturer: Frankonia
Description: Shielded Room for conducted testing
Type: 12 qm
Serial Number: none

Test Equipment Shielded Room 07

Lab ID: Lab 4
Description: Shielded Room 4m x 6m

Test Equipment T/H Logger 04

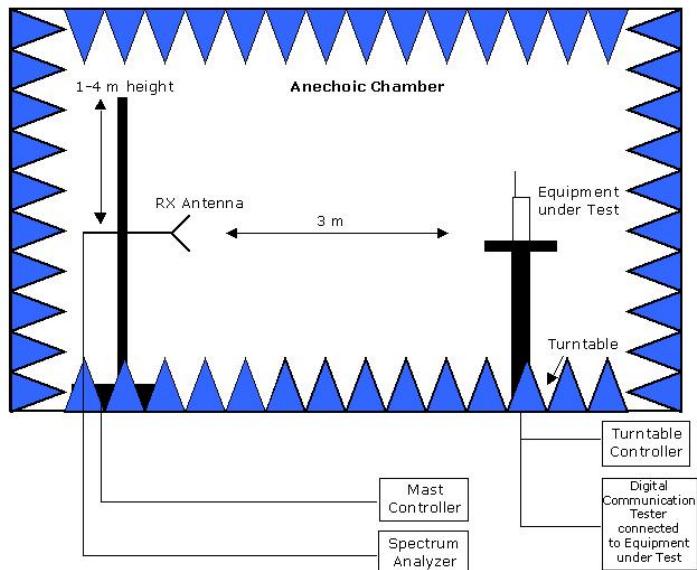
Lab ID: Lab 4
Description: Lufft Opus10
Serial Number: 7481

Single Devices for T/H Logger 04

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)		7481	Lufft Mess- und Regeltechnik GmbH

Test Equipment Temperature Chamber 01

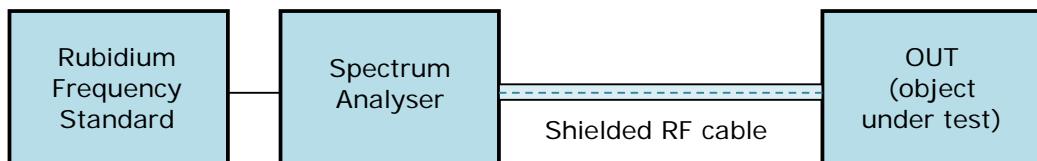
Lab ID: Lab 4
Manufacturer: see single devices
Description: Temperature Chamber KWP 120/70
Type: Weiss
Serial Number: see single devices


Single Devices for Temperature Chamber 01

Single Device Name	Type	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Customized calibration		2012/03/12 2014/03/11

5 Photo Report

Photos are included in an external report.


6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane.
 Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

Drawing 2: Setup for conducted radio tests.

7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak power output	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-247 Issue 1: 5.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	–	-

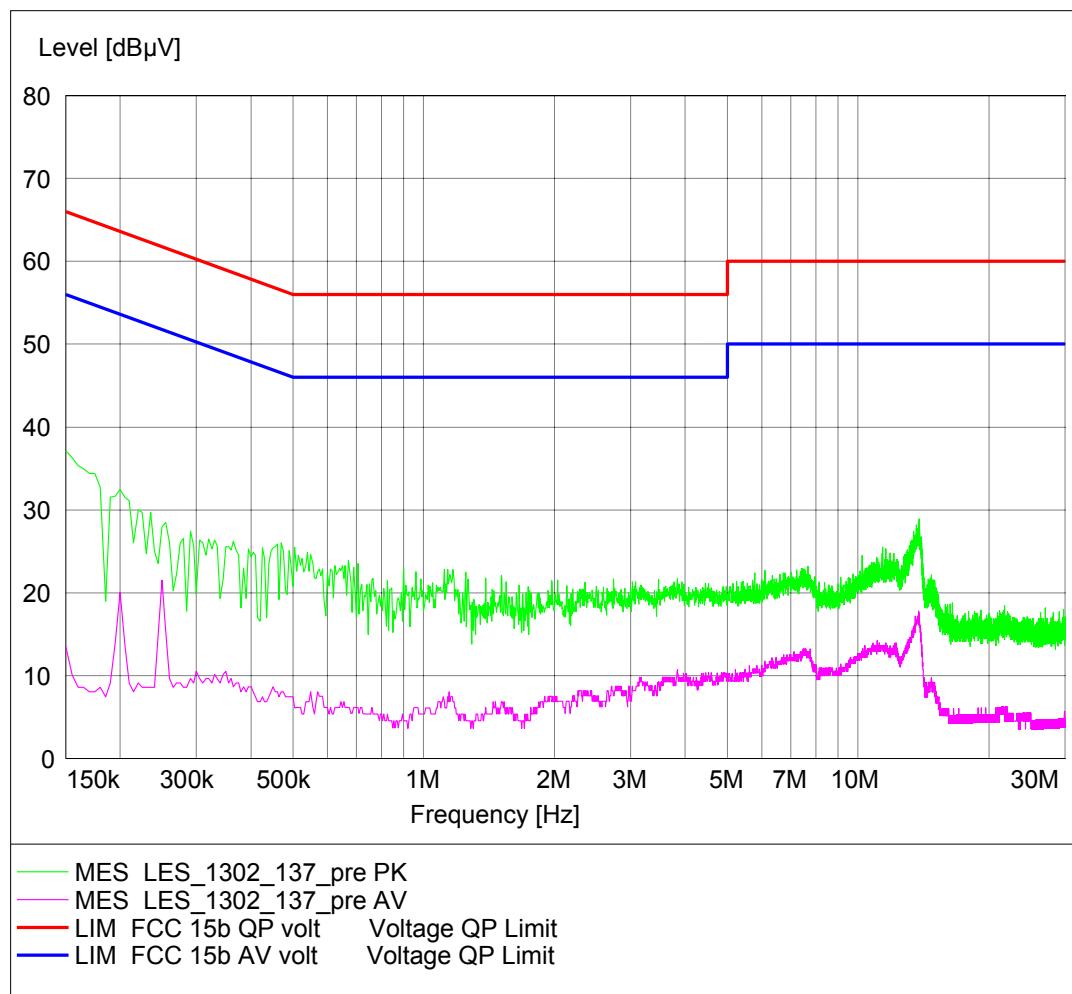
Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

8 Measurement Uncertainties

**FCC Part 15c, 15e
IC RSS-210, IC RSS-247**

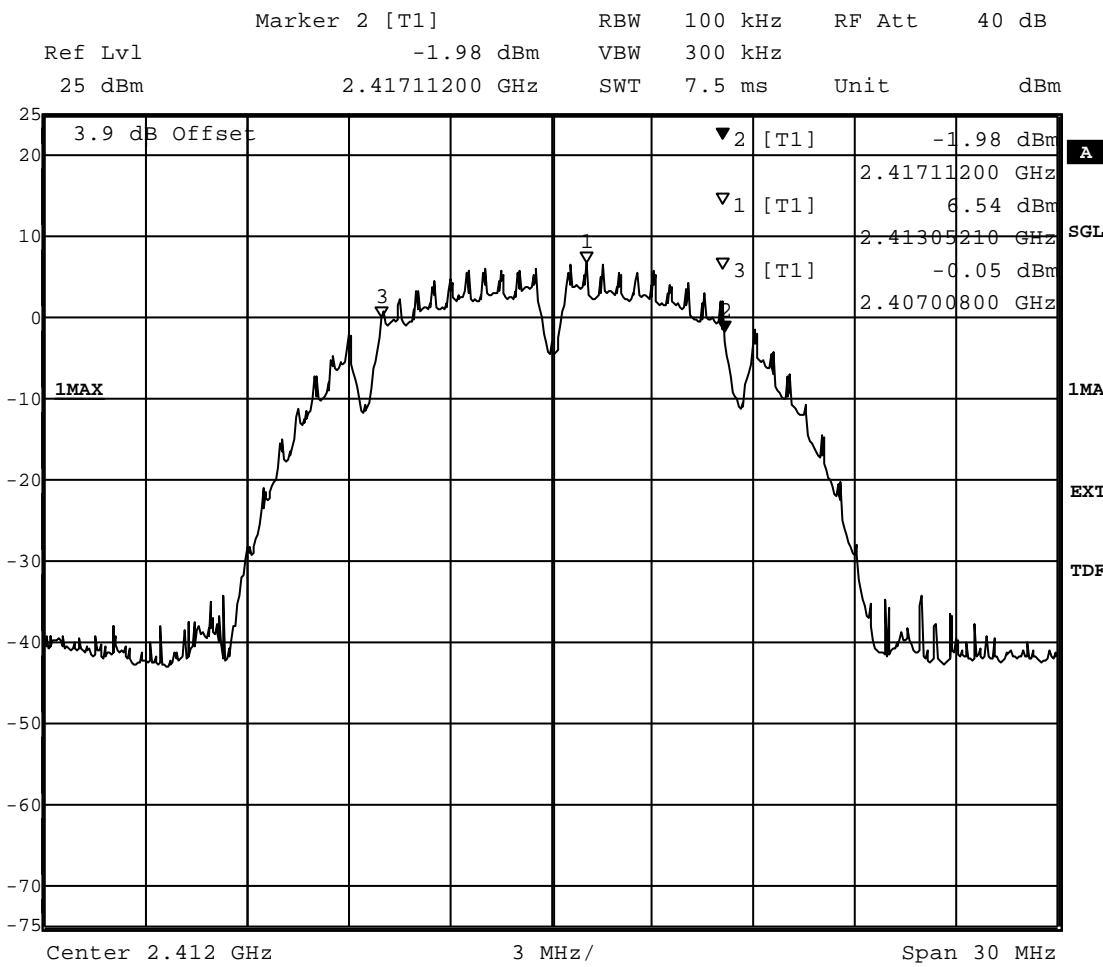
Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Spurious Emissions at antenna terminal	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB


9 Annex measurement plots

9.1 Conducted emissions (AC power line)

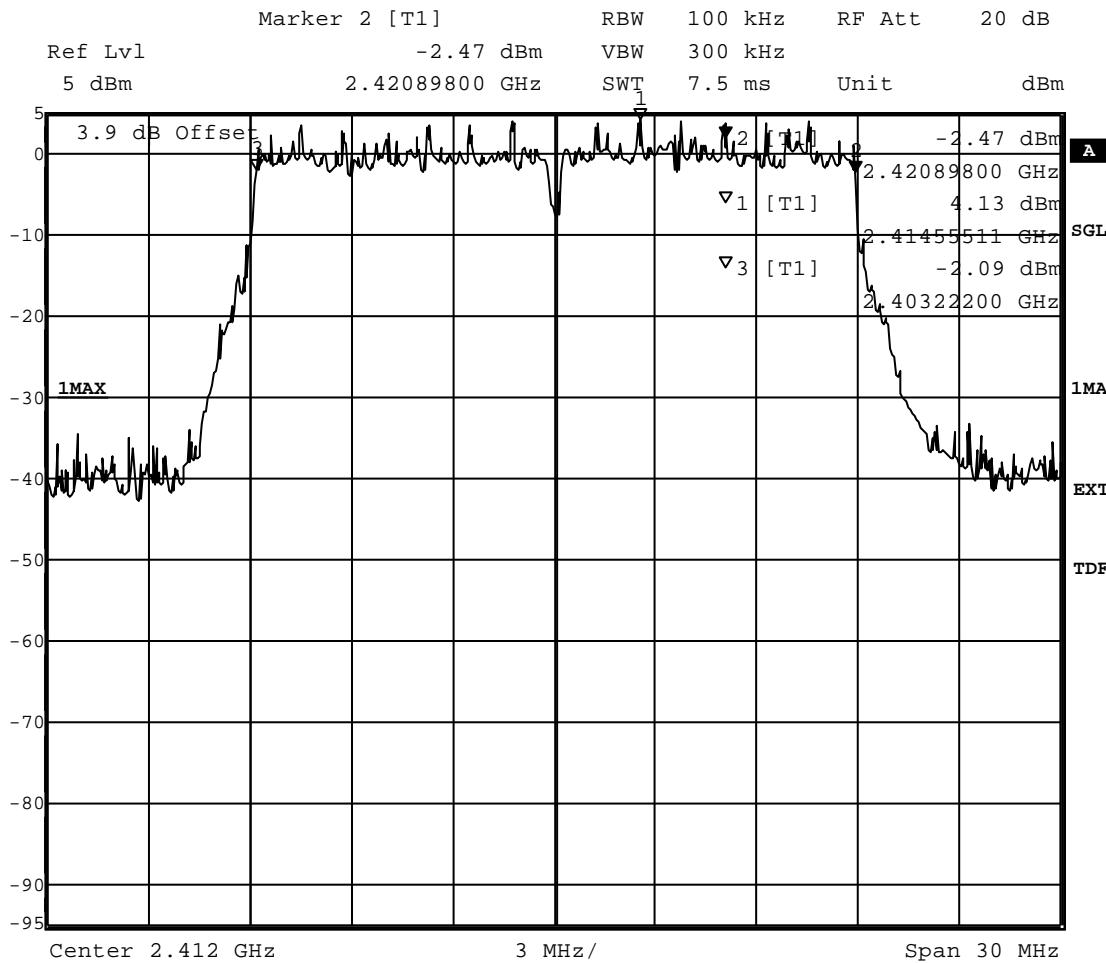
Op. Mode

op-mode 2b


Start Frequency	Stop Frequency	Step Width	Detector	Meas.	IF Time	Transducer
150.0 kHz	30.0 MHz	5.0 kHz	MaxPeak	20.0 ms	9 kHz	ESH3-Z5
Average						

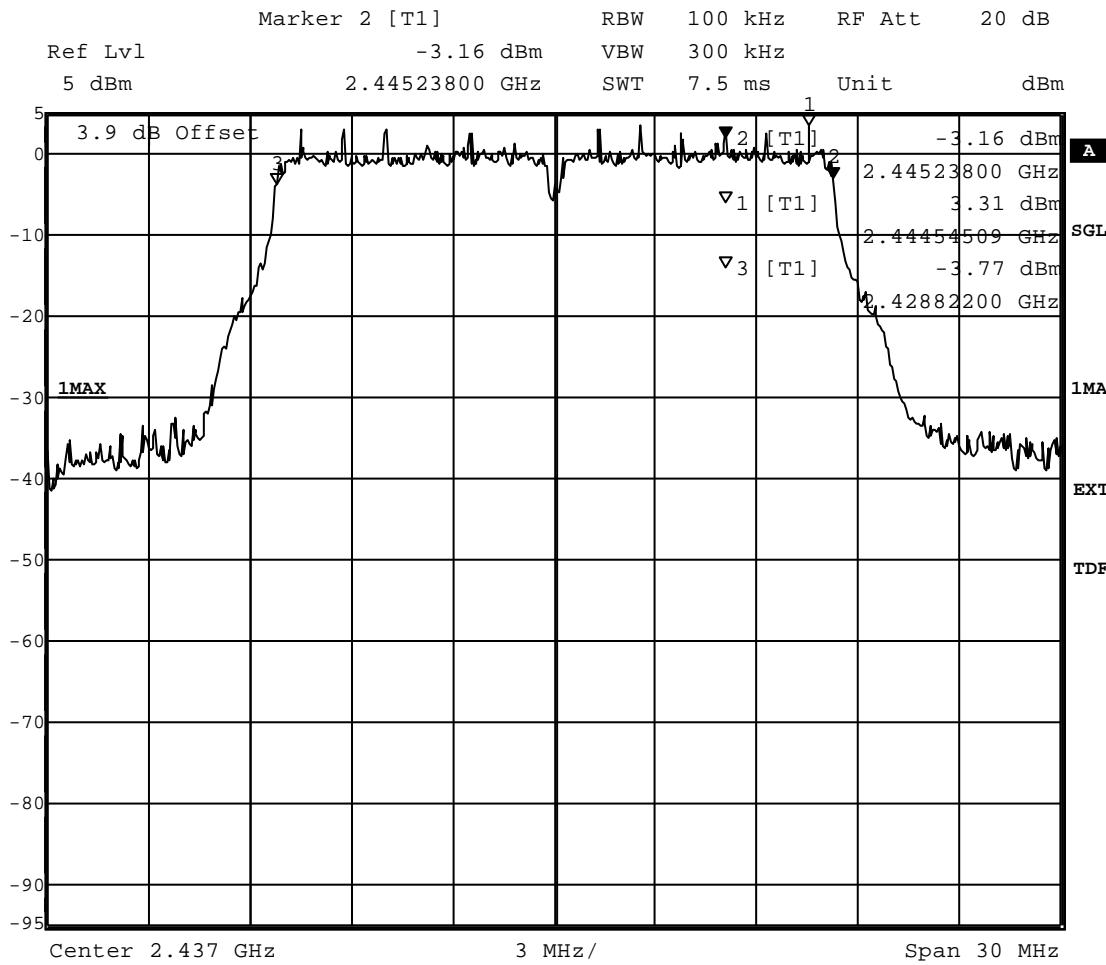
9.2 Occupied bandwidth

Op. Mode


op-mode 1b ch. bandwidth = 20 MHz

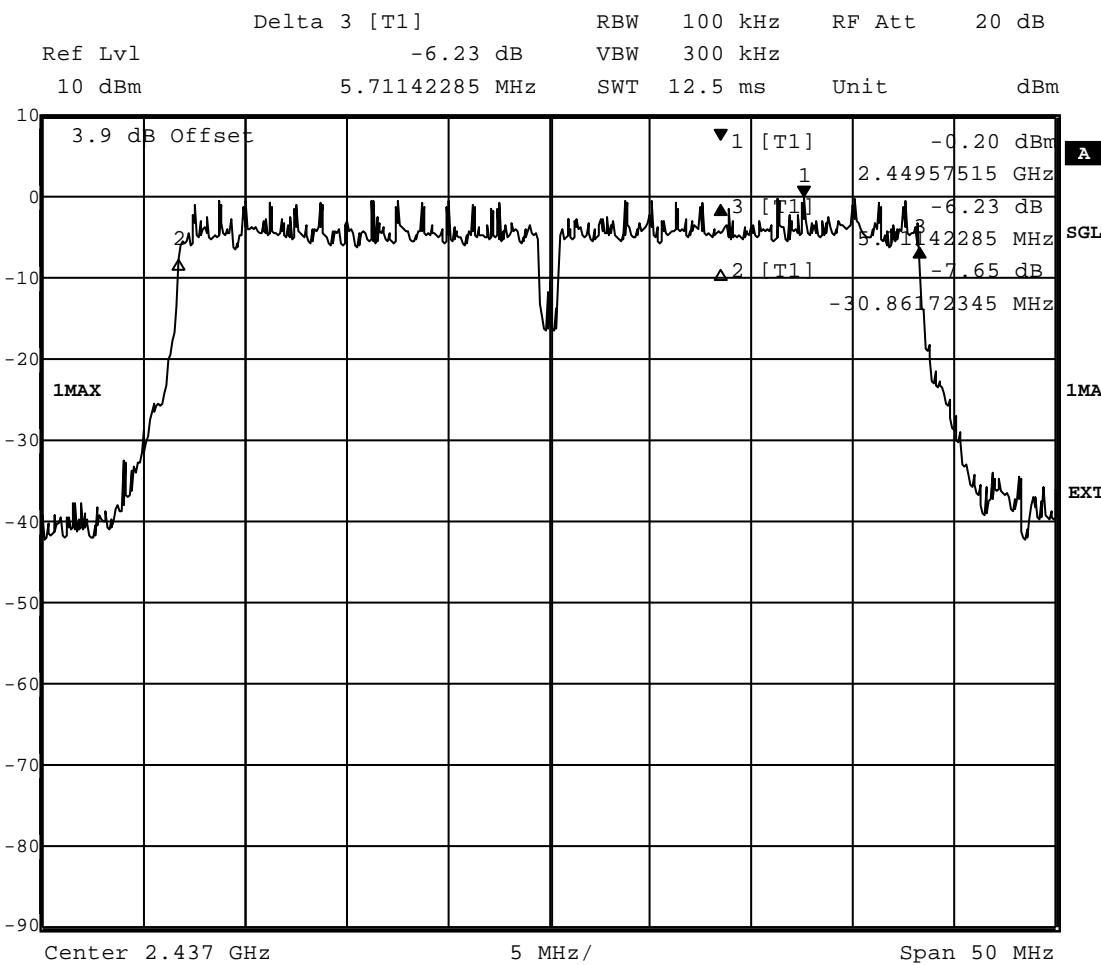
Title: 6dB Bandwidth
 Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):10104
 Date: 8.JAN.2014 10:55:53

