

ELECTROMAGNETIC COMPATIBILITY TEST REPORT

PREPARED FOR RJC ENTERPRISES, LLC
BY QAI LABORATORIES

Report Reference Number: EJ0089_RJC-650_JBP_Rev1.0

Total Number of Pages: 22

Date of Issue: July 19, 2017

EMC Test Laboratory: **QAI Laboratories Inc.**

Address: 3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada

Phone: (604) 527-8378

Fax: (604) 527-8368

Laboratory Accreditations (per ISO/IEC 17025:2005):

American Association for Laboratory Accreditation Certificate Number: 3657.02

This report has been completed in accordance with the requirements of ISO/IEC 17025. Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditation. QAI Laboratories authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for the use by the company's employees only.

EMC Client: RJC Enterprises, LLC

Address: 11711 N. Creek Pky S, Suite D-103 Bothell, WA 98011

Phone: 425-481-3281 X12

Applicable Test Standards: FCC Title 47 CFR Part 15: Subpart B

Equipment Tested: RJC Enterprises Model 650 Fiber Optic Measuring System

Model Number(s): 650-01 | 650-02 | 650-03 | 650-04

Manufacturer: O5F065003

REVISION HISTORY

Date	Report Number	Rev #	Details	Author's Initials
July 19, 2017	EJ0089_RJC-650_JBP	1.0	Initial Release	HZ

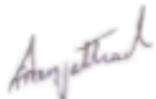
All previous versions of this report have been superseded by the latest dated revision as listed in the above table. Please dispose of all previous electronic and paper printed revisions accordingly.

REPORT AUTHORIZATION

The data documented in this report is for the test equipment provided by RJC Enterprises, LLC. Tests were conducted on the sample equipment as requested by RJC Enterprises, LLC for the purpose of demonstrating compliance with FCC Title 47 CFR Part 15: Subpart B as agreed upon by RJC Enterprises, LLC.

RJC Enterprises, LLC is responsible for the tested product configuration, continued product compliance, and for the appropriate auditing of subsequent products as required. This report may comprise partial list of tests that are required for FCC Declaration of Conformity and can only be produced by the manufacturer.

This is to certify that the following report is true and correct to the best of our knowledge.



Report Prepared by HP Enriquez
EMC Technical Writer

Tested by Maurice Torio
EMC Technician

Reviewed by Aman Jathaul
EMC Engineering Manager

Approved by Parminder Singh
Director for the EMC Department

QAI FACILITIES

Founded in 1994 by a group of experienced certification and testing experts, QAI is an independent third-party testing, inspection and certification organization which serves the building industry, government and individuals with cost effective solutions through our in-house capabilities / services, and an established world-wide network of qualified affiliates. To help get your product to market, trust the provider that many leading global manufacturers do: QAI.

British Columbia

QAI Laboratories Inc.
Main Laboratory/Headquarters
3980 North Fraser Way,
Burnaby, BC V5J Canada

Ontario

QAI Laboratories Inc.
1081 Meyerside Drive, Unit #14
Mississauga, ON L5T 1M4 Canada

Virginia

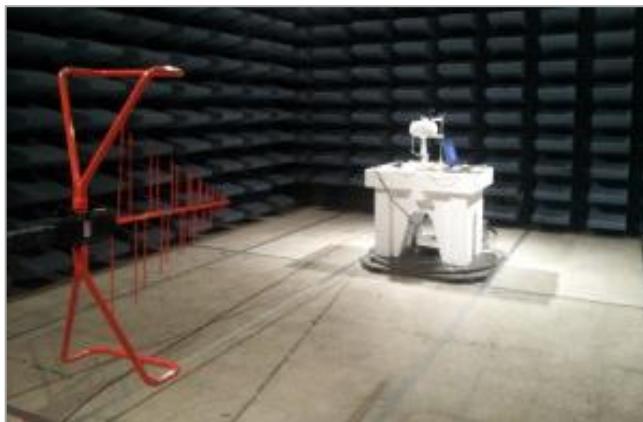
QAI Laboratories Ltd.
1047 Zachary Taylor Hwy,
Suite A Huntly, VA 22640 USA

California

QAI Laboratories Ltd.
8385 White Oak Avenue Rancho
Cucamonga, CA 91730 USA

Oklahoma

QAI Laboratories Ltd.
108th East Avenue,
Tulsa, OK 74116 USA


QAI EMC ACCREDITATION

QAI EMC is your one-stop regulatory compliance partner for electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Products are tested to the latest and applicable EMC/EMI requirements for domestic and international markets. QAI EMC goes above and beyond being a testing facility—we are your regulatory compliance partner. QAI EMC has the capability to perform RF Emissions and Immunity for all types of electronics manufacturing including Industrial, Scientific, Medical, Information Technology, Telecom, Wireless, Automotive, Marine and Avionics.


