

FCC ID : O57TB7305X

Equipment : Portable Tablet Computer

Brand Name : Lenovo

Model Name: Lenovo TB-7305X

Applicant : Lenovo(Shanghai) Electronics Technology Co., Ltd.

Section 304-305, Building No. 4, # 222, Meiyue Road, China

(Shanghai) Pilot Free Trade Zone

Manufacturer: Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry

Bay, Hong Kong P.R.China

Standard : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

The product was received on Jul. 31, 2019 and testing was started from Aug. 18, 2019 and completed on Aug. 23, 2019. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

Gua Guang.

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

TEL: 886-3-327-3456 Page 1 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	4
3. Equipment Under Test (EUT) Information	5
3.1 General Information	
3.2 General LTE SAR Test and Reporting Considerations	7
4. Proximity Sensor Triggering Test	
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	
7.1 E-Field Probe	
7.3 Phantom	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring.	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	
10.3 System Performance Check Results	25
11. RF Exposure Positions	
11.1 Ear and handset reference point	26
11.2 Definition of the cheek position	27
11.3 Definition of the tilt position	
11.4 Body Worn Accessory	
11.5 Product Specific Exposure	
11.6 Wireless Router	29
12. Conducted RF Output Power (Unit: dBm)	
13. Exclusions Applied	
14. Antenna Location	
15. SAR Test Results	
15.1 Head SAR	
15.2 Hotspot SAR	
15.4 Product Specific SAR	
15.5 Repeated SAR Measurement	
16. Simultaneous Transmission Analysis	
16.1 Head Exposure Conditions	
16.2 Hotspot Exposure Conditions	
16.3 Body-Worn Accessory Exposure Conditions	
16.4 Product Specific Exposure Conditions	
17. Uncertainty Assessment	
18. References	
Appendix A. Plots of System Performance Check Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos	

History of this test report

Report No.: FA973036

Report No.	Version	Description	Issued Date
FA973036	01	Initial issue of report	Aug. 29, 2019

TEL: 886-3-327-3456 Page 3 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo(Shanghai) Electronics Technology Co., Ltd., Portable Tablet Computer, Lenovo TB-7305X, are as follows.

Report No. : FA973036

	Highest SAR Summary					Highest	
Equipment Class	Equipment Frequency Class Band	Head	Body-worn	Hotspot	Product Specific	Simultaneous Transmission	
Ciaco	Barra		1g SAR (W/kg)		10g SAR (W/kg)	1g SAR (W/kg)	
	GSM850	0.41	0.46	0.46			
	GSM1900	1.00	0.99	0.99			
Licensed	WCDMA II	0.48	0.86	0.86		1.35	
Licensed	WCDMA V	0.35	0.52	0.52		1.33	
	LTE Band 4	0.33	0.79	0.79			
	LTE Band 7	0.47	0.88	0.89			
DTS	2.4GHz WLAN		0.36	0.36		1.35	
NII	5GHz WLAN		0.34	0.30	0.41	1.29	
Date of	Date of Testing: 2019/			019/8/18 ~ 2019/8/2	3		

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Wan Liu</u>

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01
- FCC KDB 941225 D07 UMPC Mini Tablet v01r02

TEL: 886-3-327-3456 Page 4 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

3. Equipment Under Test (EUT) Information

3.1 General Information

	Product Feature & Specification
Equipment Name	Portable Tablet Computer
Brand Name	Lenovo
Model Name	Lenovo TB-7305X
FCC ID	O57TB7305X
IMEI Code	861235040007908
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink) LTE: QPSK, 16QAM, 64QAM WLAN: 802.11a/b/g/n HT20 / HT40 Bluetooth BR/EDR/LE
GSM / (E)GPRS Transfer	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can
mode EUT Stage	automatically switch between Packet and Circuit Switched Network.
Remark:	Identical Prototype

Report No.: FA973036

- 1. Sample list as below table, RF Exposure was Selected Sample 1 as the main testing and Sample 2 will select worst case found in Sample 1 performs, sample 3 was not necessary, doe to the difference between sample is memory and does not affect RF
- This device WLAN 2.4GHz / 5.2GHz / 5.8GHz supports Hotspot operation and Bluetooth support tethering applications.
- 3. The device employs proximity sensors that detect the presence user's head / body / hand at the front or back or top of the device, when the sensor is detect, the power reduction is active on GSM850/1900, WCDMA B2/B5, LTE B4/B7 and WLAN 2.4GHz/5GHz
- When device during a call the front face will be near to head and proximity sensor will be trigger, therefore, head exposure condition is into reduction power mode.
- For hotspot / body-worn / extremity condition consideration, when the device near to the body or hand, the proximity sensor will trigger at the front or back or top of the device, and device into reduce power mode.

Page 5 of 67 TEL: 886-3-327-3456 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

SPORTON LAB. FCC SAR TEST REPORT

Report No.: FA973036

Object	1st Sample		2nd Sample	
Object	Specifications	Supplier	Specifications	Supplier
CPU	MT8765V/WB AZAB-H	MTK	MT8765V/WB AZAB-H	MTK
TLCM	TV070WSM-TL2	BOE	KD070D82-39TI-A004	K&D
Front Camera	HKU1095	helitai	VC22839	C&T
Rear Camera	HKU1096	helitai	VC22840	C&T
Memory	KMQE60013M-B318	Samsung	H9TQ17ABJTCCUR-KUM	Hynix
Battery	L16D1P33	SCUD	L16D1P33	Sunwada
Motor	HZF1027B-P02F9.8-2-LX	hongzhifa	FC-BY3F	AWA
PCB	Acj5c	Huashen	Acj5c	CEE
Speaker	1511-12743	TUNESS	KFSC1115L3.0-08-13.5H-S-A	Xichun

Object	3rd Sample				
Object	Specifications	Supplier			
CPU	MT8765V/WB AZAB-H	MTK			
TLCM	TV070WSM-TL2	BOE			
Front Camera	HKU1095	helitai			
Rear Camera	HKU1096	helitai			
Memory	KMQX60013A-B419	Samsung			
Battery	L16D1P33	SCUD			
Motor	HZF1027B-P02F9.8-2-LX	hongzhifa			
PCB	Acj5c	Huashen			
Speaker	1511-12743	TUNESS			

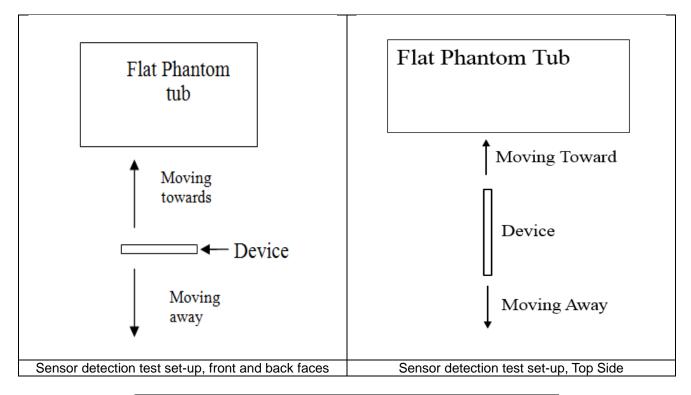
TEL: 886-3-327-3456 Page 6 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

3.2 General LTE SAR Test and Reporting Considerations

EG	Summarized necessary items addressed in KDB 941225 D05 v02r05												
FC	CID				D57TB7305X	(
Equipment Name				F	Portable Tabl	et Compute	r						
			ange of eac		TE Band 4:	<u> </u>		MHz					
	nsmission I				TE Band 7:								
Ch	annel Band	dwidth			TE Band 04 TE Band 07					z, 20M	Hz		
up	link modula	itions used		C	QPSK / 16QA	M / 64QAM	1						
LT	E Voice / D	ata require	ments	\	oice and Da	ta							
					Table 6.	2.3-1: Maxii	mum Powe	r Redu	ction (N	IPR) fo	r Power Cl	ass 1, 2	and 3
					Modulation	CI	nannel band	width / 1	Transmi	ssion b	andwidth (N	RB)	MPR (dB)
						1.4	3.0	5		0	15	20	
						MHz	MHz	MHz		Hz	MHz	MHz	
LT	E MPR per	manently b	ouilt-in by de	esign	QPSK	> 5	> 4	> 8	_	12	> 16	> 18	≤ 1
				-	16 QAM 16 QAM	≤ 5 > 5	≤ 4 > 4	≤ 8 > 8	_	12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2
				-	64 QAM	> 5 ≤ 5	> 4 ≤ 4	> 8		12	≥ 16	≥ 18	≤ 2 ≤ 2
				-	64 QAM	> 5	> 4	> 8	_	12	> 16	> 18	≤ 3
					256 QAM	-			≥ 1		- 10	- 10	≤ 5
					200 Grilli								
Spectrum plots for RB configuration Power reduction applied to satisfy SAR						9		~	0,		o transmitti	ng on a	all TTI frames
Po	wer reduc			r r fv SAB	Maximum Ta A properly neasuremen not included i Yes, Proximit	CONFIGURED t; therefore, n the SAR r	base stati	ion sim	nulator	was ı	used for th	he SAF	R and power nfiguration are
Po			ed to satis	fy SAR	A properly neasuremen not included if es, Proximit	TI) configured t; therefore, n the SAR r y Sensor.	base stati spectrum p eport.	ion sim olots for	nulator each R	was u Balloo	used for the	he SAF	R and power
Po	wer reduc		ed to satis	fy SAR	A properly measuremen not included in	TI) configured t; therefore, n the SAR r y Sensor.	base stati spectrum peport.	ion sim olots for	nulator each R	was u Balloo	used for the	he SAF	R and power
Po	wer reduc	tion appli	ed to satis	fy SAR	A properly measuremen not included i /es, Proximit , M, L) chan	TI) configured t; therefore, n the SAR r y Sensor. nel numbe	base stati spectrum peport.	ion sim olots for uencie	nulator each R	was u B alloc	used for the	ne SAI	R and power
Po	wer reduc mpliance	tion appli	ed to satis	fy SAR	A properly measuremen not included i /es, Proximit , M, L) chan	configured t; therefore, n the SAR r y Sensor. nel numbe LTE Ba	base stati spectrum peport. rs and freq	ion sim olots for uencie	s in each	was u B alloc	used for the cation and o	ne SAI	R and power nfiguration are
Po	wer reduc mpliance Bandwidth	tion applion 1.4 MHz Freq.	ed to satis Transm Bandwid	fy SAR ission (H	A properly measuremen not included i fes, Proximit , M, L) chan Bandwic Ch. #	TI) configured t; therefore, n the SAR n y Sensor. nel numbe LTE Ba th 5 MHz Freq.	base stati spectrum peport. rs and frequent 4 Bandwidt	ion simple simpl	s in each	was use alloo	band th 15 MHz	ne SAI	R and power nfiguration are
Po	wer reduc mpliance Bandwidth	tion applion 1.4 MHz Freq. (MHz)	Transm Bandwid Ch. #	fy SAR ission (H th 3 MHz Freq. (MHz)	A properly measuremen not included i /es, Proximit I, M, L) chan Bandwic Ch. #	configured t; therefore, n the SAR n y Sensor. nel numbe LTE Ba th 5 MHz Freq. (MHz)	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. #	uencie h 10 MF	s in each	was to B alloo	band th 15 MHz (MHz)	he SAR ffset co	width 20 MHz Freq. (MHz) 0 1720
Po	wer reduc mpliance Bandwidth Ch. #	n 1.4 MHz Freq. (MHz) 1710.7	Bandwid Ch. #	fy SAR ission (H th 3 MHz Freq. (MHz) 1711.5	A properly measuremen not included i /es, Proximit , M, L) chan Bandwic Ch. # 19975 20175	configured t; therefore, n the SAR r y Sensor. nel numbe LTE Ba th 5 MHz Freq. (MHz) 1712.5	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000	ion sim plots for quencie h 10 MF Freq (MHz	s in each R	was the Balloon was the Balloon was the Balloon with the Balloon was the Ballo	band th 15 MHz Freq. (MHz) 1717.5	Bando	width 20 MHz Freq. (MHz) 0 1720 5 1732.5
Po co	wer reduc mpliance Bandwidth Ch. # 19957 20175	1.4 MHz Freq. (MHz) 1710.7	Ed to satis Transm Bandwid Ch. # 19965 20175	fy SAR ission (H th 3 MHz Freq. (MHz) 1711.5 1732.5	A properly measuremen not included i /es, Proximit , M, L) chan Bandwic Ch. # 19975 20175	configured to the same of the	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000 20175 20350	h 10 MF Freq (MHz 1718	s in each R	was use allowed the control of the c	band th 15 MHz Freq. (MHz) 1717.5	Bando Ch.: 2005	width 20 MHz Freq. (MHz) 0 1720 5 1732.5
Po co	wer reducempliance Bandwidth Ch. # 19957 20175 20393	1.4 MHz Freq. (MHz) 1710.7	Ed to satis Transm Bandwid Ch. # 19965 20175 20385	fy SAR ission (H th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5	A properly measuremen not included i /es, Proximit , M, L) chan Bandwic Ch. # 19975 20175	configured t; therefore, n the SAR r y Sensor. nel numbe LTE Balth 5 MHz Freq. (MHz) 1712.5 1752.5 LTE Balth	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000 20175 20350 and 7	ion simplots for luencies h 10 MH Freq (MHz 1718 1732 1750	s in each R	was to B allood the LTE and width the LTE 0025 0175 0325	band th 15 MHz Freq. (MHz) 1717.5 1732.5	Bando Ch.: 2005 2017 2030	width 20 MHz Freq. (MHz) 0 1720 5 1732.5
Po co	wer reducempliance Bandwidth Ch. # 19957 20175 20393	1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3	Ed to satis Transm Bandwid Ch. # 19965 20175 20385	fy SAR ission (H th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5	A properly measurement included in fees, Proximit in fees	configured t; therefore, n the SAR r y Sensor. nel numbe LTE Balth 5 MHz Freq. (MHz) 1712.5 1752.5 LTE Balth	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000 20175 20350 and 7	uencie h 10 MH Freq (MHz 1718 1732	s in each R Hz Ba L C2) C2 5 22 5 22	was to B allood the LTE and width the LTE and wi	band th 15 MHz Freq. (MHz) 1717.5 1732.5	Bando Ch.: 2005 2017 2030	width 20 MHz Freq. (MHz) 0 1720 5 1732.5 0 1745
Po co	wer reducempliance Bandwidth Ch. # 19957 20175 20393 Bar	1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3	Transm Bandwid Ch. # 19965 20175 20385	fy SAR hission (Hamiltonian in the second in	A properly measurement included in fees, Proximit (es, Proximit), M, L) chan Bandwid Ch. # 19975 20175 20375	onfigured t; therefore, n the SAR ry Sensor. nel numbe LTE Balth 5 MHz Freq. (MHz) 1712.5 1732.5 LTE Ba	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000 20175 20350 and 7 Bar	uencie h 10 MH Freq (MHz 1718 1732	s in each R Hz Ba	was to B allocate and wide Ch. # 0025 0175 0325	band th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Bando Ch.: 2005 2017 2030	width 20 MHz Freq. (MHz) 0 1720 5 1732.5 0 1745
Po co	wer reducempliance Bandwidth Ch. # 19957 20175 20393 Bar Ch. #	1.4 MHz Freq. (MHz) 1710.7 1732.5 1754.3	Transm Bandwid Ch. # 19965 20175 20385 MHz eq. (MHz)	fy SAR hission (Hamiltonian in Internation in Inter	A properly measurement included in fees, Proximit (es, Proximit Ch. # 19975 20175 20375 20375	configured to the same transfer of the same transfer or the same transfe	base stati spectrum peport. rs and frequent 4 Bandwidt Ch. # 20000 20175 20350 and 7 Bar Ch. #	uencie h 10 MH Freq (MHz 1718 1732	s in each R Hz Ba 1. (2) 55 22 15 MHz Freq. (I	was to B allocate and wide Ch. # 0025 0175 0325	band th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Bar Ch. #	Bando Ch.: 2005 2017 2030	width 20 MHz Freq. (MHz) 0 1720 5 1732.5 0 1745 20 MHz Freq. (MHz)