Op. Mode


op-mode 1n ch. bandwidth = 20 MHz

Title: 6dB Bandwidth
 Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):17676
 Date: 8.JAN.2014 15:02:15

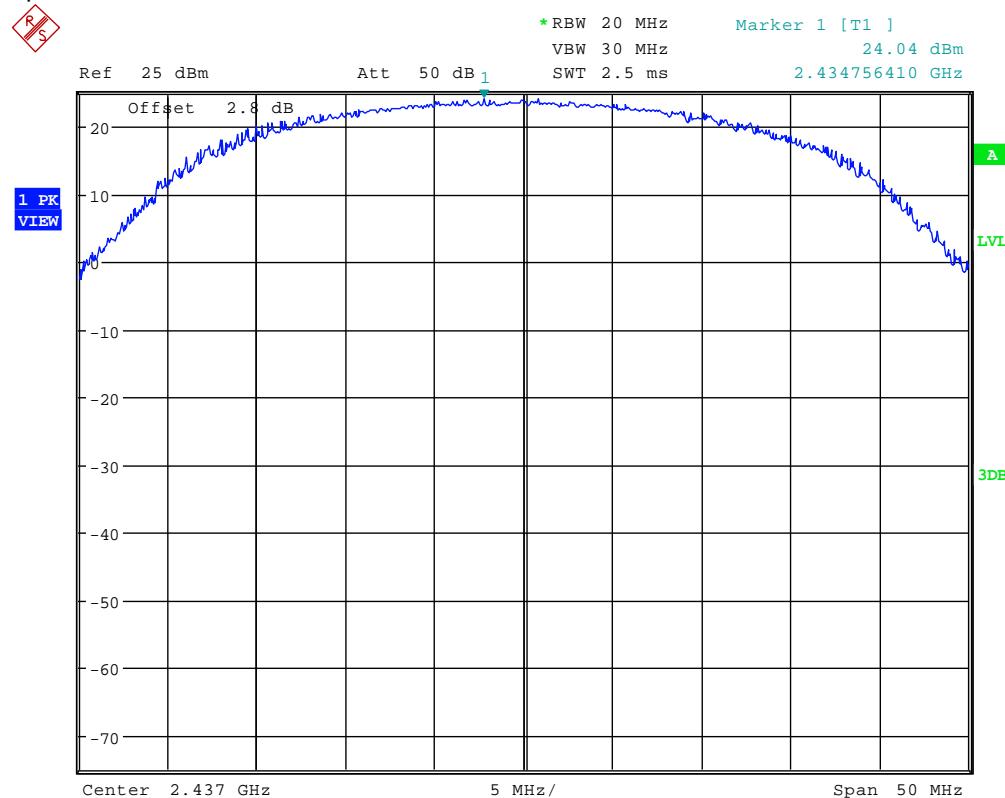
Op. Mode


op-mode 2g ch. bandwidth = 20 MHz

Title: 6dB Bandwidth
 Comment A: CH M: 2437 MHz; 6dB bandwidth (kHz):16416
 Date: 8.JAN.2014 13:55:53