EMC Laboratory Location	FCC Designation (3m SAC)	IC Registration (3m SAC)	A2LA Certificate
Burnaby, BC, Canada	CA9543	21146-1	3657.02

**Headquarters & EMC Laboratory in
Burnaby, BC**

Chamber 1- 3m Semi-Anechoic Chamber (SAC) in Burnaby, BC

Chamber 1- 3m Semi-Anechoic Chamber (SAC) in Burnaby, BC

Chamber 2- 3m Semi-Anechoic Chamber (SAC) in Burnaby, BC

Chamber 2- 3m Semi-Anechoic Chamber (SAC) in Burnaby, BC

10m Open Area Test Site (OATS) in British Columbia, Canada

TABLE OF CONTENTS

REVISION HISTORY	2
REPORT AUTHORIZATION	3
QAI FACILITIES.....	4
QAI EMC ACCREDITATION	4
TABLE OF CONTENTS	6
Section I: EXECUTIVE SUMMARY	7
1.1 Purpose.....	7
1.2 Scope.....	7
1.3 Summary of Results.....	7
Section II: GENERAL INFORMATION	8
2.1 Product Description	8
2.2 Environmental Conditions	9
2.3 Measurement Uncertainty	9
2.4 Worst Test Case	9
2.5 Sample Calculations of Emissions Data.....	9
2.6 Test Equipment List.....	11
Section III: EMISSIONS TEST RESULTS.....	12
3.1 Radiated Emissions	12
3.2 AC Mains Conducted Emissions	14
Appendix A: TEST SETUP PHOTOS.....	19
Appendix B: ABBREVIATIONS	21

Section I: EXECUTIVE SUMMARY

1.1 Purpose

The purpose of this report is to demonstrate and document the compliance of “RJC Enterprises Model 650 Fiber Optic Measuring System” as per Sections 1.2 & 1.3.

1.2 Scope

The information documented in this report is based on the test methods and levels of standard(s):

- **FCC Title 47 CFR Part 15** – Radio Frequency Devices, Subpart B - Unintentional Radiators.

1.3 Summary of Results

The following tests demonstrate the testimony to “FCC” Mark Electromagnetic compatibility testing for “RJC Enterprises Model 650 Fiber Optic Measuring System” manufactured by RJC Enterprises, LLC

The following testing was performed pursuant to FCC Title 47 CFR Part 15 - Emissions

Test or Measurement	FCC Clause	Applicable Test Method	Description	Result
AC Mains Conducted Emissions	§ 15.107	ANSI C63.4-2014 Class B Limits	The Conducted Emissions are measured on the phase and Neutral Power lines in the 0.15 - 30.0 MHz range.	Complies
Radiated Emissions	§ 15.109	ANSI C63.4-2014 Class B Limits	The radiated emissions are measured in the 30-1000MHz range	Complies

Section II: GENERAL INFORMATION

2.1 Product Description

The information provided in this section is for the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment needed to perform the tests as a complete system.

EUT – RJC Enterprises Model 650 Fiber Optic Measuring System

Equipment Under Test (EUT) Information

No.	Item/Description	Manufacturer	Model No(s.)	Serial No.
1	RJC Enterprises Model 650 Fiber Optic Measuring System	RJC Enterprises, LLC	650-01 650-02 650-03 650-04	-

EUT Input Power Source Information

No.	Item/Description	Manufacturer	Model No.	Serial No.
1	AC Power Input via Power Cord Cable 110-220Vac, 50-60Hz	-	-	-

EUT Test Mode/Configuration/Operation During Testing

No.	Test Description	EUT Test Mode/Configuration/Operation
1	Radiated Emission	Continuous normal mode of operation - streaming data to a PC/laptop
2	Conducted Emission	

2.2 Environmental Conditions

The equipment under test was operated and tested under the following environmental conditions:

Parameter	Conditions
Location	Indoors
Temperature	22-28°C
Relative Humidity	39.7 - 54.4%

2.3 Measurement Uncertainty

Parameter	Uncertainty
Radiated Emissions, 30MHz-1GHz	± 2.40 dB
Radiated Emissions, 1GHz-40GHz	± 2.48 dB
Radio Frequency	±1.5 x 10-5 MHz
Total RF Power Conducted	±1.36 dB
Spurious Emissions, Conducted	±1.36 dB
RF Power Density, Conducted	±1.36 dB
Temperature	±1°C
Humidity	±5 %
DC and low frequency voltages	±3 %

2.4 Worst Test Case

Worst-case orientation was determined during the preliminary testing. The final radiated emissions were performed in the worst-case orientation.

2.5 Sample Calculations of Emissions Data

Radiated and conducted emissions were performed using EMC32 software developed by Rohdes & Schwarz. Transducer factors like Antenna factors, Cable Losses and Amplifier gains were stored in the test templates which are used to perform the emissions measurements. After test is finished, data is generated from the EMC32 consisting of product details, emission plots and final data tables as shown below.