Report No. : FA973036

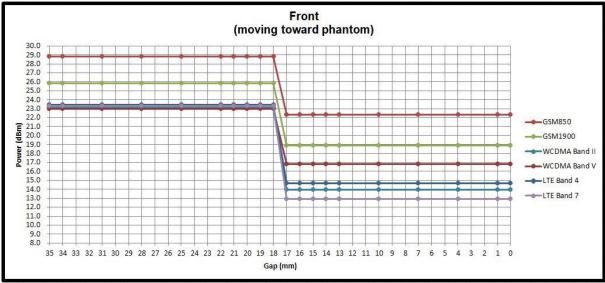
TEL: 886-3-327-3456 Page 7 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

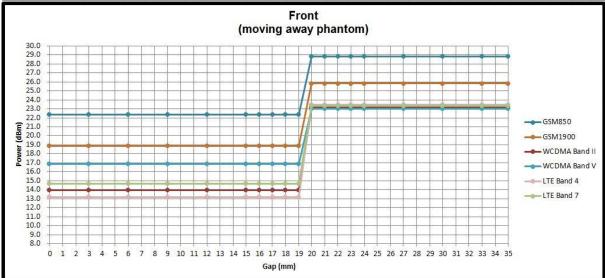

4. Proximity Sensor Triggering Test

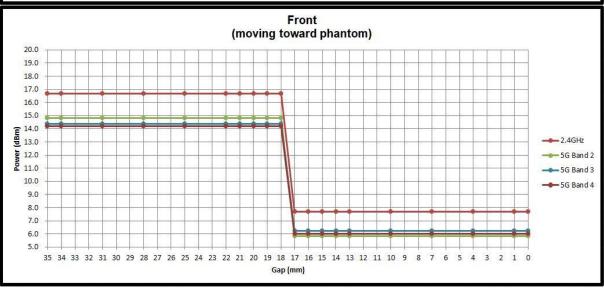
<Proximity Sensor Triggering Distance>:

 Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed and the tissue-equivalent medium for highest frequency (2600MHz) and lowest (750MHz) frequency was used for proximity sensor triggering testing.

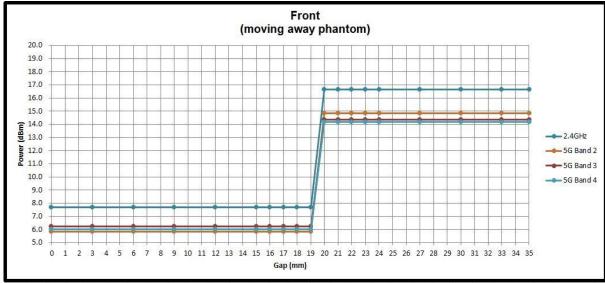
Report No.: FA973036

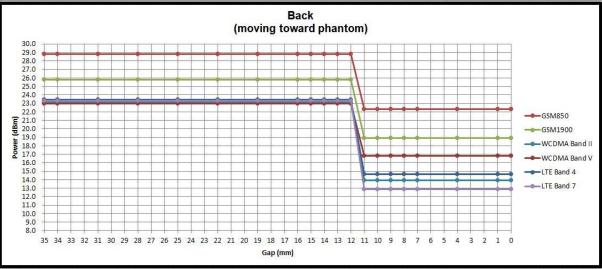

- Capacitive proximity sensors placed coincident with antenna elements at the WWNA and WLAN antenna of the device are utilized to determine when the device comes in proximity of the user's body at the front or back or top of the device.
- 3. The output power will reduce to reduce power level when sensor pad be detected.
- 4. The sensors used to detect the proximity of the user's body at the front or back or top surface of the device use a detection threshold distance. The data shown in the sections below shows the distance(s).
- 5. The device additionally employs proximity sensors that detect the presence of tissue near the currently active transmit antenna (if that antenna may require reduced power relative the Default power table in order to meet extremity SAR limits). The control logic is such that, if the device close to the body and proximity sensors is trigger, whether the device operate on the head or hotspot / body-worn / extremity conditions and the power reduction is active for SAR compliance.
- 6. When the sensor is active, the device will reduced maximum output powers on the GSM850/1900, WCDMA B2/B5, LTE B4/B7 and WLAN 2.4GHz/5GHz transmitter.

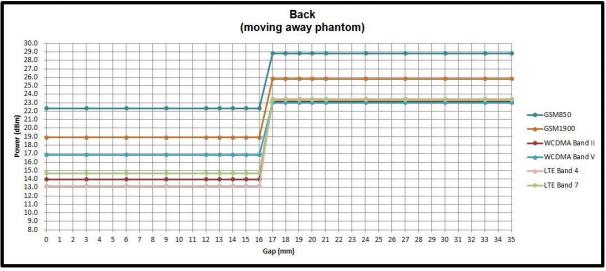



Proximity Sensor Trigger Distance (mm)							
Position	Fre	ont	Ва	ıck	Top Side		
Position	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away	
Minimum	17	19	11	16	18	22	

TEL: 886-3-327-3456 Page 8 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019



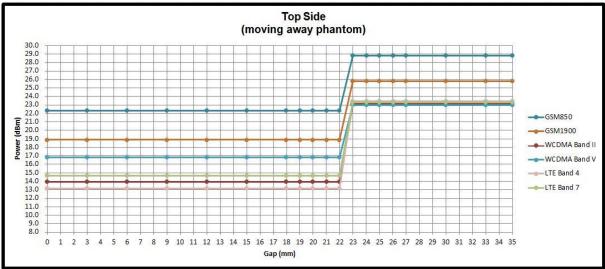


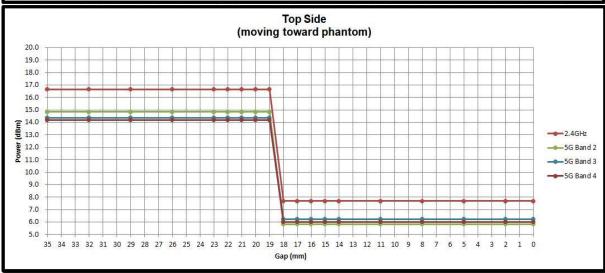


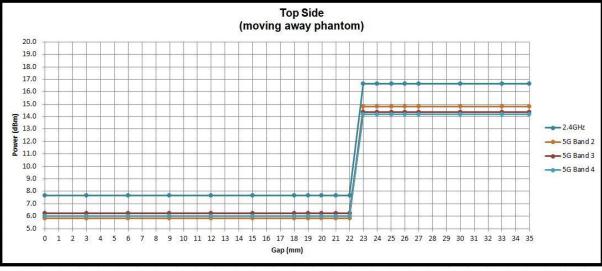
TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 9 of 67 Issued Date : Aug. 29, 2019



TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 10 of 67 Issued Date : Aug. 29, 2019







TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 11 of 67 Issued Date : Aug. 29, 2019

TEL: 886-3-327-3456 Page 12 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA973036

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 Page 13 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

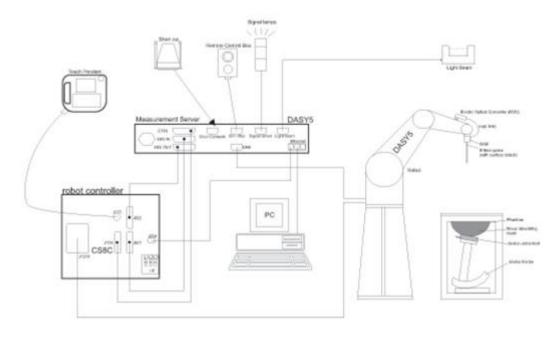
Report No.: FA973036

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 Page 14 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA973036

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: 886-3-327-3456 Page 15 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core	Τ
	Interleaved sensors	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz – 4 GHz;	1
	Linearity: ±0.2 dB (30 MHz – 4 GHz)	
Directivity	±0.2 dB in TSL (rotation around probe axis)	1
	±0.3 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g – >100 mW/g;	1
	Linearity: ±0.2 dB	
Dimensions	Overall length: 337 mm (tip: 20 mm)	1
	Tip diameter: 3.9 mm (body: 12 mm)	l
	Distance from probe tip to dipole centers: 3.0 mm	

Report No. : FA973036

<EX3DV4 Probe>

Construction	Symmetric design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz
	Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis)
	± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g
	Linearity: ±0.2 dB (noise: typically <1 µW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 2.5 mm (body: 12 mm)
	Typical distance from probe tip to dipole centers: 1
	mm

7.2 <u>Data Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 886-3-327-3456 Page 16 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA973036

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

\LLIT Hantom>		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: 886-3-327-3456 Page 17 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No. : FA973036

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

< Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 Page 18 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA973036

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: 886-3-327-3456 Page 19 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA973036

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

TEL: 886-3-327-3456 Page 20 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA973036

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$	
Minimum zoom scan volume	n zoom scan x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: 886-3-327-3456 Page 21 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