Op. Mode

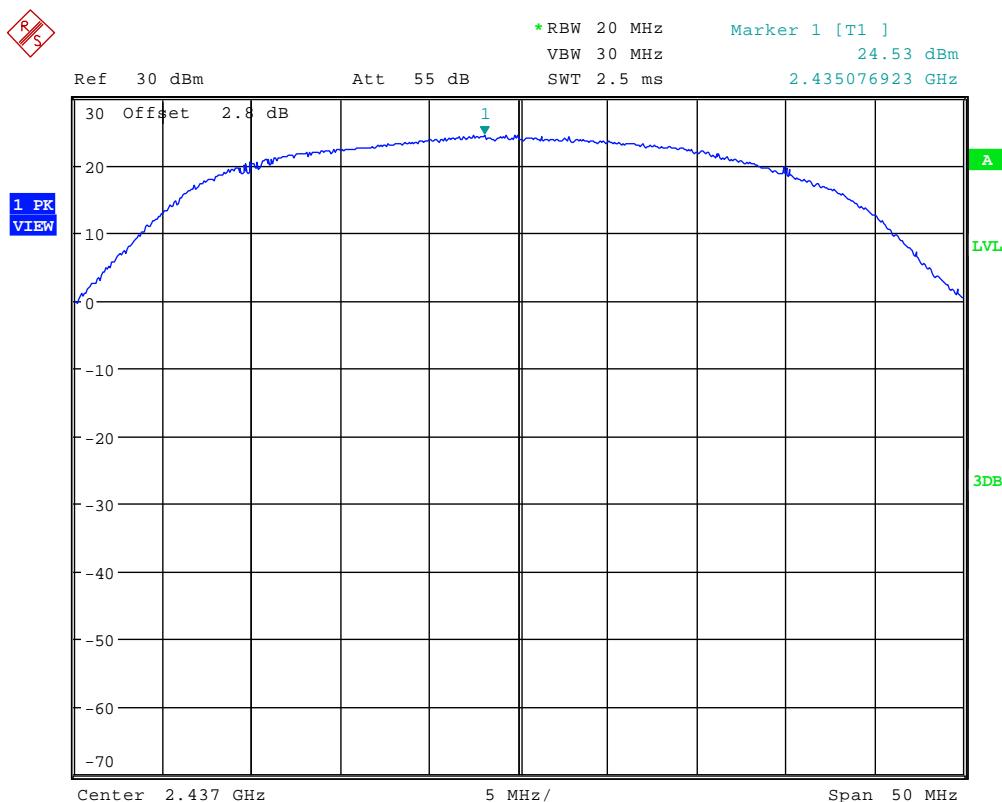
op-mode 2n+ ch. bandwidth = 40 MHz



Date: 15.JAN.2014 13:38:24

9.3 Peak power output

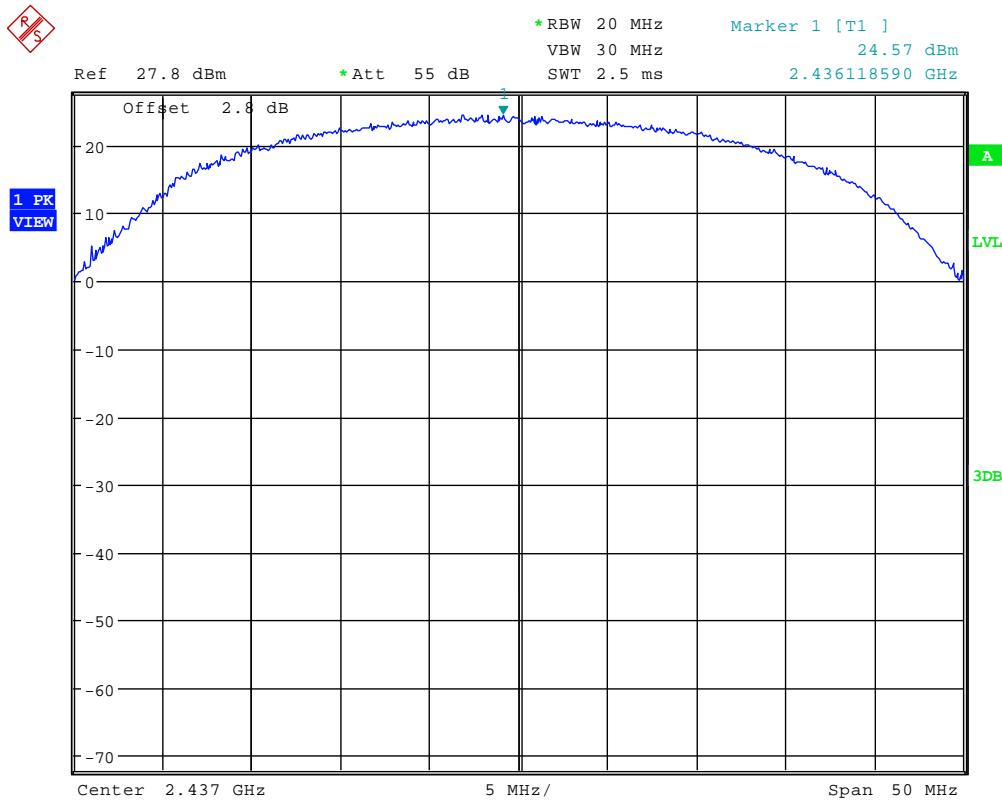
Op. Mode


op-mode 2b ch. bandwidth = 20 MHz

Date: 9.JAN.2014 09:36:27

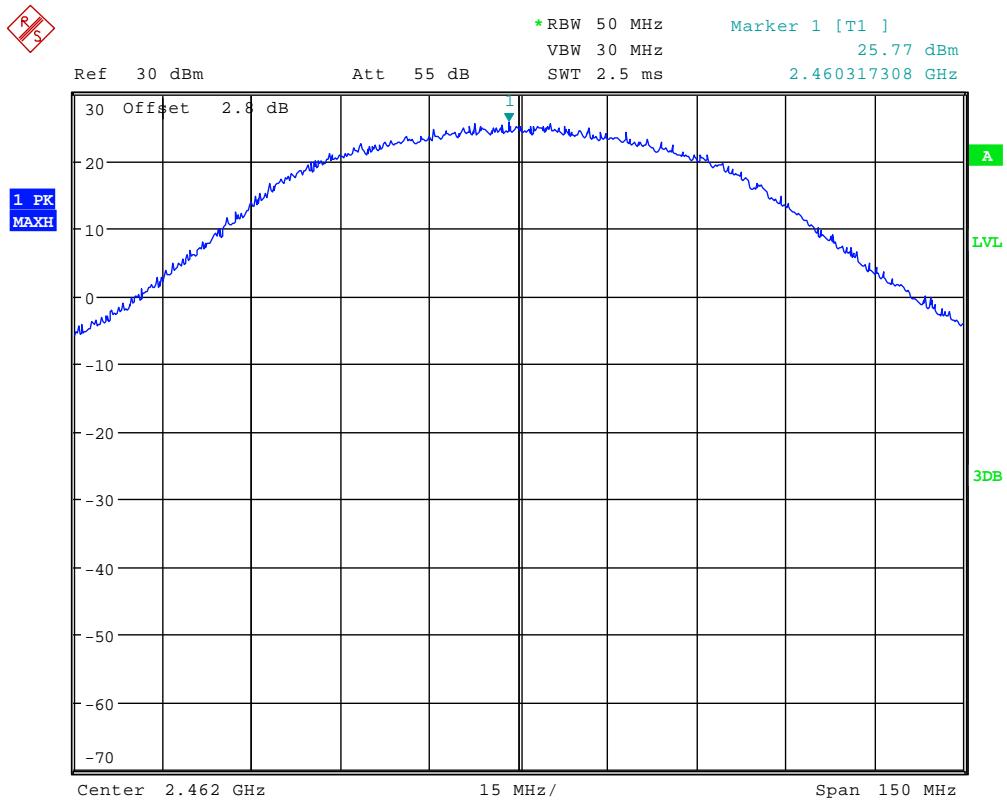
Op. Mode

op-mode 2g ch. bandwidth = 20 MHz



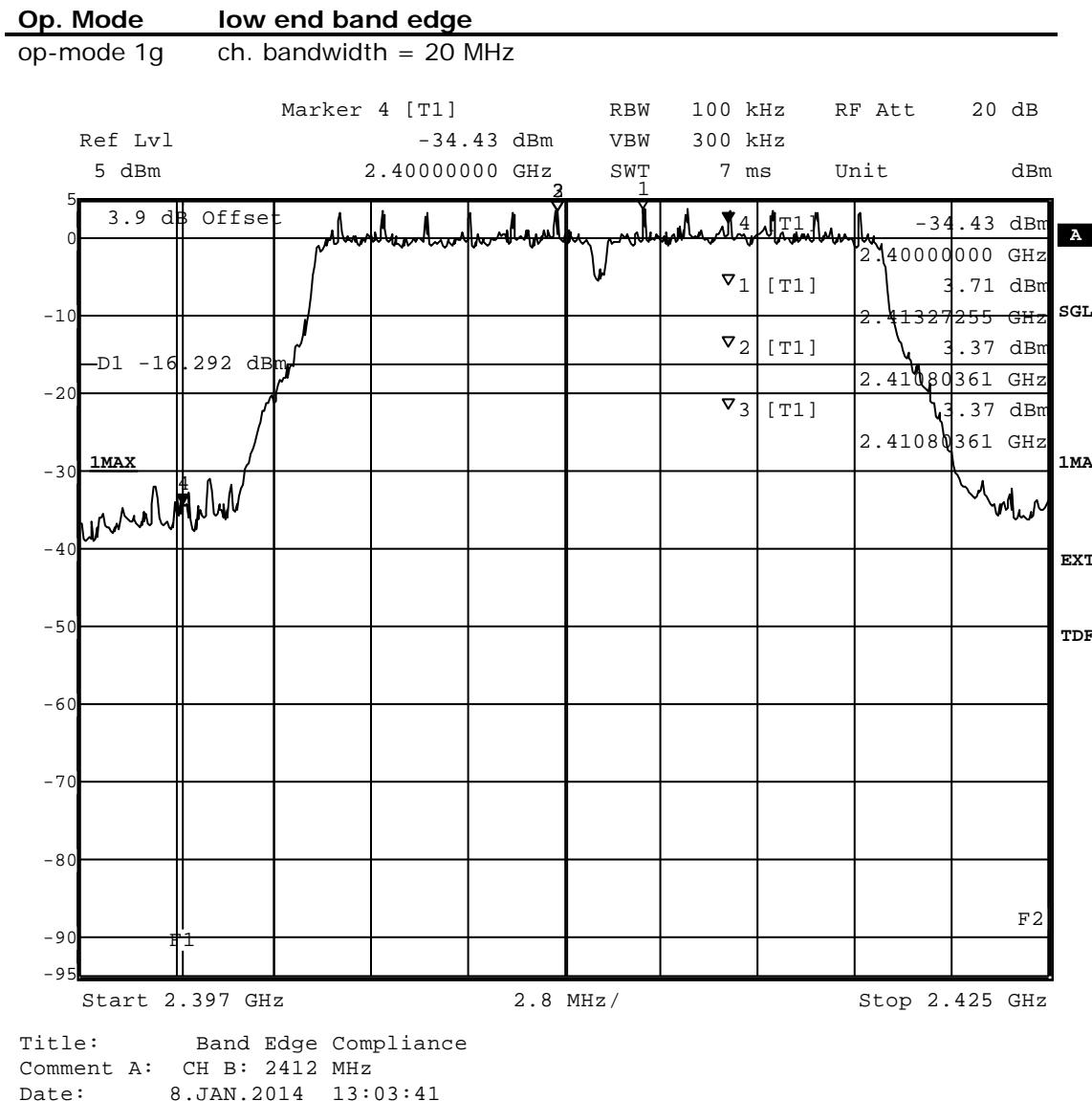
Date: 9.JAN.2014 09:44:23