Frequency (MHz)	QPeak (dB μ V/m)	Meas. Time (ms)	Bandwidth (kHz)	Ant. Ht. (cm)	Pol	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
42.663900	33.0	1000.000	120.000	100.0	H	70.0	13.2	7.5	40.5

Quasi Peak reading shown in the table above is already corrected by the software using correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable loss}$$

Or

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable Loss} - \text{Amp gain} \text{ (if pre-amplifier was used)}$$

The final Quasi peak reading shown in the data is calculated by the software using following equation:

$$\text{Corrected Quasi Peak(dB μ V/m)} = \text{Raw Quasi Peak Reading} + \text{Antenna factor} + \text{Cable loss}$$

To obtain the final Quasi-Peak or Average reading during power line conducted emissions, transducer factors are included in the final measurement as shown below.

Frequency (MHz)	QPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.150	44.3	1000.000	9.000	GND	0.6	21.7	66.0

Frequency (MHz)	QPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.150	27.2	1000.000	9.000	GND	0.6	28.8	56.0

Quasi Peak or Average reading shown in above table is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable loss}$$

The final Quasi peak or Average reading shown in the data is calculated by the software using following equation:

$$\text{Corr. Quasi Peak/Average Reading (dB μ V)} = \text{Raw Quasi Peak/Average Reading} + \text{Antenna factor} + \text{Cable loss}$$

The allowable margin from the limits, as per the standards, were calculated for both radiated and conducted emissions:

$$\text{Margin(dB)} = \text{Limit} - \text{Quasi-Peak or Average reading}$$

2.6 Test Equipment List

The tables below contain all the equipment used by QAI Laboratories in conducting all tests on the Equipment Under Test (EUT) as per Section 1.3.

Emissions Test Equipment

Manufacturer	Model	Description	Serial No.	Calibration Due Date
Sunol Sciences	SM46C	Turntable	051204-2	N/A
Sunol Sciences	TWR95	Mast	TREML0001	N/A
Sunol Sciences	JB3	Biconilog Antenna 30MHz – 3GHz	A120106	2017-Sep-24
Sunol Sciences	DRH-118	Horn Antenna 1GHz-18GHz	A050905	2019-Mar-10
ETS Lindgren	2165	Turntable	00043677	N/A
ETS Lindgren	2125	Mast	00077487	N/A
Rohde & Schwarz	ESU40	EMI Receiver	100011	2017-Nov-20
Fischer	FCC-LISN-50-25-2-08	LISN (150kHz-30MHz)	2041	2018-Nov-19
ETS Lindgren	S201	5-meter Semi-Anechoic Chamber	1030	N/A
AH Systems	PAM118	Amplifier 10KHz-18GHz	189	Conditional Use

Note: Equipment listed above have 3 years calibration interval.

Measurement Software List

Manufacturer	Model	Version	Description
Rhode & Schwarz	EMC 32	6.20.0	Emissions Test Software

Section III: EMISSIONS TEST RESULTS

3.1 Radiated Emissions

Date Performed:

July 14, 2017

Test Standard:

- FCC Title 47 CFR Part 15: Subpart B § 15.109

Test Method:

- ANSI C63.4-2014

Required Limit:

FCC Class B Limit:

Frequency (MHz)	Field Strength Quasi Peak dB μ V/m @ 3m SAC
30 – 88	40.0
88 – 216	43.5
216 – 960	46.0
Above 960	54.0

Method of Measurement:

The EUT was positioned in the center of the turntable in the SAC. The EUT was then measured for all the radiated emissions in the frequency range of 30MHz – 18GHz. Measurements were made using the spectrum analyzer and receiver using the appropriate antennas, amplifiers, attenuators, and filters.

The required Quasi-Peak CISPR bandwidth shall be 120 kHz for the range 30 – 1000 MHz. A 1 MHz Resolution Bandwidth (RBW, CISPR Band E) shall be used and a 10 Hz Video Bandwidth (VBW). The ANSI C63.4:2014 requirement for the placement of RF Absorber on the turntable Ground Plane shall be satisfied.

Emissions in both horizontal and vertical polarizations were measured while rotating the Equipment Under Test (EUT) on the turntable to maximize signal strength. In the case of high ambient noises, the measurements are performed at a closer distance and the limit is adjusted per the equation below. The result is added or subtracted to the required emission level to ensure compliance at the new distance.

$$20 \log \left(\frac{D_1}{D_2} \right); \quad \text{Where } D_1 = \text{Current Distance} \\ D_2 = \text{Required Distance}$$

Modifications:

No modification was required to comply for this test.

Result:

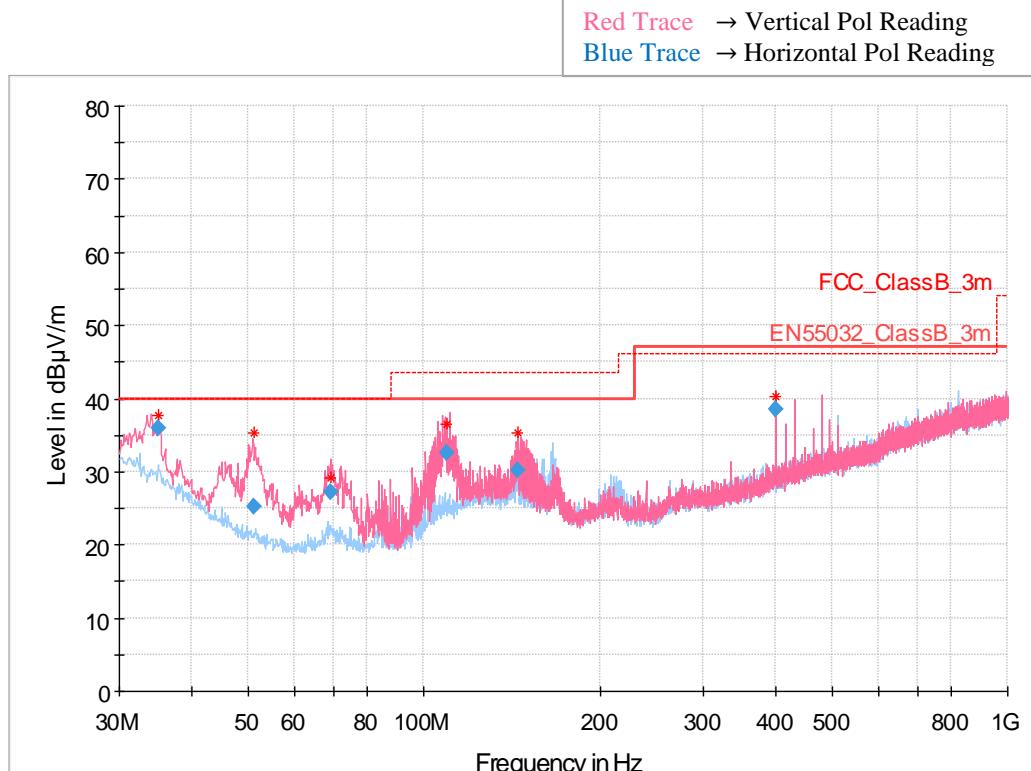
The EUT complies with the applicable standard.

Measurement Data and Plot:

Test Mode/Configuration/Operation:

- Continuous Normal Mode of Operation

Test Voltage Used:


- 120Vac/60Hz

Frequency Range:

- 0.150 MHz ↔ 30 MHz

Legend:

Red Trace → Vertical Pol Reading
Blue Trace → Horizontal Pol Reading

Plot 1: Radiated Emissions scanned at 3m SAC

Table 1: QPeak Data of Radiated Emissions measured at 3m – FCC Class B Limit

Freq. (MHz)	QPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Ant. Ht. (cm)	Pol	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
35.006550	36.02	1000.0	120.000	98.0	V	86.0	25.1	3.98	40.0
51.071300	25.21	1000.0	120.000	198.0	V	132.0	16.8	14.79	40.0
69.350600	27.20	1000.0	120.000	121.0	V	228.0	16.4	12.8	40.0
109.509800	32.64	1000.0	120.000	116.0	V	238.0	21.2	10.86	43.5
144.677950	30.24	1000.0	120.000	110.0	V	0.0	22.1	13.26	43.5
399.981200	38.46	1000.0	120.000	98.0	H	269.0	26.1	7.54	46.0

3.2 AC Mains Conducted Emissions

Date Performed:

July 14, 2017

Test Standard:

- FCC Title 47 CFR Part 15: Subpart B § 15.107

Test Method:

- ANSI C63.4-2014

Required Limit:

FCC Class B Limit:

Frequency (MHz)	Conducted Limit (dB μ V)	
	Quasi-Peak	Average
0.15 – 0.50	66 to 56	56 to 46
0.50 – 5.0	56	46
5.0 – 30.0	60	50

Note 1: The lower limit shall apply at the transition frequencies.
Note 2: The limit decreases linearly with the logarithm of the frequency in the 0.15 to 0.50 MHz

Method of Measurement:

Measurements were made using a test receiver with 9kHz bandwidth, CISPR Quasi-Peak and Average detector.

Modifications:

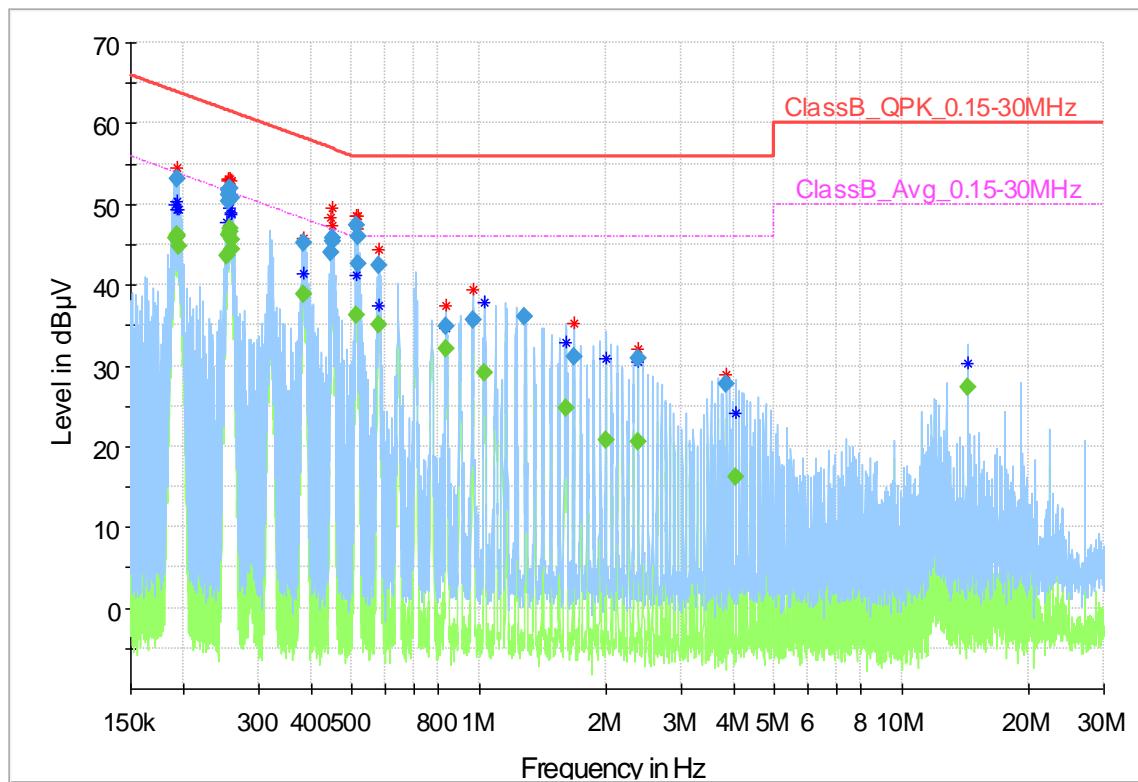
No modification was required to comply for this test.

Result:

The EUT complies with the applicable standard.

Measurement Data and Plot:

Test Mode/Configuration/Operation:


- Continuous Normal Mode of Operation

Test Voltage Used:

- Line 1, 120Vac/60Hz

Frequency Range:

- 0.150 MHz ↔ 30 MHz

Plot 2: Conducted Emissions – Line 1, 120Vac/60Hz

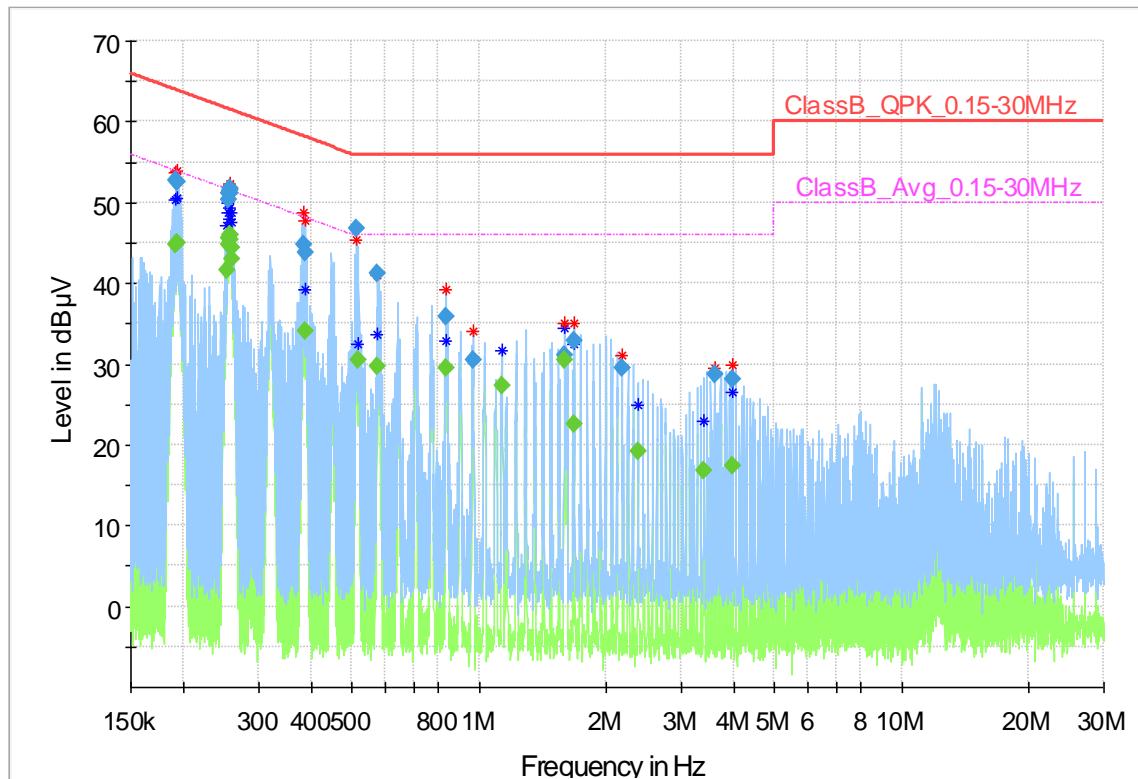
Table 2: QPeak Data of Conducted Emissions – Line 1, 120Vac/60Hz