SPEAG 1750MHz System Validation Kit D1750V2 1112 Mar. 07, 2019 Mar. 06, 2020 SPEAG 1900MHz System Validation Kit D1900V2 5d185 Mar. 07, 2019 Mar. 06, 2020 SPEAG 2450MHz System Validation Kit D2450V2 736 Aug. 31, 2018 Aug. 30, 2011 SPEAG 2450MHz System Validation Kit D2450V2 929 Mar. 06, 2019 Mar. 05, 2020 SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 33, 2011 SPEAG 2600MHz System Validation Kit D2600V2 1006 Sep. 27, 2018 Aug. 30, 2011 SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Aug. 30, 2011 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 202 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 Mar. 20, 202 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dosimetric E-Field Probe <t< th=""><th>Manufactura</th><th>Name of Environment</th><th>Tyroo (Mandal</th><th>Carial Number</th><th>Calib</th><th>ration</th></t<>	Manufactura	Name of Environment	Tyroo (Mandal	Carial Number	Calib	ration
SPEAG 1750MHz System Validation Kit D1750V2 1112 Mar. 07, 2019 Mar. 06, 2020 SPEAG 1900MHz System Validation Kit D1900V2 5d185 Mar. 07, 2019 Mar. 06, 2020 SPEAG 2450MHz System Validation Kit D2450V2 736 Aug. 31, 2018 Aug. 30, 2011 SPEAG 2450MHz System Validation Kit D2450V2 929 Mar. 06, 2019 Mar. 05, 2021 SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 30, 2011 SPEAG 2600MHz System Validation Kit D2600V2 1006 Sep. 27, 2018 Sep. 26, 2011 SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Sep. 26, 2011 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2020 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 Mar. 20, 2020 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2011 SPEAG Dosimetric E-Field Probe	Manutacturer	Name of Equipment	i ype/iviodei	Serial Number	Last Cal.	Due Date
SPEAG 1900MHz System Validation Kit D1900V2 5d185 Mar. 07, 2019 Mar. 06, 2026 SPEAG 2450MHz System Validation Kit D2450V2 736 Aug. 31, 2018 Aug. 30, 2015 SPEAG 2450MHz System Validation Kit D2450V2 929 Mar. 06, 2019 Mar. 05, 2020 SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 30, 2011 SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Sep. 26, 2019 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2020 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 202 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 201 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 201 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 21, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 <td>SPEAG</td> <td>835MHz System Validation Kit</td> <td>D835V2</td> <td>4d167</td> <td>Mar. 08, 2019</td> <td>Mar. 07, 2020</td>	SPEAG	835MHz System Validation Kit	D835V2	4d167	Mar. 08, 2019	Mar. 07, 2020
SPEAG 2450MHz System Validation Kit D2450V2 736 Aug. 31, 2018 Aug. 30, 2011 SPEAG 2450MHz System Validation Kit D2450V2 929 Mar. 06, 2019 Mar. 05, 2020 SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 30, 2011 SPEAG 5GHz System Validation Kit D560V2 1006 Sep. 27, 2018 Sep. 26, 2011 SPEAG 5GHz System Validation Kit D56HzV2 1006 Sep. 27, 2018 Sep. 26, 2011 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2020 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 2021 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2018 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2019 Apr. 21, 2019 Apr. 21, 2019 Apr. 21, 2019 Apr. 21, 2018	SPEAG	1750MHz System Validation Kit	D1750V2	1112	Mar. 07, 2019	Mar. 06, 2020
SPEAG 2450MHz System Validation Kit D2450V2 929 Mar. 06, 2019 Mar. 05, 2020 SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 30, 2019 SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Sep. 26, 2011 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2022 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 202 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dasimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Apr. 21, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1<	SPEAG	1900MHz System Validation Kit	D1900V2	5d185	Mar. 07, 2019	Mar. 06, 2020
SPEAG 2600MHz System Validation Kit D2600V2 1008 Aug. 31, 2018 Aug. 30, 201 SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Sep. 26, 201 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 202 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 202 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2011 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 202 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2002 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2011 RCPTWN Thermometer HTC-1 TM680-2 Nov. 12, 2018 Nov. 11, 2011 Agricut Wireless Communication Analyzer E5515C MY50267236	SPEAG	2450MHz System Validation Kit	D2450V2	736	Aug. 31, 2018	Aug. 30, 2019
SPEAG 5GHz System Validation Kit D5GHzV2 1006 Sep. 27, 2018 Sep. 26, 201 SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2020 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 202 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2026 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 29, 2019 Apr. 24, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anristu Radio Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 Agilent Wireless Communication Test Set E5515C MY502672	SPEAG	2450MHz System Validation Kit	D2450V2	929	Mar. 06, 2019	Mar. 05, 2020
SPEAG Data Acquisition Electronics DAE4 699 Jan. 03, 2019 Jan. 02, 2020 SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 2020 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 20, 2019 Apr. 21, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set	SPEAG	2600MHz System Validation Kit	D2600V2	1008	Aug. 31, 2018	Aug. 30, 2019
SPEAG Data Acquisition Electronics DAE4 854 May. 21, 2019 May. 20, 2020 SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Apr. 11, 2018 Signal Generator MG3710A 6201502524	SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Sep. 27, 2018	Sep. 26, 2019
SPEAG Data Acquisition Electronics DAE4 1326 Sep. 18, 2018 Sep. 17, 2019 SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anrisu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Apr. 31, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Apr. 31, 2020 Agilent BNA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 Agilent ENA Network Analyzer E5071C	SPEAG	Data Acquisition Electronics	DAE4	699	Jan. 03, 2019	Jan. 02, 2020
SPEAG Dosimetric E-Field Probe EX3DV4 3642 Apr. 29, 2019 Apr. 28, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2018 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126	SPEAG	Data Acquisition Electronics	DAE4	854	May. 21, 2019	May. 20, 2020
SPEAG Dosimetric E-Field Probe EX3DV4 7306 Jul. 22, 2019 Jul. 21, 2020 SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2018 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2018 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2018 LINE SEIKI Digital Thermometer DTM3000-spezial 3169	SPEAG	Data Acquisition Electronics	DAE4	1326	Sep. 18, 2018	Sep. 17, 2019
SPEAG Dosimetric E-Field Probe EX3DV4 7346 Apr. 25, 2019 Apr. 24, 2020 RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2018 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2018 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2018 Anritsu Power Meter ML2495A 1218006	SPEAG	Dosimetric E-Field Probe	EX3DV4	3642	Apr. 29, 2019	Apr. 28, 2020
RCPTWN Thermometer HTC-1 TM685-1 Nov. 12, 2018 Nov. 11, 2019 RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 SPEAG Diejtal Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 2	SPEAG	Dosimetric E-Field Probe	EX3DV4	7306	Jul. 22, 2019	Jul. 21, 2020
RCPTWN Thermometer HTC-1 TM560-2 Nov. 12, 2018 Nov. 11, 2019 Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2021 Anritsu Power Meter ML2495A 1419002 May. 29, 2019	SPEAG	Dosimetric E-Field Probe	EX3DV4	7346	Apr. 25, 2019	Apr. 24, 2020
Anritsu Radio Communication Analyzer MT8821C 6201341950 Apr. 21, 2019 Apr. 20, 2020 Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2021 Agilent Spectrum Analyzer E4408B MY44211028	RCPTWN	Thermometer	HTC-1	TM685-1	Nov. 12, 2018	Nov. 11, 2019
Agilent Wireless Communication Test Set E5515C MY50267236 Apr. 01, 2019 Mar. 31, 2020 SPEAG Device Holder N/A N/A N/A N/A N/A Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2021 Agilent Spectrum Analyzer E4408B MY44211028 Aug.	RCPTWN	Thermometer	HTC-1	TM560-2	Nov. 12, 2018	Nov. 11, 2019
SPEAG Device Holder N/A N/A N/A N/A N/A N/A An/A	Anritsu	Radio Communication Analyzer	MT8821C	6201341950	Apr. 21, 2019	Apr. 20, 2020
Anritsu Signal Generator MG3710A 6201502524 Dec. 11, 2018 Dec. 10, 2019 Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 <td< td=""><td>Agilent</td><td>Wireless Communication Test Set</td><td>E5515C</td><td>MY50267236</td><td>Apr. 01, 2019</td><td>Mar. 31, 2020</td></td<>	Agilent	Wireless Communication Test Set	E5515C	MY50267236	Apr. 01, 2019	Mar. 31, 2020
Agilent ENA Network Analyzer E5071C MY46104758 Sep. 19, 2018 Sep. 18, 2019 SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915	SPEAG	Device Holder	N/A	N/A	N/A	N/A
SPEAG Dielectric Probe Kit DAK-3.5 1126 Sep. 19, 2018 Sep. 18, 2019 LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02	Anritsu	Signal Generator	MG3710A	6201502524	Dec. 11, 2018	Dec. 10, 2019
LINE SEIKI Digital Thermometer DTM3000-spezial 3169 Sep. 11, 2018 Sep. 10, 2019 Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A N/A Note 1	Agilent	ENA Network Analyzer	E5071C	MY46104758	Sep. 19, 2018	Sep. 18, 2019
Anritsu Power Meter ML2495A 1218006 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A N/A	SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Sep. 19, 2018	Sep. 18, 2019
Anritsu Power Sensor MA2411B 1207363 Oct. 08, 2018 Oct. 07, 2019 Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2018 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	LINE SEIKI	Digital Thermometer	DTM3000-spezial	3169	Sep. 11, 2018	Sep. 10, 2019
Anritsu Power Meter ML2495A 1419002 May. 29, 2019 May. 28, 2020 Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Anritsu	Power Meter	ML2495A	1218006	Oct. 08, 2018	Oct. 07, 2019
Anritsu Power Sensor MA2411B 1339124 May. 29, 2019 May. 28, 2020 Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Anritsu	Power Sensor	MA2411B	1207363	Oct. 08, 2018	Oct. 07, 2019
Agilent Spectrum Analyzer E4408B MY44211028 Aug. 28, 2018 Aug. 27, 2019 Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Anritsu	Power Meter	ML2495A	1419002	May. 29, 2019	May. 28, 2020
Anritsu Spectrum Analyzer MS2830A 6201396378 Jun. 27, 2019 Jun. 26, 2020 Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2018 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Anritsu	Power Sensor	MA2411B	1339124	May. 29, 2019	May. 28, 2020
Mini-Circuits Power Amplifier ZVE-8G+ 070501814 Oct. 08, 2018 Oct. 07, 2019 Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Agilent	Spectrum Analyzer	E4408B	MY44211028	Aug. 28, 2018	Aug. 27, 2019
Mini-Circuits Power Amplifier ZHL-42W+ 715701915 May. 10, 2019 May. 09, 2020 ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jun. 27, 2019	Jun. 26, 2020
ATM Dual Directional Coupler C122H-10 P610410z-02 Note 1 Woken Attenuator 1 WK0602-XX N/A Note 1	Mini-Circuits	Power Amplifier	ZVE-8G+	070501814	Oct. 08, 2018	Oct. 07, 2019
Woken Attenuator 1 WK0602-XX N/A Note 1	Mini-Circuits	Power Amplifier	ZHL-42W+	715701915	May. 10, 2019	May. 09, 2020
	ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1
PF Attenuator 2 PF7005-10 N/A Note 1	Woken	Attenuator 1	WK0602-XX	N/A	No	te 1
12 Million I IVA Note I	PE	Attenuator 2	PE7005-10	N/A	No	te 1
PE Attenuator 3 PE7005- 3 N/A Note 1	PE	Attenuator 3	PE7005- 3	N/A	No	te 1

Report No.: FA973036

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: 886-3-327-3456 Page 22 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Report No.: FA973036

Fig 10.2 Photo of Liquid Height for Body SAR

TEL: 886-3-327-3456 Page 23 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: FA973036

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)						
Water	64~78%						
Mineral oil	11~18%						
Emulsifiers	9~15%						
Additives and Salt	2~3%						

<Tissue Dielectric Parameter Check Results>

Chastle Dielectric Farameter Check Nesults>										
Frequency (MHz)	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date	
835	22.5	0.874	41.736	0.90	41.50	-2.89	0.57	±5	2019/8/22	
1750	22.7	1.358	40.842	1.37	40.10	-0.88	1.85	±5	2019/8/18	
1900	22.3	1.417	40.819	1.40	40.00	1.21	2.05	±5	2019/8/18	
1900	22.4	1.405	40.699	1.40	40.00	0.36	1.75	±5	2019/8/21	
2450	22.6	1.795	39.874	1.80	39.20	-0.28	1.72	±5	2019/8/21	
2450	22.6	1.795	39.879	1.80	39.20	-0.28	1.73	±5	2019/8/23	
2600	22.2	1.967	38.412	1.96	39.00	0.36	-1.51	±5	2019/8/20	
5250	22.7	4.679	35.927	4.71	35.95	-0.66	-0.06	±5	2019/8/22	
5250	22.6	4.711	36.053	4.71	35.95	0.02	0.29	±5	2019/8/23	
5600	22.7	5.050	35.662	5.07	35.50	-0.39	0.46	±5	2019/8/22	
5600	22.6	5.071	35.607	5.07	35.50	0.02	0.30	±5	2019/8/23	
5750	22.7	5.244	35.502	5.22	35.35	0.46	0.43	±5	2019/8/22	
5750	22.6	5.220	35.456	5.22	35.35	0.00	0.30	±5	2019/8/23	

TEL: 886-3-327-3456 Page 24 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