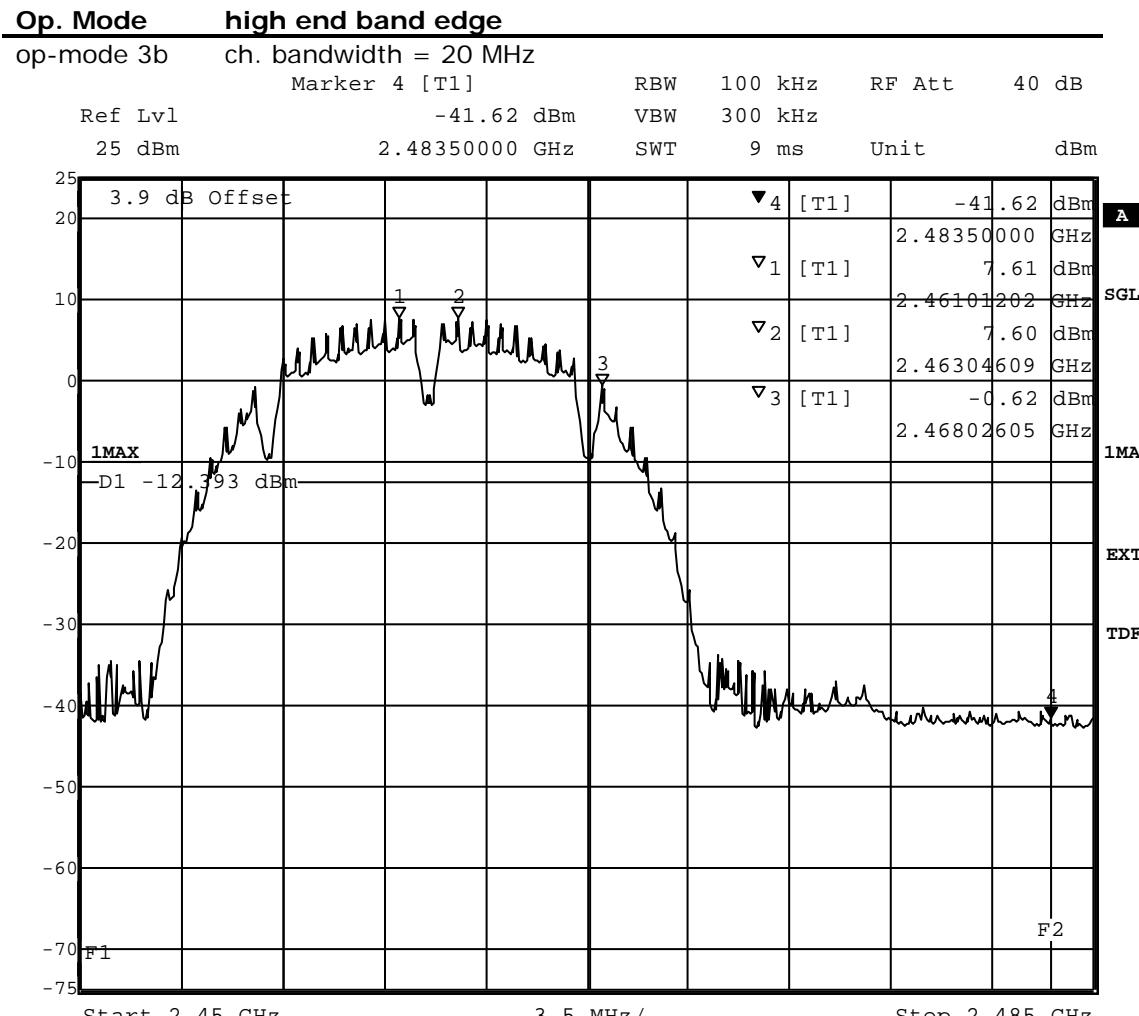
Op. Mode


op-mode 2n ch. bandwidth = 20 MHz

Date: 9.JAN.2014 10:00:37

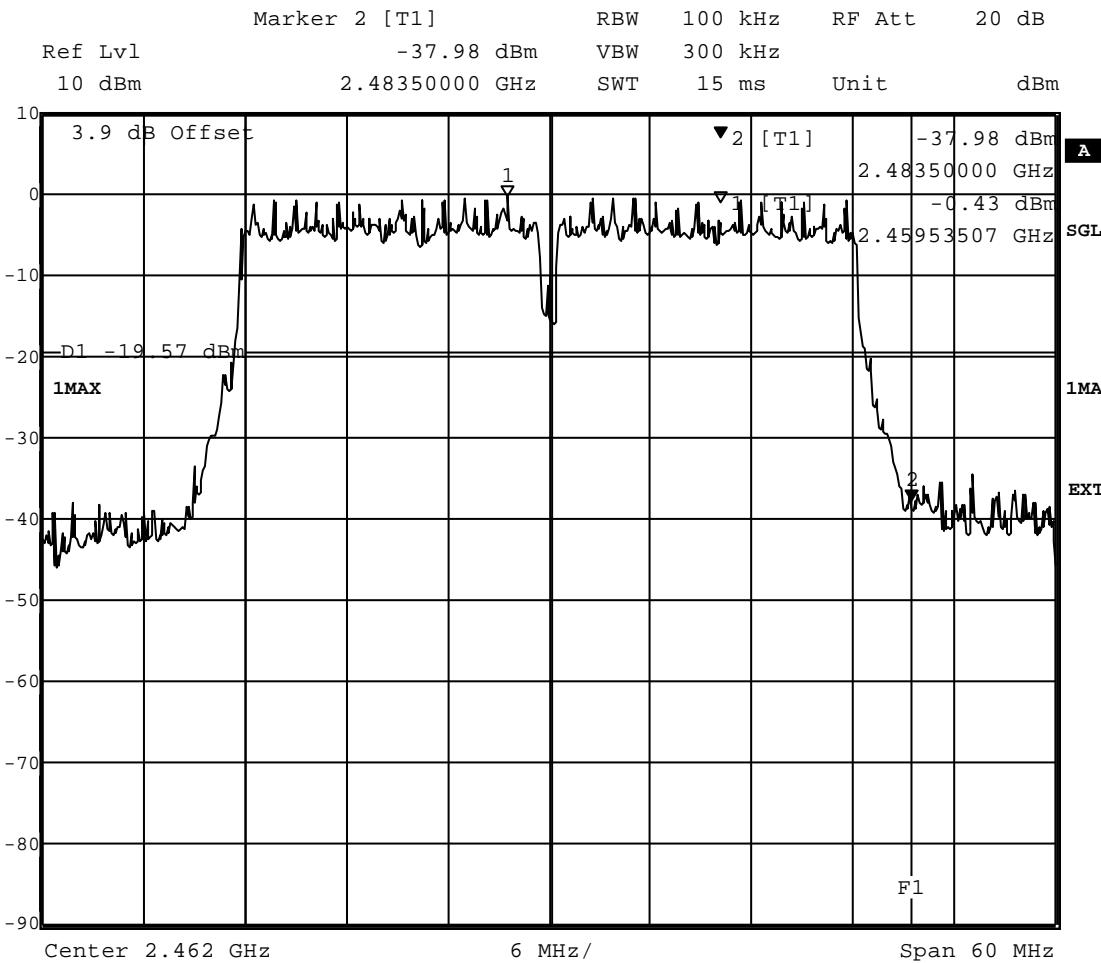
Op. Mode


op-mode 3n+ ch. bandwidth = 40 MHz



Date: 15.JAN.2014 15:10:05

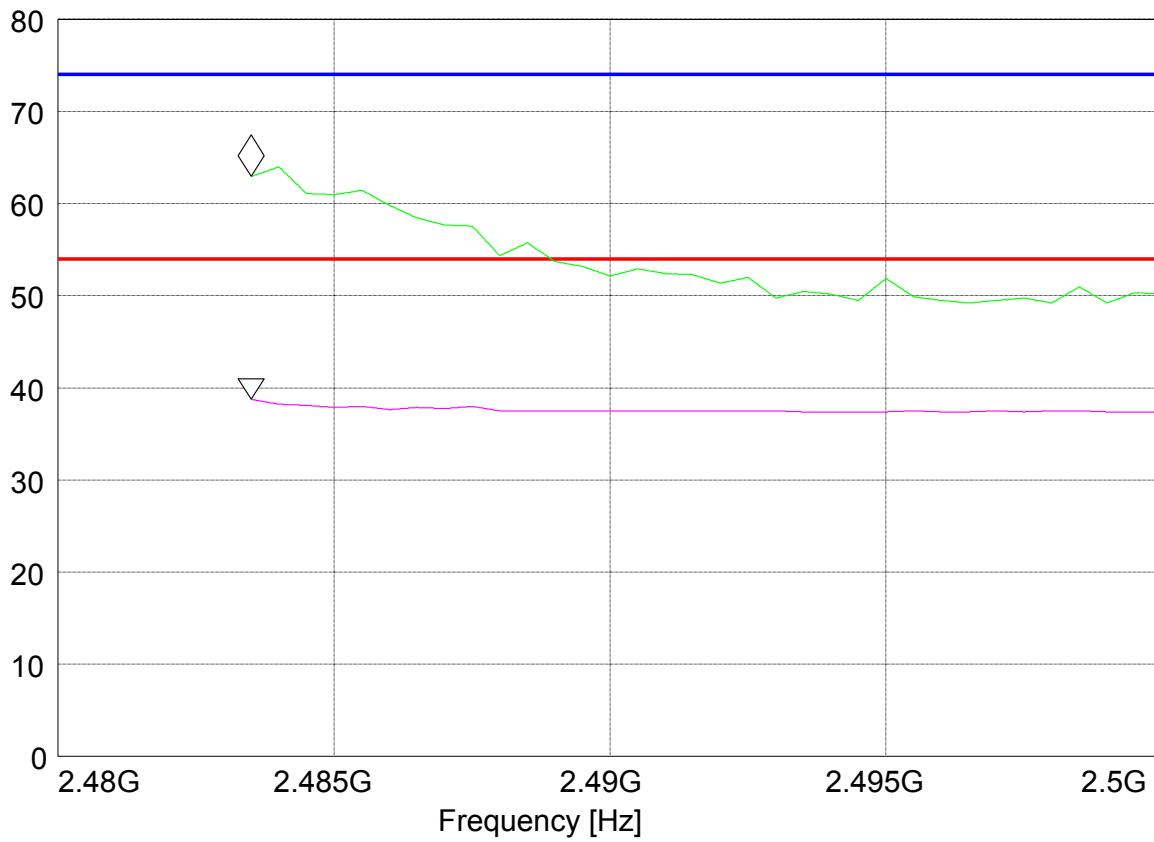
Band edge compilance


9.3.1 Band edge compliance conducted

Title: Band Edge Compliance
 Comment A: CH T: 2462 MHz
 Date: 8.JAN.2014 11:28:50