Frequency (MHz)	QPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.192580	53.22	1000.0	9.000	GND	10.8	10.71	63.93
0.254518	50.35	1000.0	9.000	GND	10.7	11.26	61.61
0.255282	51.18	1000.0	9.000	GND	10.7	10.40	61.58
0.256305	51.79	1000.0	9.000	GND	10.7	9.76	61.55
0.257075	51.92	1000.0	9.000	GND	10.7	9.60	61.53
0.258879	50.65	1000.0	9.000	GND	10.7	10.82	61.47
0.383433	45.17	1000.0	9.000	GND	10.7	13.04	58.21
0.446790	44.09	1000.0	9.000	GND	10.7	12.84	56.94
0.448132	45.45	1000.0	9.000	GND	10.7	11.46	56.91
0.449478	45.78	1000.0	9.000	GND	10.7	11.10	56.89
0.512869	47.39	1000.0	9.000	GND	10.7	8.61	56.00
0.515954	45.96	1000.0	9.000	GND	10.7	10.04	56.00
0.518021	42.66	1000.0	9.000	GND	10.7	13.34	56.00
0.577646	42.46	1000.0	9.000	GND	10.7	13.54	56.00
0.836124	34.93	1000.0	9.000	GND	10.7	21.07	56.00
0.965556	35.58	1000.0	9.000	GND	10.7	20.42	56.00
1.285061	36.01	1000.0	9.000	GND	10.7	19.99	56.00
1.673094	31.15	1000.0	9.000	GND	10.7	24.85	56.00
2.375152	30.91	1000.0	9.000	GND	10.7	25.09	56.00
3.852874	27.66	1000.0	9.000	GND	10.8	28.34	56.00

Table 3: Average Data of Conducted Emissions – Line 1, 120Vac/60Hz

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.191428	45.68	1000.0	9.000	GND	10.8	8.29	53.97
0.192772	46.08	1000.0	9.000	GND	10.8	7.83	53.92
0.193351	45.95	1000.0	9.000	GND	10.8	7.95	53.89
0.194709	44.81	1000.0	9.000	GND	10.8	9.03	53.83
0.253502	43.65	1000.0	9.000	GND	10.7	8.00	51.64
0.255282	46.22	1000.0	9.000	GND	10.7	5.37	51.58
0.257075	46.91	1000.0	9.000	GND	10.7	4.62	51.53
0.257847	46.61	1000.0	9.000	GND	10.7	4.89	51.50
0.258879	45.59	1000.0	9.000	GND	10.7	5.88	51.47
0.259657	44.46	1000.0	9.000	GND	10.7	6.98	51.44
0.384585	38.92	1000.0	9.000	GND	10.7	9.26	48.18
0.512357	36.52	1000.0	9.000	GND	10.7	9.5	46.00
0.578802	35.2	1000.0	9.000	GND	10.7	10.8	46.00
0.836124	32.18	1000.0	9.000	GND	10.7	13.82	46.00
1.030369	29.09	1000.0	9.000	GND	10.7	16.91	46.00
1.605917	24.72	1000.0	9.000	GND	10.7	21.28	46.00
1.992892	20.83	1000.0	9.000	GND	10.7	25.17	46.00
2.375152	20.66	1000.0	9.000	GND	10.7	25.34	46.00
4.046268	16.13	1000.0	9.000	GND	10.8	29.87	46.00
14.316400	27.35	1000.0	9.000	GND	11.3	22.65	50.00

Test Mode/Configuration/Operation:


- Continuous Normal Mode of Operation

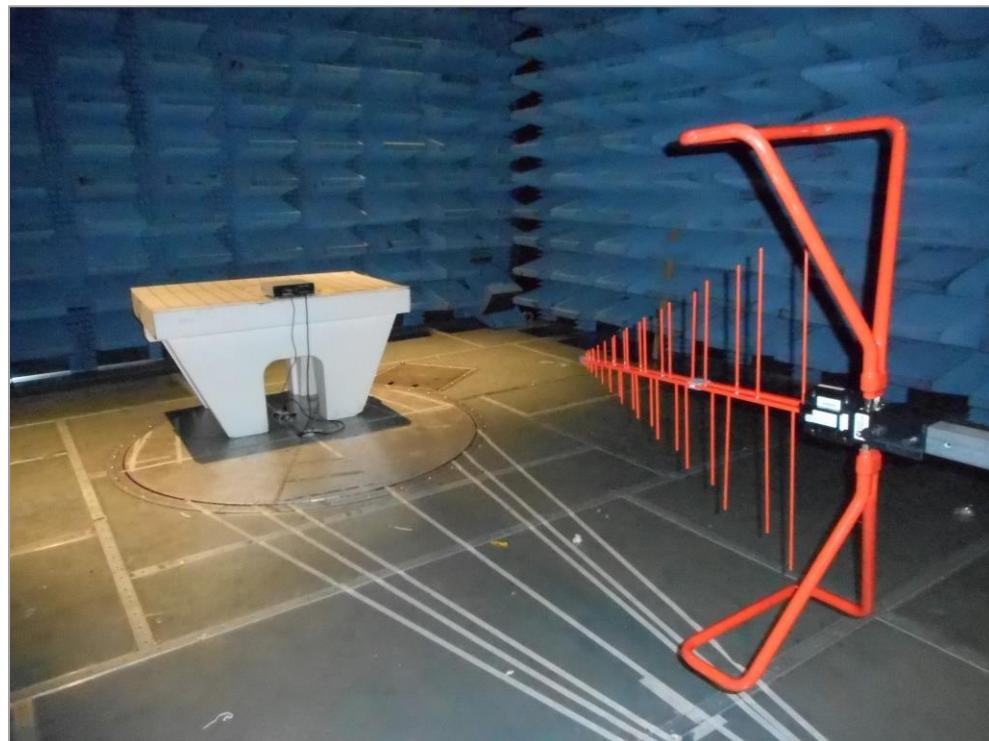
Test Voltage Used:

- Line 2, 120Vac/60Hz

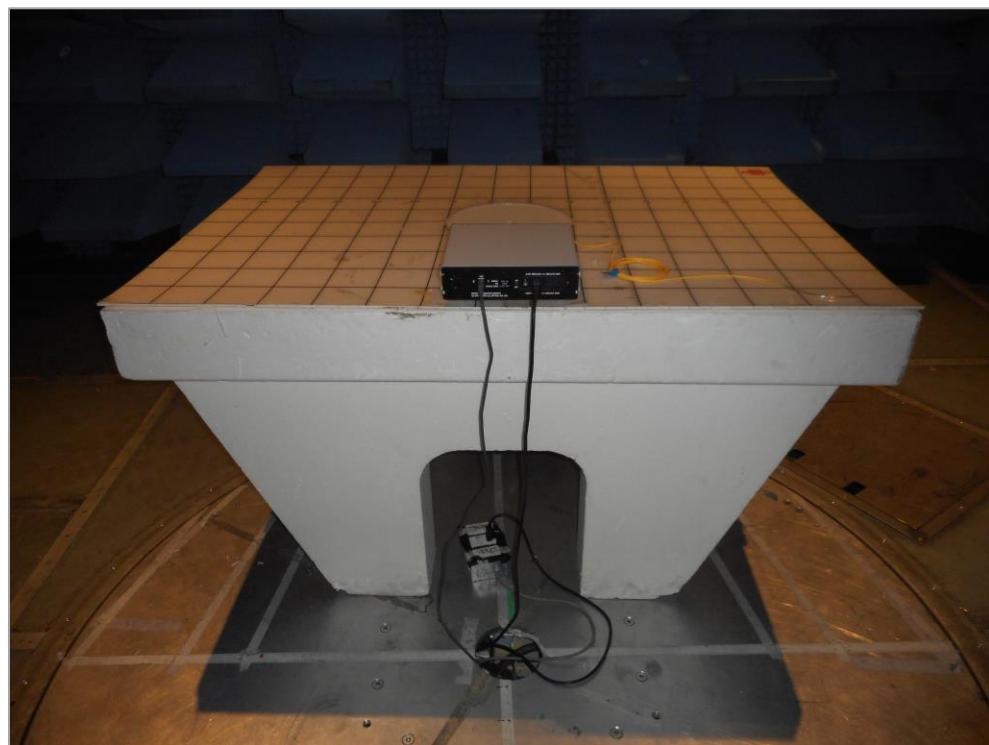
Frequency Range:

- 0.150 MHz ↔ 30 MHz

Plot 3: Conducted Emissions – Line 2, 120Vac/60Hz


Table 4: QPeak Data of Conducted Emissions – Line 2, 120Vac/60Hz

Frequency (MHz)	QPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.192195	52.75	1000.0	9.000	GND	10.8	11.19	63.94
0.193738	52.46	1000.0	9.000	GND	10.8	11.41	63.88
0.254772	50.44	1000.0	9.000	GND	10.7	11.16	61.60
0.255537	51.21	1000.0	9.000	GND	10.7	10.36	61.58
0.256561	51.65	1000.0	9.000	GND	10.7	9.89	61.54
0.257332	51.63	1000.0	9.000	GND	10.7	9.89	61.52
0.258104	51.22	1000.0	9.000	GND	10.7	10.28	61.49
0.384585	44.76	1000.0	9.000	GND	10.7	13.42	58.18
0.387285	43.88	1000.0	9.000	GND	10.7	14.24	58.12
0.512869	46.85	1000.0	9.000	GND	10.7	9.15	56.00
0.576492	41.25	1000.0	9.000	GND	10.7	14.75	56.00
0.835288	35.81	1000.0	9.000	GND	10.7	20.19	56.00
0.966522	30.56	1000.0	9.000	GND	10.7	25.44	56.00
1.593127	31.15	1000.0	9.000	GND	10.7	24.85	56.00
1.671422	32.90	1000.0	9.000	GND	10.7	23.10	56.00
2.183880	29.56	1000.0	9.000	GND	10.7	26.44	56.00
3.596114	28.78	1000.0	9.000	GND	10.8	27.22	56.00
3.982075	28.06	1000.0	9.000	GND	10.8	27.95	56.00