C SAR TEST REPORT Report No. : FA973036

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2019/8/22	835	250	D835V2-4d167	EX3DV4 - SN7306	DAE4 Sn699	2.24	9.50	8.96	-5.68
2019/8/18	1750	250	D1750V2-1112	EX3DV4 - SN7306	DAE4 Sn699	9.57	36.70	38.28	4.31
2019/8/18	1900	250	D1900V2-5d185	EX3DV4 - SN7306	DAE4 Sn699	10.60	39.40	42.4	7.61
2019/8/21	1900	250	D1900V2-5d185	EX3DV4 - SN7306	DAE4 Sn699	10.50	39.40	42	6.60
2019/8/21	2450	250	D2450V2-929	EX3DV4 - SN7346	DAE4 Sn1326	12.30	52.10	49.2	-5.57
2019/8/23	2450	250	D2450V2-736	EX3DV4 - SN3642	DAE4 Sn854	13.50	52.70	54	2.47
2019/8/20	2600	250	D2600V2-1008	EX3DV4 - SN7306	DAE4 Sn699	14.50	56.40	58	2.84
2019/8/22	5250	100	D5GHzV2-1006-5250	EX3DV4 - SN7346	DAE4 Sn1326	8.16	80.70	81.6	1.12
2019/8/23	5250	100	D5GHzV2-1006-5250	EX3DV4 - SN3642	DAE4 Sn854	8.61	80.70	86.1	6.69
2019/8/22	5600	100	D5GHzV2-1006-5600	EX3DV4 - SN7346	DAE4 Sn1326	8.74	83.30	87.4	4.92
2019/8/23	5600	100	D5GHzV2-1006-5600	EX3DV4 - SN3642	DAE4 Sn854	8.69	83.30	86.9	4.32
2019/8/22	5750	100	D5GHzV2-1006-5750	EX3DV4 - SN7346	DAE4 Sn1326	8.54	80.40	85.4	6.22
2019/8/23	5750	100	D5GHzV2-1006-5750	EX3DV4 - SN3642	DAE4 Sn854	8.11	80.40	81.1	0.87

Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2019/8/23	5250	100	D5GHzV2-1006-5250	EX3DV4 - SN3642	DAE4 Sn854	2.36	23.20	23.6	1.72
2019/8/23	5600	100	D5GHzV2-1006-5600	EX3DV4 - SN3642	DAE4 Sn854	2.37	23.80	23.7	-0.42

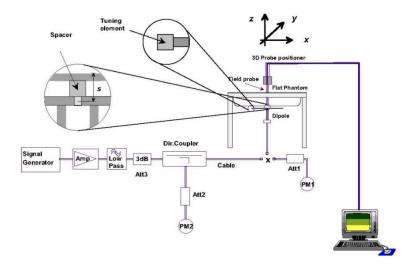


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 886-3-327-3456 Page 25 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

11. RF Exposure Positions

11.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

Fig 9.1.1 Front, back, and side views of SAM twin phantom

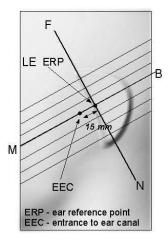
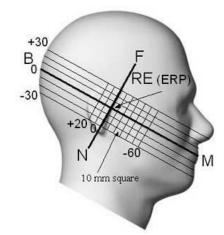



Fig 9.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA973036

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: 886-3-327-3456 Page 26 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

11.2 Definition of the cheek position

Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output: however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

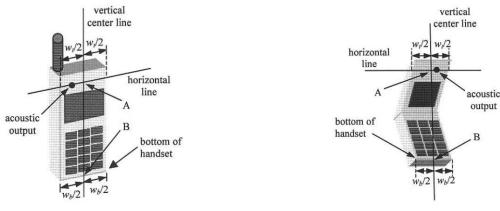


Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

Report No.: FA973036

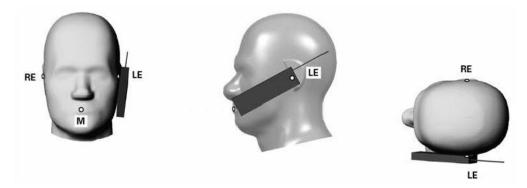


Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 Page 27 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

11.3 <u>Definition of t</u>he tilt position

1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

Report No.: FA973036

- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

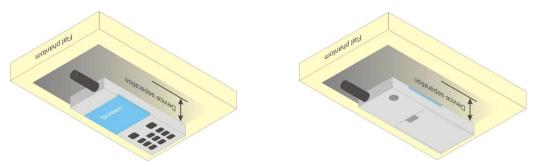


Fig 9.4 Body Worn Position

TEL: 886-3-327-3456 Page 28 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

11.5 Product Specific Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

Report No.: FA973036

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

11.6 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: 886-3-327-3456 Page 29 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4 Tx slots) for GSM850/GSM1900 is considered as the primary mode.

Report No.: FA973036

- 2. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode
- 3. Power reduction which is triggered by hotspot mode is implemented in GSM1900 band, for hotspot mode SAR testing EUT was set in reduced power mode and EDGE (4 Tx slots) due to its highest frame-average power.

<Default Power Mode>

GSM850	Burst Av	Burst Average Power (dBm)			Frame-Average Power (dBm)			Tune-up
TX Channel	128	189	251	Tune-up Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GSM 1 Tx slot	32.10	32.04	31.92	33.00	23.10	23.04	22.92	24.00
GPRS 1 Tx slot	32.08	32.06	31.96	33.00	23.08	23.06	22.96	24.00
GPRS 2 Tx slots	31.47	31.44	31.35	32.00	25.47	25.44	25.35	26.00
GPRS 3 Tx slots	29.85	29.84	29.80	30.50	25.59	25.58	25.54	26.24
GPRS 4 Tx slots	28.81	28.79	28.70	29.50	25.81	25.79	25.70	26.50
EDGE 1 Tx slot	27.43	27.44	27.26	28.00	18.43	18.44	18.26	19.00
EDGE 2 Tx slots	26.45	26.48	26.33	28.00	20.45	20.48	20.33	22.00
EDGE 3 Tx slots	24.45	24.49	24.39	25.00	20.19	20.23	20.13	20.74
EDGE 4 Tx slots	23.14	23.19	23.03	24.00	20.14	20.19	20.03	21.00

GSM1900	Burst Average Power (dBm)			Tune-up	e-up Frame-Average Power (dBm)			Tune-up
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GSM 1 Tx slot	28.52	28.82	29.22	30.00	19.52	19.82	20.22	21.00
GPRS 1 Tx slot	28.58	28.84	29.25	30.00	19.58	19.84	20.25	21.00
GPRS 2 Tx slots	27.85	28.12	28.54	29.00	21.85	22.12	22.54	23.00
GPRS 3 Tx slots	26.13	26.41	26.86	27.50	21.87	22.15	22.60	23.24
GPRS 4 Tx slots	25.03	25.34	25.82	26.50	22.03	22.34	22.82	23.50
EDGE 1 Tx slot	25.97	26.14	25.83	27.00	16.97	17.14	16.83	18.00
EDGE 2 Tx slots	24.85	25.20	24.74	26.00	18.85	19.20	18.74	20.00
EDGE 3 Tx slots	22.79	22.93	22.57	23.50	18.53	18.67	18.31	19.24
EDGE 4 Tx slots	21.38	21.75	21.43	22.50	18.38	18.75	18.43	19.50

TEL: 886-3-327-3456 Page 30 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

SPORTON LAB. FCC SAR TEST REPORT

Report No.: FA973036

<reduced< th=""><th>Power</th><th>Mode></th></reduced<>	Power	Mode>
--	-------	-------

GSM850	Burst Av	erage Pow	er (dBm)	Tune-up	ne-up Frame-Average Power (dBm)			
TX Channel	128	189	251	Limit	128	189	251	Tune-up Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GSM 1 Tx slot	25.74	25.78	25.62	26.50	16.74	16.78	16.62	17.50
GPRS 1 Tx slot	25.77	25.77	25.64	26.50	16.77	16.77	16.64	17.50
GPRS 2 Tx slots	24.48	24.47	24.36	25.00	18.48	18.47	18.36	19.00
GPRS 3 Tx slots	20.50	20.53	20.45	21.00	16.24	16.27	16.19	16.74
GPRS 4 Tx slots	17.13	17.18	17.01	18.00	14.13	14.18	14.01	15.00
EDGE 1 Tx slot	26.44	26.47	26.34	27.50	17.44	17.47	17.34	18.50
EDGE 2 Tx slots	25.55	25.55	25.37	26.00	19.55	19.55	19.37	20.00
EDGE 3 Tx slots	23.32	23.40	23.30	24.00	19.06	19.14	19.04	19.74
EDGE 4 Tx slots	22.30	22.34	22.20	23.00	19.30	19.34	19.20	20.00

GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up Frame-Average Power (dBm)			ver (dBm)	Tune-up	
TX Channel	512	661	810	Limit	512	661	810	Limit	
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)	
GSM 1 Tx slot	21.20	21.82	22.76	23.00	12.20	12.82	13.76	14.00	
GPRS 1 Tx slot	21.23	21.85	22.75	23.00	12.23	12.85	13.75	14.00	
GPRS 2 Tx slots	19.72	20.41	21.35	21.50	13.72	14.41	15.35	15.50	
GPRS 3 Tx slots	15.58	16.35	17.42	18.00	11.32	12.09	13.16	13.74	
GPRS 4 Tx slots	13.00	13.52	14.96	15.50	10.00	10.52	11.96	12.50	
EDGE 1 Tx slot	23.03	23.19	22.89	23.50	14.03	14.19	13.89	14.50	
EDGE 2 Tx slots	21.96	22.13	21.82	22.50	15.96	16.13	15.82	16.50	
EDGE 3 Tx slots	19.81	19.97	19.64	20.50	15.55	15.71	15.38	16.24	
EDGE 4 Tx slots	18.72	18.89	18.57	19.50	15.72	15.89	15.57	16.50	

TEL: 886-3-327-3456 Page 31 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA973036

- 3. For HSPA+ devices supporting 16 QAM in the uplink, power measurements procedure is according to the configurations in Table C.11.1.4 of 3GPP TS 34.121-1.
- 4. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βd	βa	β₀/βd	Внѕ	CM (dB)	MPR (dB)
			(SF)		(Note1,	(Note 3)	(Note 3)
					Note 2)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for β_o/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

TEL: 886-3-327-3456 Page 32 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA973036

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βd	βd (SF)	βс/βа	βнs (Note1)	Вес	β _{ed} (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

- Note 1: For sub-test 1 to 4, Δ_{NACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{hs} = 5/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, β_{he}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_d/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 5: βed can not be set directly; it is set by Absolute Grant Value.
- Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Setup Configuration

TEL: 886-3-327-3456 Page 33 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
 - Set RMC 12.2Kbps + HSDPA mode.
 - Set Cell Power = -25 dBm ii.
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters
 - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA973036

- a). Subtest 1: $\beta_c/\beta_d=2/15$
- b). Subtest 2: $\beta_d/\beta_d=12/15$ c). Subtest 3: $\beta_d/\beta_d=15/8$

- d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8
- Set Ack-Nack Repetition Factor to 3 vii.
- Set CQI Feedback Cycle (k) to 4 ms viii.
- ix. Set CQI Repetition Factor to 2
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value					
Nominal	Avg. Inf. Bit Rate	kbps	60					
Inter-TTI	Distance	TTľs	1					
Number	of HARQ Processes	Proces	6					
		ses	U					
Informati	on Bit Payload ($N_{\it INF}$)	Bits	120					
Number	Code Blocks	Blocks	1					
Binary C	hannel Bits Per TTI	Bits	960					
Total Ava	ailable SML's in UE	SML's	19200					
Number	of SML's per HARQ Proc.	SML's	3200					
Coding F	Rate		0.15					
Number	of Physical Channel Codes	Codes	1					
Modulation			QPSK					
Note 1:	The RMC is intended to be used for	or DC-HSD	PA					
	mode and both cells shall transmit	with identi	cal					
	parameters as listed in the table.							
Note 2:								
	retransmission is not allowed. The redundancy and							
	constellation version 0 shall be use	ed.						

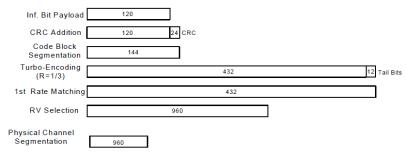


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

TEL: 886-3-327-3456 Page 34 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

HSPA+ 3GPP release 7 (uplink category 7) 16QAM, Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2E:HSPA+:UL with 16QAM
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.4, quoted from the TS 34.121-1 s5.2E

Report No.: FA973036

- iii. Set Channel Parms
- iv. Set Cell Power = -86 dBm
- v. Set Channel Type = HSPA
- vi. Set UE Target Power =21 dBm
- vii. Power Ctrl Mode= All Up Bits
- viii. Set Manual Uplink DPCH Bc/Bd = Manual
- ix. Set Manual Uplink DPCH Bc and Bd=15,15(for 34.121-1 v8.10.0 table C11.1.4 sub-test 1)
- x. Set HSPA Conn DL Channel Levels
- xi. Set HS-SCCH Configs
- xii. Set RB Test Mode Setup
- xiii. Set Common HSUPA Parameters
- xiv. Set Serving Grant
- xv. Confirm that E-TFCI is equal to the target E-TFCI of 105 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM

Sub-	βc	β_d	β _{HS}	β _{ec}	β_{ed}	β_{ed}	CM	MPR	AG	E-TFCI	E-TFCI
test	(Note3)		(Note1)	-	(2xSF2)	(2xSF4)	(dB)	(dB)		(Note 5)	(boost)
					(Note 4)	(Note 4)	(Note 2)	(Note 2)	(Note 4)		
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1	· A.a	Δ	and Ass	- 30/15	with R - 30/15	* R					

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).

Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default.

Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signaled to use the extrapolation algorithm.

Setup Configuration

TEL: 886-3-327-3456 Page 35 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

< WCDMA Conducted Power>

General Note:

1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

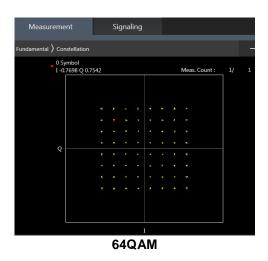
Report No. : FA973036

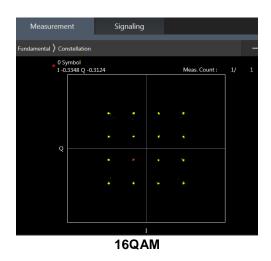
2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA / HSPA+ is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA / HSPA+ to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+, and according to the following RF output power, the output power results of the secondary modes (HSDPA / HSUPA / DC-HSDPA / HSPA+) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSDPA / HSDPA

<Default Power Mode>

	Band		WCDMA II				WCDMA V		
	TX Channel	9262	9400	9538	Tune-up Limit	4132	4182	4233	Tune-up Limit
	Rx Channel	9662	9800	9938	(dBm)	4357	4407	4458	(dBm)
F	requency (MHz)	1852.4	1880	1907.6	(*)	826.4	836.4	846.6	
3GPP Rel 99	AMR 12.2Kbps	22.95	23.12	23.02	24.00	22.88	22.91	22.98	24.00
3GPP Rel 99	RMC 12.2Kbps	22.97	23.15	23.06	24.00	22.91	22.94	23.00	24.00
3GPP Rel 6	HSDPA Subtest-1	22.01	22.18	22.03	23.00	22.01	22.03	22.10	23.00
3GPP Rel 6	HSDPA Subtest-2	22.00	22.10	22.01	23.00	22.00	22.01	22.08	23.00
3GPP Rel 6	HSDPA Subtest-3	21.50	21.60	21.53	22.50	21.46	21.47	21.58	22.50
3GPP Rel 6	HSDPA Subtest-4	21.47	21.58	21.50	22.50	21.44	21.44	21.56	22.50
3GPP Rel 8	DC-HSDPA Subtest-1	21.96	22.09	21.99	23.00	21.84	21.96	22.09	23.00
3GPP Rel 8	DC-HSDPA Subtest-2	21.84	21.98	21.96	23.00	21.82	21.88	22.02	23.00
3GPP Rel 8	DC-HSDPA Subtest-3	21.43	21.57	21.38	22.50	21.34	21.45	21.51	22.50
3GPP Rel 8	DC-HSDPA Subtest-4	21.46	21.58	21.32	22.50	21.34	21.41	21.37	22.50
3GPP Rel 6	HSUPA Subtest-1	21.01	21.03	21.03	22.50	21.03	21.03	21.06	22.50
3GPP Rel 6	HSUPA Subtest-2	20.42	20.52	20.50	21.50	20.39	20.41	20.47	21.50
3GPP Rel 6	HSUPA Subtest-3	21.39	21.49	21.52	22.00	21.37	21.40	21.45	22.00
3GPP Rel 6	HSUPA Subtest-4	20.10	20.15	20.13	21.00	19.90	19.91	19.95	21.00
3GPP Rel 6	HSUPA Subtest-5	21.42	21.58	21.45	22.50	21.33	21.42	21.52	22.50
3GPP Rel 7	HSPA+ (16QAM) Subtest-1	21.22	21.40	21.31	22.00	21.16	21.19	21.25	22.00

<Reduced Power Mode>


	Band		WCDMA II				_		
	TX Channel	9262	9400	9538	Tune-up Limit	4132	4182	4233	Tune-up Limit
	Rx Channel	9662	9800	9938	(dBm)	4357	4407	4458	(dBm)
F	requency (MHz)	1852.4	1880	1907.6	(32)	826.4	836.4	846.6	(32)
3GPP Rel 99	AMR 12.2Kbps	13.75	13.95	13.82	14.50	16.72	16.74	16.81	17.50
3GPP Rel 99	RMC 12.2Kbps	13.79	13.96	13.86	14.50	16.75	16.76	16.84	17.50
3GPP Rel 6	HSDPA Subtest-1	12.07	12.25	12.02	13.00	14.95	15.05	15.17	16.00
3GPP Rel 6	HSDPA Subtest-2	11.90	12.07	12.10	13.00	15.04	15.04	15.02	16.00
3GPP Rel 6	HSDPA Subtest-3	11.51	11.56	11.44	12.50	14.43	14.50	14.55	15.50
3GPP Rel 6	HSDPA Subtest-4	11.53	11.62	11.44	12.50	14.47	14.41	14.58	15.50
3GPP Rel 8	DC-HSDPA Subtest-1	12.04	12.02	11.94	13.00	14.81	14.99	15.01	16.00
3GPP Rel 8	DC-HSDPA Subtest-2	11.80	11.98	11.93	13.00	14.77	14.94	15.05	16.00
3GPP Rel 8	DC-HSDPA Subtest-3	11.45	11.58	11.42	12.50	14.44	14.49	14.52	15.50
3GPP Rel 8	DC-HSDPA Subtest-4	11.56	11.60	11.41	12.50	14.37	14.49	14.36	15.50
3GPP Rel 6	HSUPA Subtest-1	11.02	11.07	11.03	12.50	13.95	14.01	14.03	15.50
3GPP Rel 6	HSUPA Subtest-2	10.52	10.55	10.55	11.50	13.42	13.47	13.54	14.50
3GPP Rel 6	HSUPA Subtest-3	11.40	11.49	11.62	12.00	14.44	14.49	14.51	15.00
3GPP Rel 6	HSUPA Subtest-4	10.11	10.15	10.19	11.00	12.89	12.96	12.96	14.00
3GPP Rel 6	HSUPA Subtest-5	11.37	11.49	11.35	12.50	14.39	14.42	14.43	15.50
3GPP Rel 7	HSPA+ (16QAM) Subtest-1	11.31	11.42	11.31	12.00	14.12	14.17	14.15	15.00


TEL: 886-3-327-3456 Page 36 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<LTE Conducted Power>

General Note:

- Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 9. According to 2017 TCB workshop, for 64 QAM and 16 QAM should be verified by checking the signal constellation with a call box to avoid incorrect maximum power levels due to MPR and other requirements associated with signal modulation, and the following figure is taken from the "Fundamental Measurement >> Modulation Analysis >> constellation" mode of the device connect to the MT8821C base station, therefore, the device 64QAM and 16QAM signal modulation are correct.

Report No.: FA973036

TEL: 886-3-327-3456 Page 37 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<Default Power Mode>

Report No. : FA973036

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequen	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	23.20	23.46	23.29		
20	QPSK	1	49	23.36	23.36	23.31	24	0
20	QPSK	1	99	22.93	22.91	22.80		
20	QPSK	50	0	22.32	22.36	22.35		
20	QPSK	50	24	22.31	22.29	22.34	23	1
20	QPSK	50	50	22.30	22.17	22.24	23	'
20	QPSK	100	0	22.26	22.20	22.30		
20	16QAM	1	0	22.39	22.36	22.30		
20	16QAM	1	49	22.68	22.64	22.70	23	1
20	16QAM	1	99	22.21	22.21	22.18		
20	16QAM	50	0	21.15	21.25	21.36		
20	16QAM	50	24	21.28	21.27	21.33	1	•
20	16QAM	50	50	21.35	21.14	21.20	22	2
20	16QAM	100	0	21.23	21.18	21.26		
20	64QAM	1	0	21.20	21.18	21.14		
20	64QAM	1	49	21.50	21.48	21.56	22	2
20	64QAM	1	99	21.03	21.07	21.05		
20	64QAM	50	0	20.22	20.31	20.46		
20	64QAM	50	24	20.33	20.33	20.27		
20	64QAM	50	50	20.39	20.18	20.20	21	3
20	64QAM	100	0	20.33	20.23	20.35		
	Cha	nnel		20025	20175	20325	Tune-up limit	MPR
		cy (MHz)		1717.5	1732.5	1747.5	(dBm)	(dB)
15	QPSK	1	0	23.26	23.26	23.23		
15	QPSK	1	37	23.44	23.45	23.35	24	0
15	QPSK	1	74	23.19	23.16	23.03		
15	QPSK	36	0	22.28	22.32	22.37		
15	QPSK	36	20	22.29	22.31	22.33		
15	QPSK	36	39	22.35	22.26	22.27	23	1
15	QPSK	75	0	22.32	22.29	22.34		
15	16QAM	1	0	22.57	22.52	22.53		
15	16QAM	1	37	22.75	22.68	22.80	23	1
15	16QAM	1	74	22.47	22.45	22.39		
15	16QAM	36	0	21.27	21.31	21.38		
15	16QAM	36	20	21.29	21.29	21.36		
15	16QAM	36	39	21.34	21.26	21.28	22	2
15	16QAM	75	0	21.29	21.25	21.32		
15	64QAM	1	0	21.44	21.37	21.39		
15	64QAM	1	37	21.60	21.54	21.64	22	2
15	64QAM	1	74	21.28	21.28	21.22		
15	64QAM	36	0	20.36	20.38	20.37		
15	64QAM	36	20	20.36	20.35	20.31		
15	64QAM	36	39	20.42	20.33	20.27	21	3
15	64QAM	75	0	20.36	20.30	20.27		
	Cha			20000	20175	20350	Tune-up limit	MPR
		cy (MHz)		1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	23.33	23.30	23.24		
10	QPSK	1	25	23.36	23.38	23.32	24	0
10	QPSK	1	49	23.25	23.23	23.15		J
10	QP3N		49	23.23	23.23	23.13		

TEL: 886-3-327-3456 Page 38 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

Report	No. :	FA973	<u> 8036</u>

10	QPSK	25	0	22.34	22.36	22.38		
10	QPSK	25	12	22.34	22.34	22.34		
10	QPSK	25	25	22.38	22.26	22.32	23	1
10	QPSK	50	0	22.35	22.33	22.38	-	
10	16QAM	1	0	22.66	22.61	22.65		
10		1					- 22	4
	16QAM		25	22.70	22.66	22.73	23	1
10	16QAM	1	49	22.57	22.53	22.50		
10	16QAM	25	0	21.32	21.32	21.39		
10	16QAM	25	12	21.33	21.29	21.33	22	2
10	16QAM	25	25	21.37	21.22	21.30		
10	16QAM	50	0	21.32	21.28	21.35		
10	64QAM	1	0	21.50	21.40	21.46		
10	64QAM	1	25	21.55	21.47	21.54	22	2
10	64QAM	1	49	21.37	21.36	21.37		
10	64QAM	25	0	20.37	20.37	20.33		
10	64QAM	25	12	20.36	20.32	20.30	0.4	0
10	64QAM	25	25	20.41	20.27	20.29	21	3
10	64QAM	50	0	20.37	20.34	20.31		
		nnel		19975	20175	20375	Tune-up limit	MPR
	Frequen			1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	23.01	23.20	23.13		
5	QPSK	1	12	23.09	23.10	23.20	24	0
5	QPSK	1	24	22.72	23.10	23.20	24	0
5	QPSK		0	21.90	22.30	22.29		
		12					_	
5	QPSK	12	7	21.91	22.32	22.30	23	1
5	QPSK	12	13	21.84	22.25	22.27		
5	QPSK	25	0	21.96	22.30	22.31		
5	16QAM	1	0	22.17	22.49	22.43		
5	16QAM	1	12	22.38	22.70	22.64	23	1
5	16QAM	1	24	22.06	22.44	22.27		
5	16QAM	12	0	21.05	21.28	21.29		
5	16QAM	12	7	21.11	21.33	21.32	22	2
5	16QAM	12	13	21.10	21.25	21.27	22	۷
5	16QAM	25	0	21.24	21.26	21.24		
5	64QAM	1	0	21.25	21.32	21.30		
5	64QAM	1	12	21.52	21.57	21.58	22	2
5	64QAM	1	24	21.29	21.31	21.26		
5	64QAM	12	0	20.41	20.36	20.29		
5	64QAM	12	7	20.48	20.40	20.32		
5	64QAM	12	13	20.40	20.33	20.28	21	3
5	64QAM	25	0	20.38	20.33	20.24		
	<u> </u>	nnel		19965	20175	20385	Tune-up limit	MPR
	Frequen			1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	23.19	23.31	23.21	(a.biii)	(45)
							- 04	0
3	QPSK	1	8	23.04	23.28	23.19	24	0
3	QPSK	1	14	22.86	23.28	23.18		
3	QPSK	8	0	21.93	22.32	22.29		
3	QPSK	8	4	21.99	22.31	22.30	23	1
3	QPSK	8	7	22.01	22.28	22.28		
3	QPSK	15	0	21.97	22.28	22.26		
3	16QAM	1	0	22.38	22.56	22.58		
3	16QAM	1	8	22.42	22.53	22.55	23	1
3	16QAM	1	14	22.38	22.53	22.52		
3	16QAM	8	0	21.16	21.32	21.33		
3	16QAM	8	4	21.23	21.33	21.34	22	2
3	16QAM	8	7	21.28	21.30	21.30		