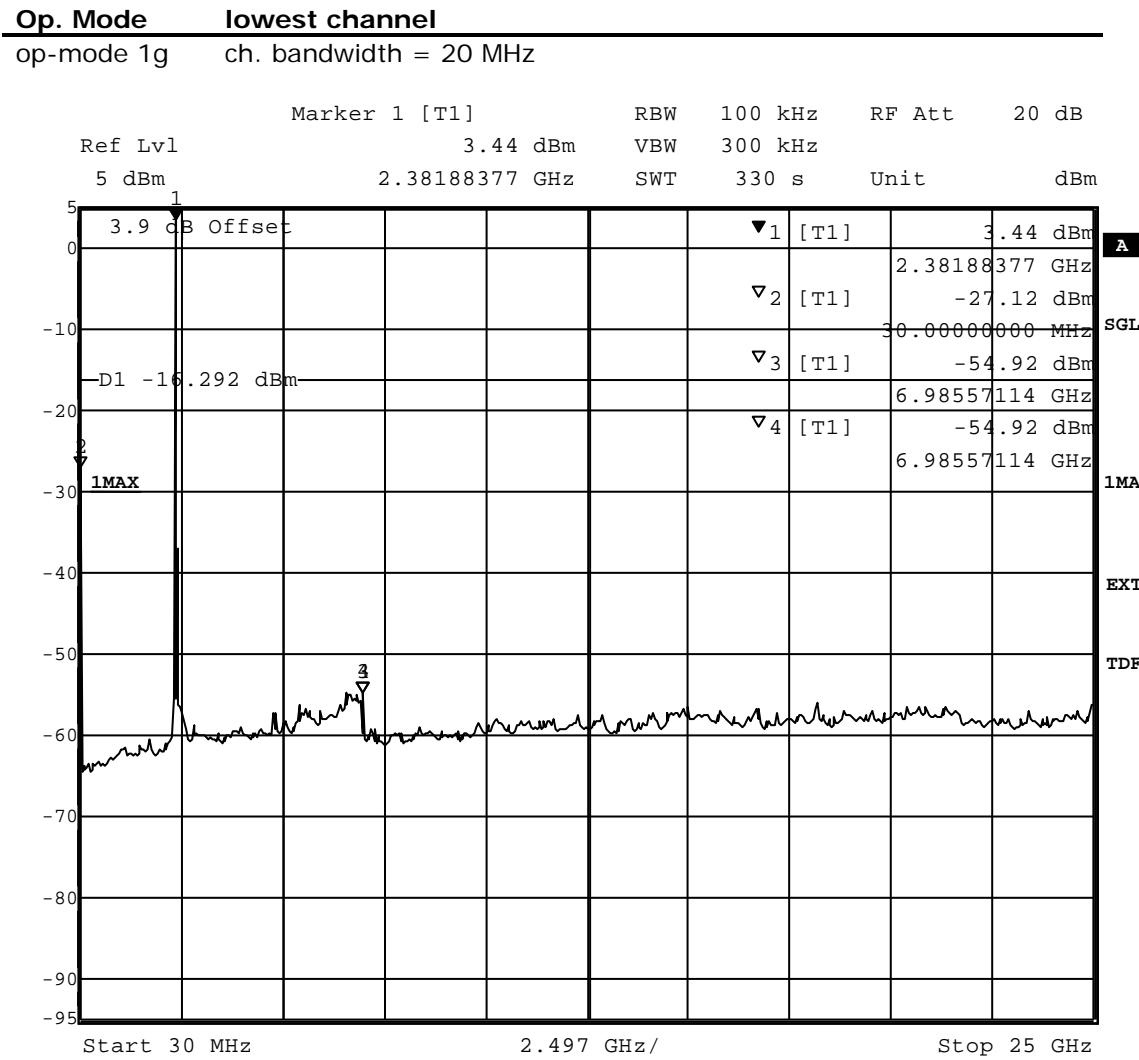
Op. Mode **high end band edge**
 op-mode 3n+ ch. bandwidth = 40 MHz

Date: 15.JAN.2014 13:47:56

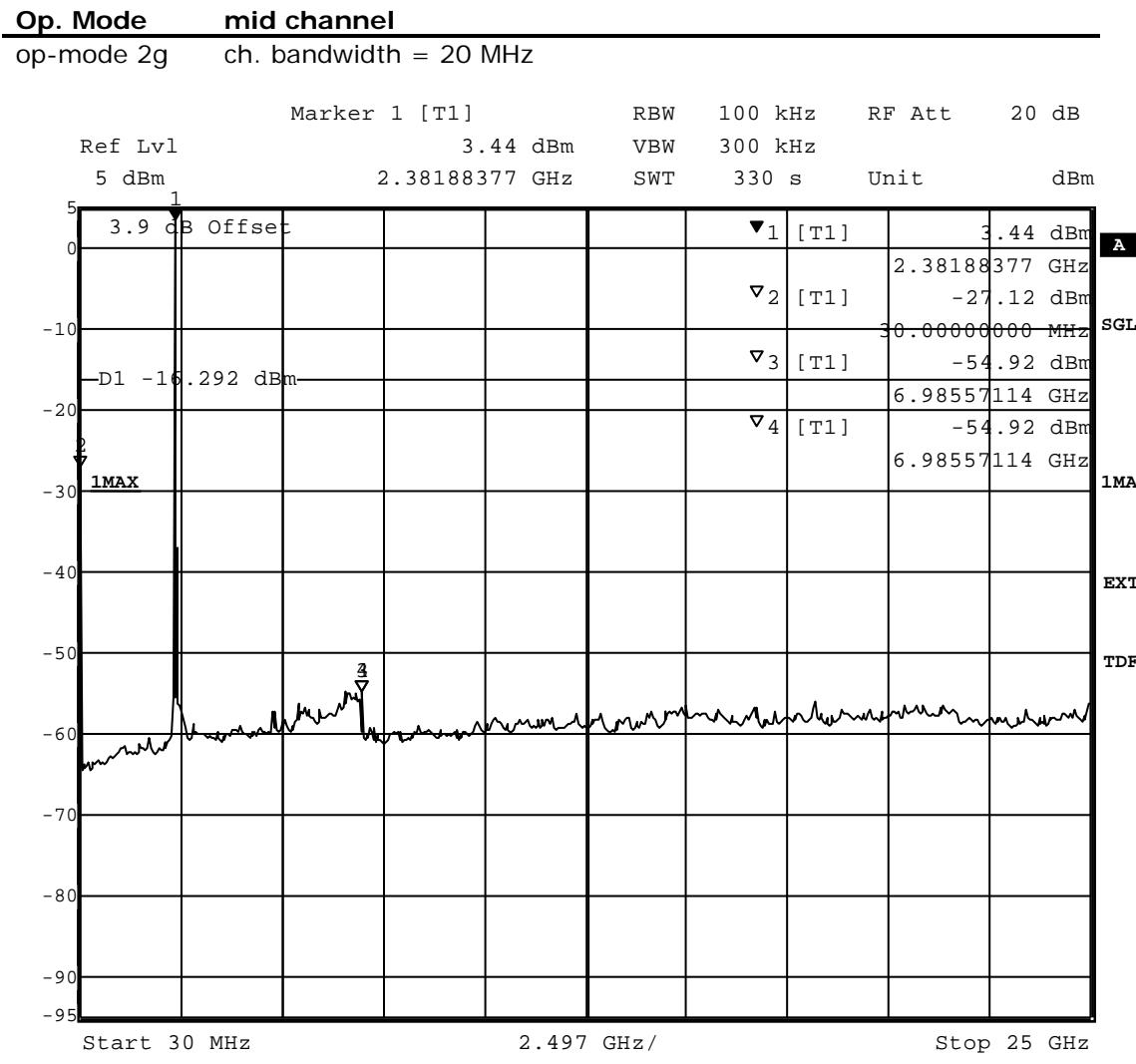


Band edge compliance radiated

Op. Mode **low end band edge**
op-mode 3n ch frequency= 20 MHz

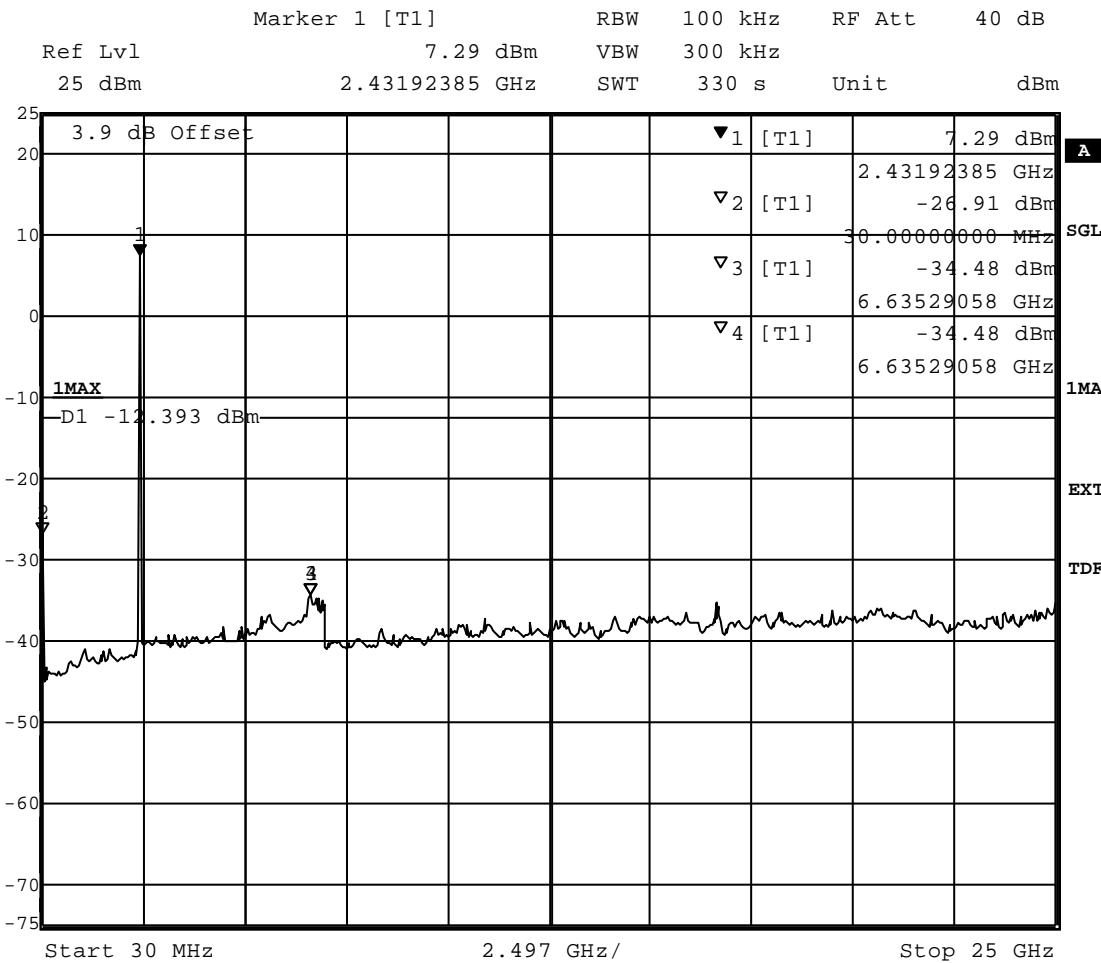

Marker: 2.4835 GHz 62.95 dB μ V/m
Delta Mk: 0 Hz -24.2 dB

Level [dB μ V/m]