Table 5: Average Data of Conducted Emissions – Line 2, 120Vac/60Hz

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.191620	44.77	1000.0	9.000	GND	10.8	9.20	53.97
0.192965	45.1	1000.0	9.000	GND	10.8	8.8	53.91
0.252996	41.63	1000.0	9.000	GND	10.7	10.03	51.66
0.254772	44.73	1000.0	9.000	GND	10.7	6.87	51.60
0.255537	45.49	1000.0	9.000	GND	10.7	6.09	51.58
0.256561	46.0	1000.0	9.000	GND	10.7	5.54	51.54
0.257332	45.90	1000.0	9.000	GND	10.7	5.62	51.52
0.258104	45.48	1000.0	9.000	GND	10.7	6.01	51.49
0.259138	44.32	1000.0	9.000	GND	10.7	7.14	51.46
0.259917	43.05	1000.0	9.000	GND	10.7	8.39	51.43
0.387285	34.1	1000.0	9.000	GND	10.7	14.02	48.12
0.515439	30.7	1000.0	9.000	GND	10.7	15.3	46.00
0.575917	29.7	1000.0	9.000	GND	10.7	16.3	46.00
0.835288	29.53	1000.0	9.000	GND	10.7	16.47	46.00
1.131868	27.41	1000.0	9.000	GND	10.7	18.59	46.00
1.593127	30.48	1000.0	9.000	GND	10.7	15.52	46.00
1.671422	22.58	1000.0	9.000	GND	10.7	23.42	46.00
2.372779	19.20	1000.0	9.000	GND	10.7	26.80	46.00
3.400362	16.82	1000.0	9.000	GND	10.8	29.18	46.00
3.982075	17.48	1000.0	9.000	GND	10.8	28.52	46.00

Appendix A: TEST SETUP PHOTOS

Figure 1: Radiated Emissions performed at the SAC Test Setup

Figure 2: Radiated Emissions performed at the SAC (close-up view) Test Setup

Figure 3: Conducted Emissions Test Setup

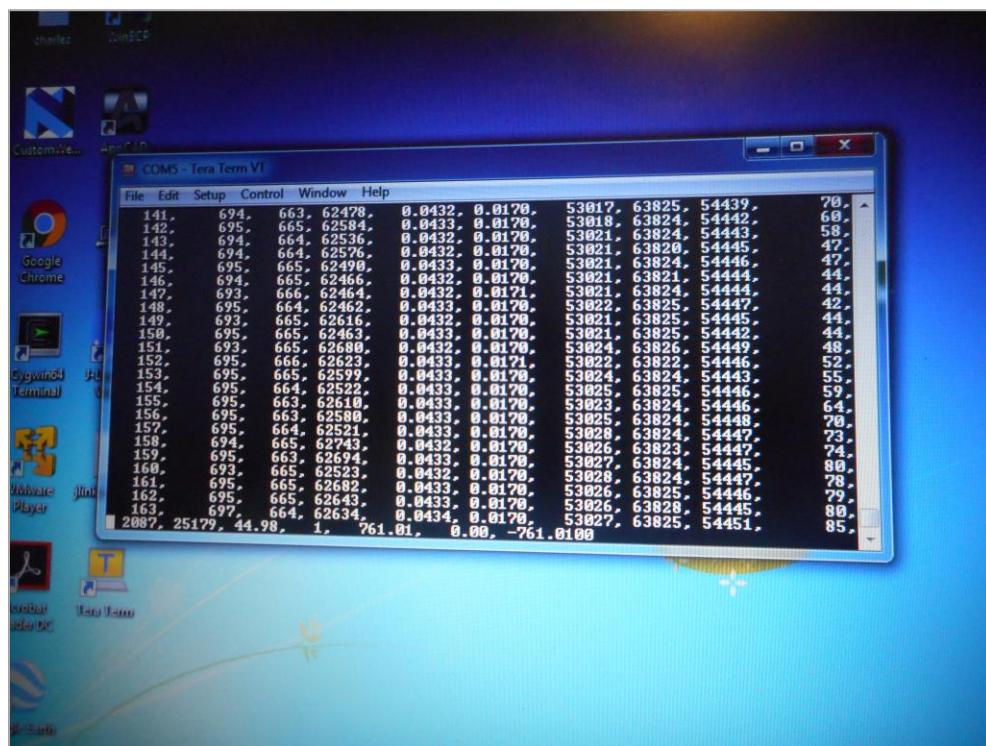


Figure 4: Laptop Terminal Program Streaming Data

Appendix B: ABBREVIATIONS

Abbreviation	Definition
AC	Alternating Current
AM	Amplitude Modulation
DC	Direct Current
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
EUT	Equipment Under Test
FCC	Federal Communications Commission
IEC	International Electrotechnical Commission
LISN	Line Impedance Stabilizing Network
RF	Radio Frequency
RMS	Root-Mean-Square
SAC	Semi-Anechoic Chamber

END OF REPORT