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 39 of 67 Issued Date : Aug. 29, 2019

ORTON LAB.	FCC SAR TE	EST REPO	ORT				Report	No. : FA97303
3	16QAM	15	0	21.27	21.26	21.26		
3	64QAM	1	0	21.47	21.38	21.41		
3	64QAM	1	8	21.50	21.41	21.37	22	2
3	64QAM	1	14	21.44	21.39	21.39		
3	64QAM	8	0	20.44	20.34	20.29		
3	64QAM	8	4	20.44	20.36	20.31	21	3
3	64QAM	8	7	20.40	20.31	20.24	21	3
3	64QAM	15	0	20.38	20.27	20.22		
	Cha	nnel		19957	20175	20393	Tune-up limit	MPR
	Frequenc	cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	22.79	23.22	23.17		
1.4	QPSK	1	3	22.93	23.16	23.31		
1.4	QPSK	1	5	22.79	23.12	23.04	24	0
1.4	QPSK	3	0	22.90	23.20	23.09	24	U
1.4	QPSK	3	1	22.93	23.16	22.96		
1.4	QPSK	3	3	22.89	23.20	22.89		
1.4	QPSK	6	0	21.87	22.35	22.04	23	1
1.4	16QAM	1	0	22.10	22.52	22.09		
1.4	16QAM	1	3	22.24	22.57	22.20		
1.4	16QAM	1	5	22.12	22.40	22.05	23	1
1.4	16QAM	3	0	21.91	22.26	21.96	25	'
1.4	16QAM	3	1	21.99	22.39	21.96		
1.4	16QAM	3	3	21.95	22.32	22.00		
1.4	16QAM	6	0	20.94	21.38	21.18	22	2
1.4	64QAM	1	0	20.95	21.39	21.34		
1.4	64QAM	1	3	21.08	21.48	21.48		
1.4	64QAM	1	5	20.95	21.39	21.33	22	2
1.4	64QAM	3	0	21.06	21.43	21.41		
1.4	64QAM	3	1	21.15	21.47	21.47		
1.4	64QAM	3	3	21.15	21.42	21.43		
1.4	64QAM	6	0	20.38	20.32	20.26	21	3

TEL: 886-3-327-3456 Page 40 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

Report No.: FA973036

<LTE Band 7>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Chai	nnel		20850	21100	21350	(dBm)	(dB)
	Frequenc			2510	2535	2560	- ` `	
20	QPSK	1	0	23.19	23.05	23.31		
20	QPSK	1	49	22.99	23.12	23.22	24	0
20	QPSK	1	99	22.98	23.16	23.19		O
20	QPSK	50	0	22.13	22.13	22.17		
20	QPSK	50	24	22.20	22.24	22.34	_	
20	QPSK	50	50	22.11	22.14	22.26	23	1
20	QPSK	100	0	22.25	22.23	22.38	_	
20	16QAM	1	0	22.17	22.20	22.32		
20	16QAM	1	49	22.30	22.41	22.34	23	1
20	16QAM	1	99	22.16	22.24	22.29	- 20	
20	16QAM	50	0	21.10	21.23	21.26		
20	16QAM	50	24	21.23	21.28	21.35	_	
20	16QAM	50	50	21.16	21.23	21.26	22	2
20	16QAM	100	0	21.10	21.23	21.41		
20	64QAM	1	0	21.25	21.28	21.41		
20	64QAM	1	49	21.05	21.00	21.36	22	2
20	64QAM	1	99	21.03	21.15	21.21	- 22	_
20	64QAM	50	0	20.13	20.11	20.25		
20	64QAM	50	24	20.13	20.11	20.25	_	
20	64QAM	50	50	20.13	20.23	20.33	21	3
20	64QAM	100	0	20.13	20.12	20.19	_	
20	Chai		U	20825	21100	21375	Tune-up limit	MPR
	Frequenc			2507.5	2535	2562.5	(dBm)	(dB)
15	QPSK	2y (IVII 12) 1	0	23.16	22.95	23.25	(dBIII)	(a <i>b</i>)
15	QPSK	1	37	22.94	23.05	23.17	24	0
15	QPSK	1	74	22.94	23.07	23.17	- 24	U
15	QPSK	36	0	22.09	22.12	22.11		
15	QPSK	36	20	22.16	22.12	22.11	-	
15	QPSK	36	39	22.10	22.10	22.22	23	1
15	QPSK	75	0	22.04	22.11	22.32	-	
15	16QAM	1	0		22.13			
15	16QAM		U	22 47	22.40	22.24		
10		1		22.17	22.18	22.31	23	1
15		1	37	22.28	22.38	22.31	23	1
15 15	16QAM	1	37 74	22.28 22.07	22.38 22.24	22.31 22.24	23	1
15	16QAM 16QAM	1 36	37 74 0	22.28 22.07 21.02	22.38 22.24 21.19	22.31 22.24 21.20	23	1
15 15	16QAM 16QAM 16QAM	1 36 36	37 74 0 20	22.28 22.07 21.02 21.14	22.38 22.24 21.19 21.27	22.31 22.24 21.20 21.28	23	1
15 15 15	16QAM 16QAM 16QAM 16QAM	1 36 36 36	37 74 0 20 39	22.28 22.07 21.02 21.14 21.11	22.38 22.24 21.19 21.27 21.22	22.31 22.24 21.20 21.28 21.26		
15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM	1 36 36 36 75	37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19	22.38 22.24 21.19 21.27 21.22 21.28	22.31 22.24 21.20 21.28 21.26 21.31		
15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1 36 36 36 36 75	37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04	22.38 22.24 21.19 21.27 21.22 21.28 21.03	22.31 22.24 21.20 21.28 21.26 21.31 21.15	22	2
15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 36 36 36 75 1	37 74 0 20 39 0 0 37	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27		
15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 36 36 36 75 1 1	37 74 0 20 39 0 0 37 74	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12	22	2
15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36	37 74 0 20 39 0 0 37 74	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17	22	2
15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36	37 74 0 20 39 0 0 0 37 74 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32	22	2
15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36	37 74 0 20 39 0 0 0 37 74 0 20 39	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18	22	2
15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36	37 74 0 20 39 0 0 0 37 74 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35	22 22 21	2 2 3
15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36 36 75	37 74 0 20 39 0 0 0 37 74 0 20 39	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06 20800	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19 21100	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35 21400	22 22 21 Tune-up limit	2 2 3
15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Frequence	1 36 36 36 75 1 1 1 36 36 36 36 75	37 74 0 20 39 0 0 37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06 20800 2505	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19 21100 2535	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35 21400 2565	22 22 21	2 2 3
15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Chai	1 36 36 36 75 1 1 1 36 36 36 36 75 nnel	37 74 0 20 39 0 0 37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06 20800 2505 23.16	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19 21100 2535 22.95	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35 21400 2565 23.28	22 22 21 Tune-up limit (dBm)	2 2 3 MPR (dB)
15 15 15 15 15 15 15 15 15 15 15 10	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36 75 nnel	37 74 0 20 39 0 0 37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06 20800 2505 23.16 22.94	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19 21100 2535 22.95 23.02	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35 21400 2565 23.28 23.17	22 22 21 Tune-up limit	2 2 3
15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM Chai	1 36 36 36 75 1 1 1 36 36 36 36 75 nnel	37 74 0 20 39 0 0 37 74 0 20 39 0	22.28 22.07 21.02 21.14 21.11 21.19 21.04 21.13 21.00 20.07 20.15 20.09 20.06 20800 2505 23.16	22.38 22.24 21.19 21.27 21.22 21.28 21.03 21.29 21.14 20.09 20.14 20.04 20.19 21100 2535 22.95	22.31 22.24 21.20 21.28 21.26 21.31 21.15 21.27 21.12 20.17 20.32 20.18 20.35 21400 2565 23.28	22 22 21 Tune-up limit (dBm)	2 2 3 MPR (dB)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113

Page 41 of 67 Issued Date : Aug. 29, 2019

10	QPSK	25	25	22.01	22.13	22.18		
10	QPSK	50	0	22.21	22.15	22.28		
10	16QAM	1	0	22.17	22.14	22.23		
10	16QAM	1	25	22.21	22.41	22.25	23	1
10	16QAM	1	49	22.07	22.20	22.27		
10	16QAM	25	0	21.01	21.13	21.24		
10	16QAM	25	12	21.23	21.22	21.26	20	2
10	16QAM	25	25	21.08	21.23	21.17	- 22	2
10	16QAM	50	0	21.20	21.19	21.36		
10	64QAM	1	0	21.02	20.99	21.10		
10	64QAM	1	25	21.15	21.29	21.30	22	2
10	64QAM	1	49	20.97	21.11	21.12		
10	64QAM	25	0	20.13	20.01	20.22		
10	64QAM	25	12	20.23	20.13	20.30	21	3
10	64QAM	25	25	20.07	20.06	20.11] 21	3
10	64QAM	50	0	20.05	20.17	20.28		
	Cha	nnel		20775	21100	21425	Tune-up limit	MPR
	Frequen	cy (MHz)		2502.5	2535	2567.5	(dBm)	(dB)
5	QPSK	1	0	23.14	22.96	23.25		
5	QPSK	1	12	22.98	23.09	23.14	24	0
5	QPSK	1	24	22.91	23.06	23.15		
5	QPSK	12	0	22.12	22.07	22.15		
5	QPSK	12	7	22.11	22.22	22.34	23	1
5	QPSK	12	13	22.02	22.14	22.23	25	•
5	QPSK	25	0	22.23	22.20	22.38		
5	16QAM	1	0	22.17	22.19	22.32		
5	16QAM	1	12	22.20	22.36	22.25	23	1
5	16QAM	1	24	22.10	22.14	22.23		
5	16QAM	12	0	21.00	21.23	21.16		
5	16QAM	12	7	21.20	21.18	21.32	22	2
5	16QAM	12	13	21.16	21.13	21.17		_
5	16QAM	25	0	21.21	21.24	21.38		
5	64QAM	1	0	20.95	21.05	21.13		
5	64QAM	1	12	21.09	21.21	21.36	22	2
5	64QAM	1	24	20.97	21.10	21.20		
5	64QAM	12	0	20.10	20.01	20.24		
5	64QAM	12	7	20.16	20.13	20.28	21	3
5	64QAM	12	13	20.10	20.03	20.18		Ü
5	64QAM	25	0	20.07	20.24	20.29		

Report No.: FA973036

TEL: 886-3-327-3456 Page 42 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

< Reduced Power Mode>

Report No. : FA973036

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequenc	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	14.24	14.29	14.21		
20	QPSK	1	49	14.54	14.67	14.47	15.5	0
20	QPSK	1	99	14.12	14.13	13.98		
20	QPSK	50	0	14.60	14.63	14.61		
20	QPSK	50	24	14.52	14.51	14.47	15.5	0
20	QPSK	50	50	14.57	14.38	14.36	15.5	0
20	QPSK	100	0	14.50	14.52	14.49		
20	16QAM	1	0	14.31	14.14	14.23		
20	16QAM	1	49	14.60	14.45	14.42	15.5	0
20	16QAM	1	99	14.10	14.03	13.92		
20	16QAM	50	0	14.04	14.05	14.36		
20	16QAM	50	24	14.13	14.20	14.11	45.5	•
20	16QAM	50	50	14.19	13.97	13.99	15.5	0
20	16QAM	100	0	14.22	13.96	14.20		
20	64QAM	1	0	14.19	14.00	13.97		
20	64QAM	1	49	14.40	14.47	14.29	15.5	0
20	64QAM	1	99	13.98	13.89	13.88		
20	64QAM	50	0	14.12	14.16	14.23		
20	64QAM	50	24	14.09	14.05	14.12	1	
20	64QAM	50	50	14.17	14.10	14.01	15.5	0
20	64QAM	100	0	14.19	14.00	14.20	1	
20	Cha		U	20025	20175	20325	Tune-up limit	MPR
	Frequenc			1717.5	1732.5	1747.5	(dBm)	(dB)
15	QPSK	1	0	14.33	14.20	14.22	(4.2.11.)	(5.2)
15	QPSK	1	37	14.64	14.67	14.46	15.5	0
15	QPSK	1	74	14.22	14.18	14.08	10.5	O
15	QPSK	36	0	14.35	14.50	14.54		
15	QPSK	36	20	14.33	14.41	14.41	-	
15	QPSK	36	39	14.52	14.37	14.42	15.5	0
15	QPSK		0	14.52	14.56	14.42	-	
15	16QAM	1	0	14.52	14.36	14.46		
		<u>'</u> 1					45.5	0
15 15	16QAM	<u> </u>	37 74	14.47	14.57 14.12	14.48	15.5	0
	16QAM	1		14.13		13.97		
15	16QAM	36	0	13.99	14.06	14.27		
15 15	16QAM	36	20	14.15	14.10	14.15	15.5	0
	16QAM	36	39	14.15	13.99	14.01		
15	16QAM	75	0	14.06	14.05	14.16		
15	64QAM	1	0	14.09	14.03	14.06	15.5	0
15	64QAM	1	37	14.32	14.37	14.32	15.5	0
15	64QAM	1	74	14.08	13.97	13.94		
15	64QAM	36	0	14.15	14.24	14.18		
15	64QAM	36	20	14.20	14.08	14.05	15.5	0
15	64QAM	36	39	14.28	14.05	13.94		
15	64QAM	. 75	0	14.13	13.99	14.17		
	Cha			20000	20175	20350	Tune-up limit	MPR
	Frequenc			1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	14.33	14.20	14.31		
10	QPSK	1	25	14.57	14.54	14.47	15.5	0
10	QPSK	1	49	14.03	14.05	14.01		