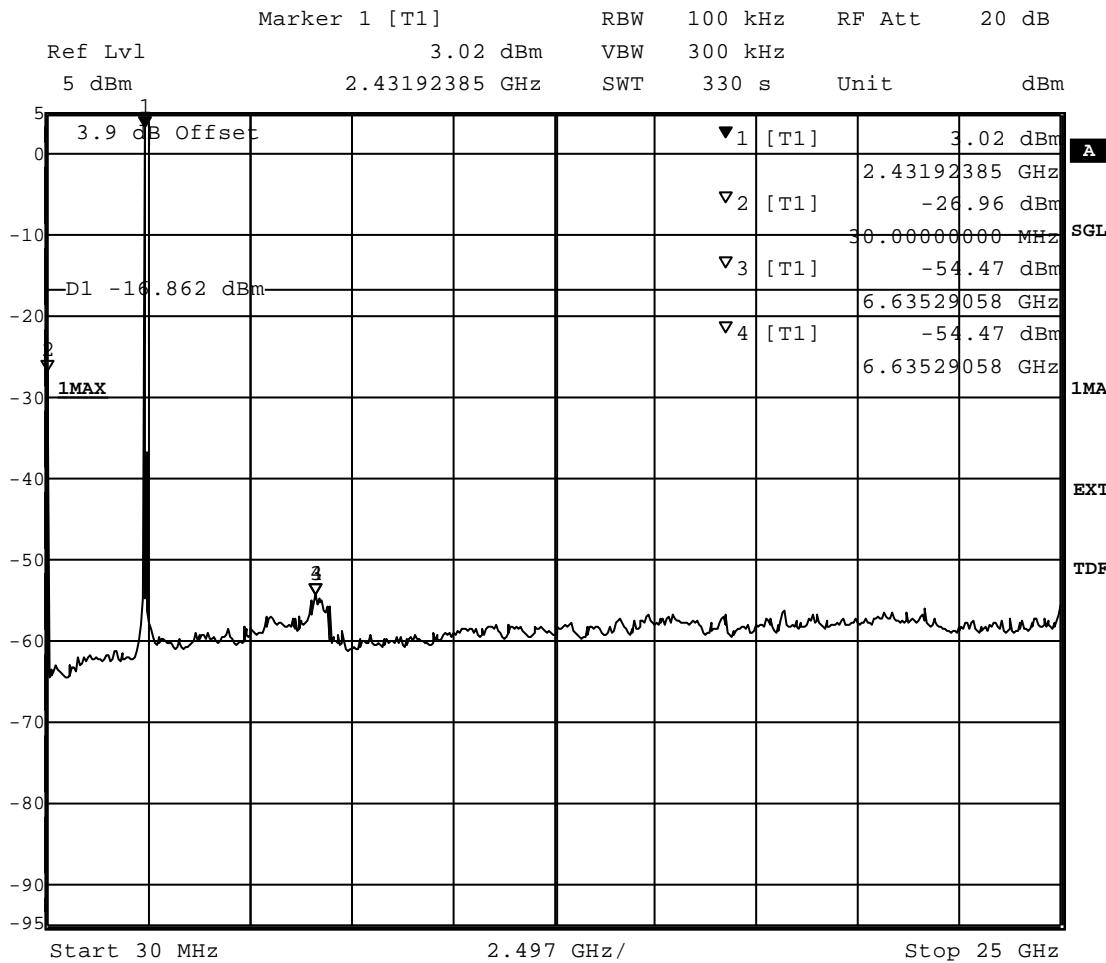


— MES LES_1302_039_pre PK
— MES LES_1302_039_pre AV
— LIM FCC 15.209 3m Field Strength AV Limit
— LIM FCC 15.209 3m Peak Field Strength Q-Peak Limit