TEL: 886-3-327-3456 Page 43 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

TON LAB. F	CC SAR TE	EST REP	ORT				Report	No. : FA9730
10	QPSK	25	0	14.50	14.53	14.63		
10	QPSK	25	12	14.59	14.49	14.56		
10	QPSK	25	25	14.63	14.33	14.43	15.5	0
10	QPSK	50	0	14.45	14.49	14.57	1	
10	16QAM	1	0	14.15	14.15	14.29		
10	16QAM	1	25	14.60	14.46	14.51	15.5	0
10	16QAM	1	49	14.06	14.04	13.91	- 10.0	•
10	16QAM	25	0	14.09	14.21	14.19		
10	16QAM	25	12	14.07	14.18	14.11	1	
10	16QAM	25	25	14.23	14.07	13.98	15.5	0
10	16QAM	50	0	14.11	13.94	14.12	-	
10	64QAM	1	0	14.06	14.08	14.04		
10	64QAM	1	25	14.36	14.48	14.31	15.5	0
				14.08		13.81	15.5	U
10	64QAM	1	49		14.03			
10	64QAM	25	0	13.98	14.05	14.20		
10	64QAM	25	12	14.15	14.17	14.17	15.5	0
10	64QAM	25	25	14.26	14.00	14.12	_	
10	64QAM	50	0	14.13	14.06	14.25		
	Cha			19975	20175	20375	Tune-up limit	MPR
	Frequenc	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	14.17	14.31	14.12		
5	QPSK	1	12	14.58	14.60	14.46	15.5	0
5	QPSK	1	24	14.11	14.17	13.90		
5	QPSK	12	0	14.31	14.57	14.58		
5	QPSK	12	7	14.58	14.49	14.47	15.5	0
5	QPSK	12	13	14.57	14.31	14.40	15.5	U
5	QPSK	25	0	14.49	14.46	14.61		
5	16QAM	1	0	14.18	14.31	14.15		
5	16QAM	1	12	14.46	14.44	14.52	15.5	0
5	16QAM	1	24	14.07	14.17	13.95		
5	16QAM	12	0	14.05	14.13	14.30		
5	16QAM	12	7	14.25	14.05	14.12	1	_
5	16QAM	12	13	14.22	14.09	13.99	15.5	0
5	16QAM	25	0	14.08	14.12	14.07	1	
5	64QAM	1	0	14.09	14.07	14.03		
5	64QAM	1	12	14.43	14.38	14.21	15.5	0
5	64QAM	1	24	13.90	13.93	13.94	1	
5	64QAM	12	0	14.08	14.16	14.19		
5	64QAM	12	7	14.17	14.07	14.20	-	
5	64QAM	12	13	14.26	14.00	13.97	15.5	0
5	64QAM	25	0	14.17	13.96	14.08	-	
<u> </u>	Cha		U	19965	20175	20385	Torreston Park	MDD
	Frequenc			1711.5	1732.5	1753.5	Tune-up limit (dBm)	MPR (dB)
			1 0				(abiii)	(dD)
3	QPSK	1	0	14.25	14.21	14.23	45.5	0
3	QPSK	1	8	14.53	14.58	14.48	15.5	0
3	QPSK	1	14	14.22	14.16	14.02		
3	QPSK	8	0	14.33	14.60	14.66		
3	QPSK	8	4	14.43	14.42	14.41	15.5	0
3	QPSK	8	7	14.62	14.41	14.38		-
3	QPSK	15	0	14.53	14.51	14.56		
3	16QAM	1	0	14.12	14.17	14.29		
3	16QAM	1	8	14.44	14.56	14.36	15.5	0
3	16QAM	1	14	14.17	14.05	13.94		
3	16QAM	8	0	14.01	14.12	14.32		
3	16QAM	8	4	14.14	14.07	14.11	15.5	0
3	16QAM	8	7	14.23	14.04	13.99		

TEL: 886-3-327-3456 Page 44 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

ORTON LAB. F	CC SAR TE	EST REPO	ORT				Report	No. : FA973036
3	16QAM	15	0	14.13	14.07	14.22		
3	64QAM	1	0	14.02	14.14	14.05		
3	64QAM	1	8	14.34	14.42	14.26	15.5	0
3	64QAM	1	14	14.04	13.91	13.95		
3	64QAM	8	0	14.03	14.09	14.36		
3	64QAM	8	4	14.07	14.19	14.03	15.5	0
3	64QAM	8	7	14.11	14.02	14.08	15.5	U
3	64QAM	15	0	14.08	14.13	14.16		
	Cha	nnel		19957	20175	20393	Tune-up limit	MPR
	Frequen	cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	14.43	14.41	14.32		
1.4	QPSK	1	3	14.56	14.53	14.44		
1.4	QPSK	1	5	14.44	14.39	14.33	15.5	0
1.4	QPSK	3	0	14.50	14.49	14.38	15.5	U
1.4	QPSK	3	1	14.56	14.56	14.43		
1.4	QPSK	3	3	14.52	14.48	14.38		
1.4	QPSK	6	0	14.54	14.52	14.40	15.5	0
1.4	16QAM	1	0	14.31	14.31	14.16		
1.4	16QAM	1	3	14.50	14.45	14.40		
1.4	16QAM	1	5	14.37	14.27	14.34	15.5	0
1.4	16QAM	3	0	14.12	14.19	14.16	13.3	U
1.4	16QAM	3	1	14.21	14.21	14.13		
1.4	16QAM	3	3	14.14	14.06	14.11		
1.4	16QAM	6	0	14.38	14.30	14.19	15.5	0
1.4	64QAM	1	0	14.26	14.29	14.06		
1.4	64QAM	1	3	14.37	14.23	14.18		
1.4	64QAM	1	5	14.14	14.22	14.17	15.5	0
1.4	64QAM	3	0	14.23	14.15	14.28	13.3	U
1.4	64QAM	3	1	14.26	14.36	14.20		
1.4	64QAM	3	3	14.21	14.25	14.27		
1.4	64QAM	6	0	14.20	14.09	14.03	15.5	0

TEL: 886-3-327-3456 Page 45 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

Report No.: FA973036

<LTE Band 7>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Chai	nnel		20850	21100	21350	(dBm)	(dB)
	Frequenc	cy (MHz)		2510	2535	2560		
20	QPSK	1	0	12.09	12.14	12.22		
20	QPSK	1	49	12.47	12.60	12.89	13.5	0
20	QPSK	1	99	12.17	12.30	12.44		
20	QPSK	50	0	12.43	12.52	12.66		
20	QPSK	50	24	12.47	12.56	12.70	1	
20	QPSK	50	50	12.59	12.69	12.83	13.5	0
20	QPSK	100	0	12.48	12.58	12.72	1	
20	16QAM	1	0	11.95	11.97	12.02		
20	16QAM	1	49	12.23	12.41	12.48	13	0.5
20	16QAM	1	99	12.01	12.10	12.21		
20	16QAM	50	0	12.01	12.07	12.21		
20	16QAM	50	24	11.99	12.13	12.31		
20	16QAM	50	50	12.13	12.17	12.44	13	0.5
20	16QAM	100	0	11.97	12.04	12.20		
20	64QAM	1	0	11.76	11.80	11.95		
20	64QAM	<u> </u>	49	12.21	12.25	12.30	13	0.5
20	64QAM	1	99	11.89	12.04	12.16		
20	64QAM	50	0	11.97	12.06	12.27		
20	64QAM	50	24	12.02	12.08	12.29	1	
20	64QAM	50	50	12.04	12.16	12.44	13	0.5
20	64QAM	100	0	12.04	12.06	12.34	1	
	Chai		, ,	20825	21100	21375	Tune-up limit	MPR
	Frequenc			2507.5	2535	2562.5	(dBm)	(dB)
15	QPSK	1	0	12.05	12.23	12.20		
15	QPSK	1	37	12.54	12.52	12.65	13.5	0
15	QPSK	1	74	12.21	12.27	12.36		
15	QPSK	36	0	12.42	12.51	12.66		
15	QPSK	36	20	12.50	12.66	12.65	1	
15	QPSK	36	39	12.52	12.65	12.86	13.5	0
15	QPSK	75	0	12.41	12.65	12.67	1	
15	16QAM	1	0					
15				11.78	12.09	12.01		
	16QAM	1	37	11.78 12.20	12.09 12.29	12.01 12.58	13	0.5
				12.20	12.29		13	0.5
15	16QAM	1	37 74 0			12.58	13	0.5
			74	12.20 12.03	12.29 12.19	12.58 12.28	-	
15 15 15	16QAM 16QAM 16QAM	1 36 36	74 0 20	12.20 12.03 11.98 11.97	12.29 12.19 12.15 12.21	12.58 12.28 12.30 12.23	13	0.5
15 15 15 15	16QAM 16QAM	1 36	74 0	12.20 12.03 11.98	12.29 12.19 12.15	12.58 12.28 12.30	-	
15 15 15 15 15	16QAM 16QAM 16QAM 16QAM	1 36 36 36	74 0 20 39	12.20 12.03 11.98 11.97 12.17	12.29 12.19 12.15 12.21 12.14	12.58 12.28 12.30 12.23 12.45	-	
15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM	1 36 36 36 75	74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12	12.29 12.19 12.15 12.21 12.14 12.09	12.58 12.28 12.30 12.23 12.45 12.35	13	
15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1 36 36 36 36 75	74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87	12.29 12.19 12.15 12.21 12.14 12.09 11.82	12.58 12.28 12.30 12.23 12.45 12.35 11.94	-	0.5
15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 36 36 36 75 1 1	74 0 20 39 0 0 37	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07	13	0.5
15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM	1 36 36 36 75 1	74 0 20 39 0 0 37 74	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31	13	0.5
15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36	74 0 20 39 0 0 0 37 74 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25	13	0.5
15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36	74 0 20 39 0 0 0 37 74 0 20	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20	13	0.5
15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36	74 0 20 39 0 0 0 37 74 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36	13 13	0.5
15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36 36 75	74 0 20 39 0 0 0 37 74 0 20	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14 12.03 20800	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15 21100	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36 21400	13	0.5
15 15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36 36 75	74 0 20 39 0 0 0 37 74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14 12.03 20800 2505	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15 21100 2535	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36 21400 2565	13 13 13 Tune-up limit	0.5 0.5 0.5
15 15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM CHAR	1 36 36 36 75 1 1 1 36 36 36 36 75 nnel	74 0 20 39 0 0 0 37 74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14 12.03 20800 2505 12.00	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15 21100 2535 12.18	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36 21400 2565 12.30	13 13 13 Tune-up limit (dBm)	0.5 0.5 MPR (dB)
15 15 15 15 15 15 15 15 15 15 15 15 15 1	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1 36 36 36 75 1 1 1 36 36 36 75 nnel	74 0 20 39 0 0 0 37 74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14 12.03 20800 2505 12.00 12.50	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15 21100 2535 12.18 12.60	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36 21400 2565 12.30 12.63	13 13 13 Tune-up limit	0.5 0.5 0.5
15 15 15 15 15 15 15 15 15 15 15 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM CHAR	1 36 36 36 75 1 1 1 36 36 36 36 75 nnel	74 0 20 39 0 0 0 37 74 0 20 39 0	12.20 12.03 11.98 11.97 12.17 12.12 11.87 12.18 11.79 12.06 12.05 12.14 12.03 20800 2505 12.00	12.29 12.19 12.15 12.21 12.14 12.09 11.82 12.21 12.06 12.09 12.11 12.23 12.15 21100 2535 12.18	12.58 12.28 12.30 12.23 12.45 12.35 11.94 12.31 12.07 12.25 12.20 12.26 12.36 21400 2565 12.30	13 13 13 Tune-up limit (dBm)	0.5 0.5 MPR (dB)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 181113 Page 46 of 67 Issued Date : Aug. 29, 2019