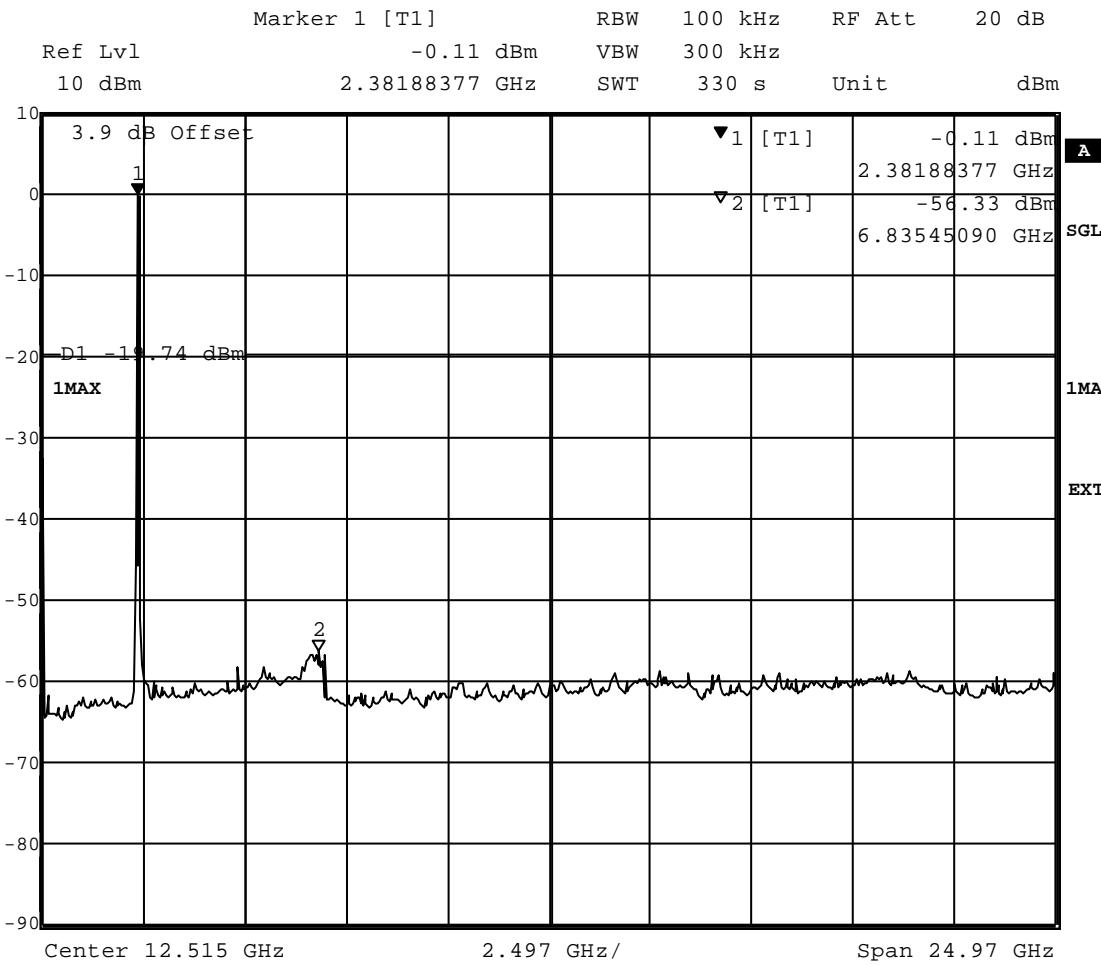
9.4 Spurious RF conducted emission



Title: spurious emissions
 Comment A: CH B: 2412 MHz
 Date: 8.JAN.2014 13:15:19


Title: spurious emissions
 Comment A: CH B: 2412 MHz
 Date: 8.JAN.2014 13:15:19

Op. Mode **high channel**
 op-mode 3b ch. bandwidth = 20 MHz


Title: spurious emissions
 Comment A: CH T: 2462 MHz
 Date: 8.JAN.2014 11:40:29

Op. Mode **high channel**
op-mode 3g ch. bandwidth = 20 MHz

Title: spurious emissions
 Comment A: CH T: 2462 MHz
 Date: 8.JAN.2014 14:28:04

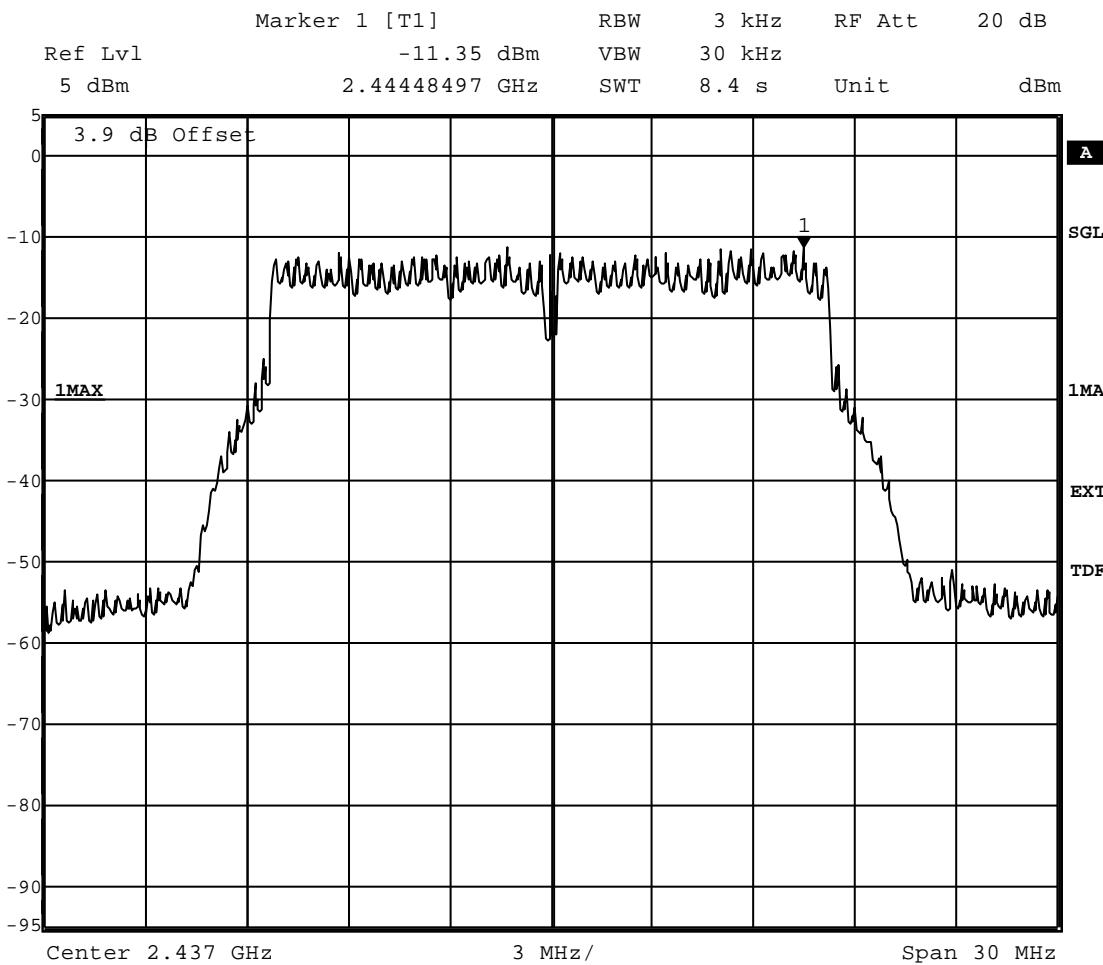
Op. Mode mid channel
 op-mode 1n+ ch. bandwidth = 40 MHz

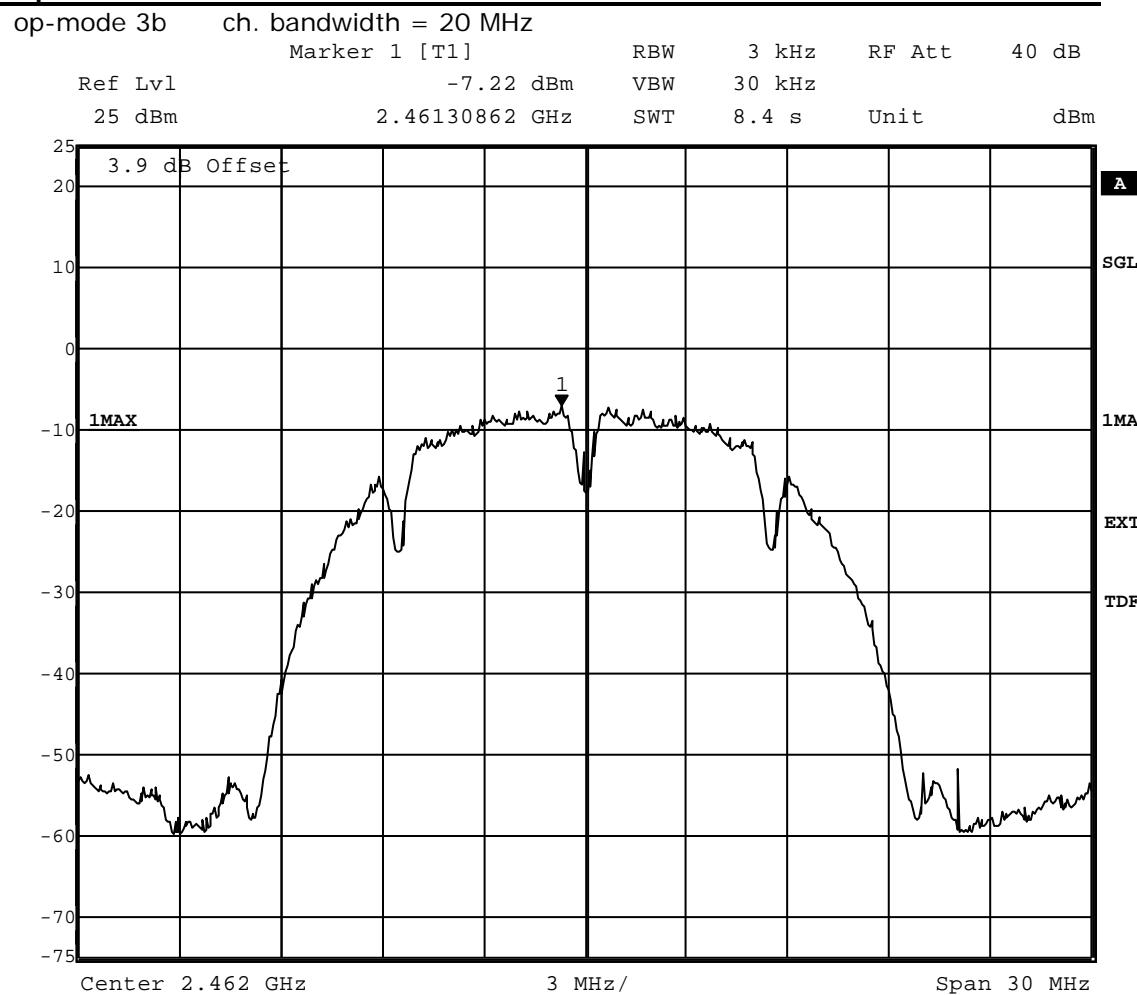


Date: 15.JAN.2014 13:12:10

9.5 Power density

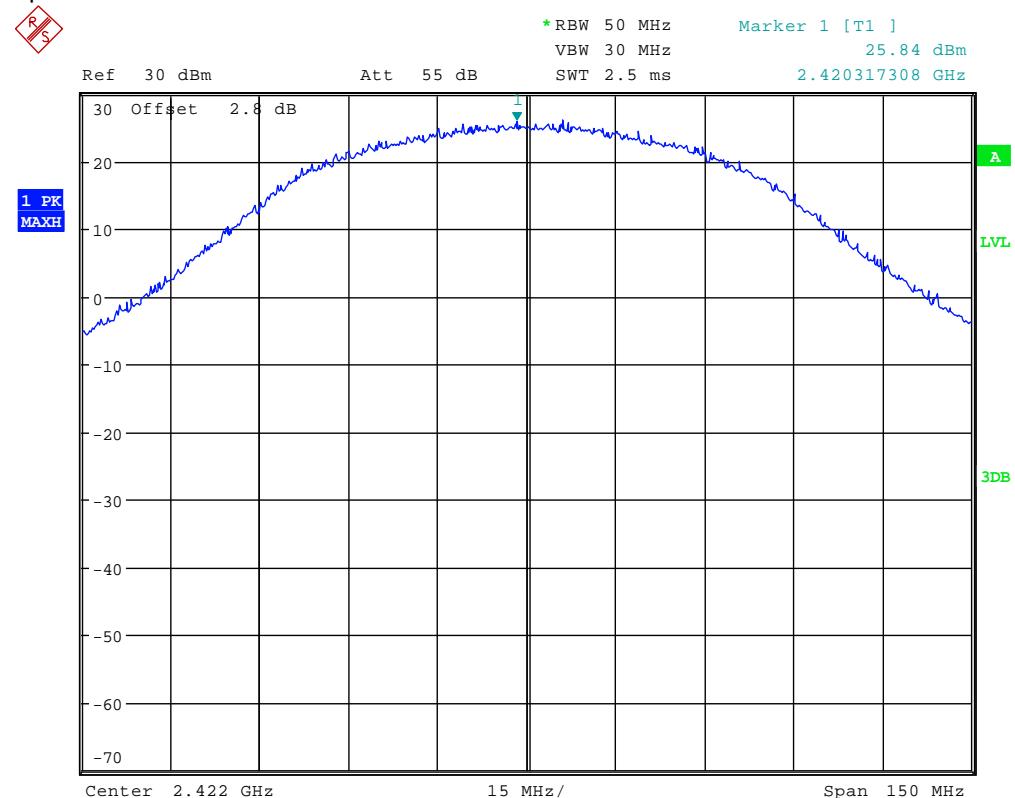
Op. Mode


op-mode 1g ch. bandwidth = 20 MHz


Title: Power Density
 Comment A: CH B: 2412 MHz;
 Date: 8.JAN.2014 13:31:57

Op. Mode

op-mode 2g ch. bandwidth = 20 MHz


Title: Power Density
 Comment A: CH M: 2437 MHz;
 Date: 8.JAN.2014 14:10:35

Op. Mode

Title: Power Density
 Comment A: CH T: 2462 MHz;
 Date: 8.JAN.2014 11:57:45

Op. Mode

op-mode 1n+ ch. bandwidth = 20 MHz

Date: 15.JAN.2014 15:03:48