ORTON LAB.	FCC SAR TI	EST REPO	ORT				Report	No. : FA973036
10	QPSK	25	25	12.51	12.75	12.75		
10	QPSK	50	0	12.41	12.48	12.69		
10	16QAM	1	0	11.82	11.94	12.02		
10	16QAM	1	25	12.21	12.35	12.47	13	0.5
10	16QAM	1	49	12.03	12.13	12.19		
10	16QAM	25	0	11.96	12.09	12.25		
10	16QAM	25	12	12.01	12.08	12.30	13	0.5
10	16QAM	25	25	12.04	12.32	12.34	13	0.5
10	16QAM	50	0	12.13	12.03	12.32		
10	64QAM	1	0	11.77	11.74	11.86		
10	64QAM	1	25	12.06	12.30	12.37	13	0.5
10	64QAM	1	49	11.94	12.03	12.25		
10	64QAM	25	0	11.99	11.98	12.30		
10	64QAM	25	12	11.97	12.11	12.25	13	0.5
10	64QAM	25	25	12.16	12.27	12.34		0.5
10	64QAM	50	0	12.08	12.14	12.26		
	Cha	nnel		20775	21100	21425	Tune-up limit	MPR
	Frequen	cy (MHz)		2502.5	2535	2567.5	(dBm)	(dB)
5	QPSK	1	0	12.17	12.08	12.27		
5	QPSK	1	12	12.54	12.56	12.77	13.5	0
5	QPSK	1	24	12.15	12.33	12.39		
5	QPSK	12	0	12.41	12.44	12.63		
5	QPSK	12	7	12.44	12.46	12.72	13.5	0
5	QPSK	12	13	12.52	12.64	12.88	10.0	Ŭ
5	QPSK	25	0	12.48	12.60	12.67		
5	16QAM	1	0	11.84	12.03	12.06		
5	16QAM	1	12	12.21	12.31	12.50	13	0.5
5	16QAM	1	24	12.01	12.22	12.18		
5	16QAM	12	0	12.07	12.17	12.21		
5	16QAM	12	7	12.07	12.14	12.34	13	0.5
5	16QAM	12	13	12.07	12.29	12.45		0.0
5	16QAM	25	0	12.09	12.02	12.22		
5	64QAM	1	0	11.73	11.83	11.89		

12.19

11.82

11.98

12.09

12.07

12.07

12.36

12.06

12.06

12.12

12.16

12.21

12.39

12.22

12.18

12.32

12.32

12.22

0.5

0.5

13

13

12

24

7

13

0

TEL: 886-3-327-3456 Page 47 of 67 FAX: 886-3-328-4978 Issued Date : Aug. 29, 2019

Form version: 181113

64QAM

64QAM

64QAM

64QAM

64QAM

64QAM

12

12

25

<WLAN Conducted Power>

General Note:

Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.

Report No.: FA973036

- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

<Default Power Mode>

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		1	2412	16.16	17.00		
	802.11b 1Mbps 802.11g 6Mbps	6	2437	16.66	17.00	100.00	
2.4GHz WLAN		11	2462	16.45	17.00		
2.4GHZ WLAN		1	2412	14.05	15.50		
		6	2437	14.72	15.50	96.95	
		11	2462	14.45	15.50		
	000 44 - 11700	1 2412 14.24 15.50		15.50			
	802.11n-HT20 MCS0	6	2437	14.53	15.50	97.28	
		11	2462	14.28	15.50		

TEL: 886-3-327-3456 Page 48 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<Reduced Power Mode>

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	7.42	8.00	
	802.11b 1Mbps	6	2437	7.68	8.00	100.00
2.4GHz WLAN		11	2462	7.50	8.00	
2.46112 WLAIN		1	2412	7.43	8.00	
	802.11g 6Mbps	6	2437	7.74	8.00	96.95
		11	2462	7.38	8.00	
		1	2412	7.45	8.00	
	802.11n-HT20 MCS0	6	2437	7.74	8.00	97.28
		11	2462	7.38	8.00	

Report No.: FA973036

<<u>Default Power Mode></u>

<5GHz WLAN >

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		36	5180	14.28	15.50	
	802.11a 6Mbps	40	5200	14.51	15.50	97.36
	602.11a 61VIDPS	44	5220	14.95	15.50	97.30
5.2GHz WLAN		48	5240	14.66	15.50	
		36	5180	14.79	15.50	
	802.11n-HT20	40	5200	14.83	15.50	97.17
	MCS0	44	5220	14.55	15.50	97.17
		48	5240	14.93	15.50	
	802.11n-HT40	38	5190	9.96	10.50	94.70
	MCS0	46	5230	13.16	13.50	94.70

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260	14.75	15.50	
	000 44a 6Mbaa	56	5280	14.25	15.50	07.26
	802.11a 6Mbps	60	5300	14.22	15.50	97.36
5.3GHz WLAN		64	5320	14.83	15.50	
		52	5260	14.28	15.50	
	802.11n-HT20	56	5280	14.80	15.50	97.17
	MCS0	60	5300	14.19	15.50	97.17
		64	5320	14.15	15.50	
	802.11n-HT40	54	5270	12.96	13.50	04.70
	MCS0	62	5310	10.60	11.50	94.70

TEL: 886-3-327-3456 Page 49 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

Report No.: FA973036

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500	13.96	15.50	
		116	5580	13.97	15.50	
	802.11a 6Mbps	124	5620	14.19	15.50	97.36
		132	5660	13.82	15.50	
		144	5720	14.37	15.50	
5.5GHz WLAN		100	5500	13.96	15.50	
5.5GHZ WLAIN		116	5580	13.90	15.50	
	802.11n-HT20 MCS0	124	5620	14.64	15.50	97.17
		132	5660	13.72	15.50	
		144	5720	14.45	15.50	
		102	5510	12.60	13.00	
	000 44 117:0	110	5550	12.51	13.00	
	802.11n-HT40 MCS0	126	5630	12.61	13.00	94.70
	550	134	5670	12.46	13.00	
		142	5710	12.82	13.00	

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745	13.88	15.00	
	802.11a 6Mbps	157	5785	13.79	15.00	97.36
5.8GHz WLAN		165	5825	14.19	15.00	
		149	5745	13.58	15.00	
	802.11n-HT20 MCS0	157	5785	13.79	15.00	97.17
	WIGGO	165	5825	14.11	15.00	
	802.11n-HT40	151	5755	12.36	13.50	94.70
	MCS0	159	5795	12.55	13.50	94.70

< Reduced Power Mode>

<5GHz WLAN >

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		36	5180	5.79	6.50	
	902 11a 6Mbpa	40	5200	5.82	6.50	97.36
	802.11a 6Mbps	44	5220	6.04	6.50	97.30
5.2GHz WLAN		48	5240	5.74	6.50	
		36	5180	5.78	6.50	
	802.11n-HT20	40	5200	5.29	6.50	97.17
	MCS0	44	5220	6.04	6.50	97.17
		48	5240	5.33	6.50	
	802.11n-HT40	38	5190	5.93	6.50	94.70
	MCS0	46	5230	6.06	6.50	54.70

TEL: 886-3-327-3456 Page 50 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

Frequency (MHz) Average power (dBm) Tune-Up Mode Channel Duty Cycle % Limit 5260 5.34 52 6.50 56 5280 5.01 6.50 802.11a 6Mbps 97.36 60 5300 5.30 6.50 5.3GHz WLAN 5.74 64 5320 6.50 52 5260 5.59 6.50 56 5.35 6.50 5280 802.11n-HT20 97.17 MCS0 60 5300 5.49 6.50 64 5320 5.82 6.50 54 5270 5.46 6.50 802.11n-HT40 94.70 MCS0 62 5310 5.84 6.50

Report No.: FA973036

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500	5.23	6.50	
		116	5580	5.24	6.50	
	802.11a 6Mbps	124	5620	5.33	6.50	97.36
		132	5660	5.50	6.50	
		144	5720	5.79	6.50	
5.5GHz WLAN		100	5500	5.19	6.50	
5.5GHZ WLAIN		116	5580	5.18	6.50	
	802.11n-HT20 MCS0	124	5620	5.21	6.50	97.17
	Micoo	132	5660	5.30	6.50	
		144	5720	5.89	6.50	
		102	5510	5.51	6.50	
		110	5550	6.11	6.50	
	802.11n-HT40 MCS0	126	5630	6.24	6.50	94.70
	550	134	5670	5.63	6.50	
		142	5710	5.80	6.50	

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745	5.06	6.50	
	802.11a 6Mbps	157	5785	5.15	6.50	97.36
5.8GHz WLAN		165	5825	5.70	6.50	
		149	5745	5.66	6.50	
	802.11n-HT20 MCS0	157	5785	5.59	6.50	97.17
	eee	165	5825	5.92	6.50	
	802.11n-HT40	151	5755	5.89	6.50	94.70
	MCS0	159	5795	6.01	6.50	94.70

TEL: 886-3-327-3456 Page 51 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

13. Exclusions Applied

<WLAN when P-sensor is active>

Mode Band	Max Average	power(dBm)
	2.4GHz	5GHz
WLAN	8	6.5

Note:

1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

Report No.: FA973036

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

2.4GHz Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
8	< 5	2.48	1.99

Note:

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. For held-to-head mode, the 2.4GHz test exclusion threshold is 1.99 which is <= 3 for 1g and < 7.5 for 10g, head / hotspot / body-worn / extremity SAR testing is not required.

5GHz Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
6.5	< 5	5.85	2.16

Note:

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. For held-to-head mode, the 5GHz test exclusion threshold is 2.16 which is <= 3 and < 7.5 for 10g, head / hotspot / body-worn / extremity SAR testing is not required.

<Bluetooth>

Mode Band	Max Average power(dBm)				
Mode Band	BR/EDR	LE			
2.4GHz Bluetooth	8	8			

Note:

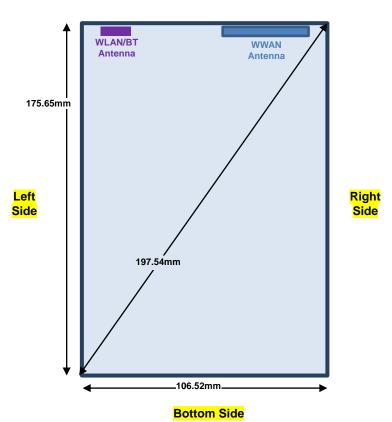
Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
8	< 5	2.48	1.99

Note:


Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The Bluetooth test exclusion threshold is 1.99 which is <= 3, SAR testing is not required.

TEL: 886-3-327-3456 Page 52 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

14. Antenna Location

<Mobile Phone>

Front View

Report No.: FA973036

	Distanc	e of the Antenna	to the EUT surfac	ce/edge									
Antennas Back Front Top Side Bottom Side Right Side Left Side													
WWAN Main	≤ 25mm	≤ 25mm	≤ 25mm	>25mm	≤ 25mm	>25mm							
BT&WLAN	≤ 25mm	≤ 25mm	≤ 25mm	>25mm	>25mm	≤ 25mm							

	Po	ositions for SAR t	ests; Hotspot mod	de										
Antennas	Antennas Back Front Top Side Bottom Side Right Side Left Side													
WWAN Main	Yes	Yes	Yes	No	Yes	No								
BT&WLAN	Yes	Yes	Yes	No	No	Yes								

General Note:

 Referring to KDB 941225 D06 v02r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge

TEL: 886-3-327-3456 Page 53 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

15. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA973036

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.
- 5. Per KDB648474 D04v01r03, for smart phones with a display diagonal dimension > 15cm or an overall diagonal dimension > 16cm, when hotspot mode applies, 10-g product specific SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg, in this report all the hotspot mode results are < 1.2W/kg.
- 6. For 5.3GHz / 5.5GHz WLAN product specific SAR is necessary, due to an overall diagonal dimension is > 16cm, and product specific SAR only required for left side, due to front / back / top side was trigger by P-sensor and power exclusion is applied.
- 7. For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional body SAR testing with EUT transmitting full power in normal mode was performed trigger distance -1mm; 17mm for front face, 18mm for top side and 11mm for back.
- The device employs proximity sensors that detect the presence user's head / body / hand at the front or back or top of the device, when the sensor is detect, the power reduction is active on GSM850/1900, WCDMA B2/B5, LTE B4/B7 and WLAN 2.4GHz/5GHz transmitter.
- 9. When device during a call the front face will be near to head and proximity sensor will be trigger, therefore, head exposure condition is into reduction power mode.
- 10. For hotspot / body-worn / extremity condition consideration, when the device near to the body or hand, the proximity sensor will trigger at the front or back or top of the device, and device into reduce power mode.

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4 Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- 2. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode
- 3. Power reduction which is triggered by P-sensor is implemented in GSM850/1900 band, for the SAR testing EUT was set in reduced power mode and EDGE (4 Tx slots) due to its highest frame-average power.

UMTS Note:

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA / HSPA+ is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA / HSPA+ to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+, and according to the following RF output power, the output power results of the secondary modes (HSDPA / HSUPA / DC-HSDPA / HSPA+) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+.

TEL: 886-3-327-3456 Page 54 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

LTE Note:

 Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

Report No.: FA973036

- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 5. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

15.1 <u>Head SAR</u>

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	EDGE (4 Tx slots)	Right Cheek	0mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	-0.02	0.304	0.354
	GSM850	EDGE (4 Tx slots)	Right Tilted	0mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	-0.05	0.263	0.306
	GSM850	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	-0.04	0.353	0.411
	GSM850	EDGE (4 Tx slots)	Left Tilted	0mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	-0.03	0.273	0.318
01	GSM850	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 2	ON	189	836.4	22.34	23.00	1.164	-0.01	0.355	0.413
	GSM1900	EDGE (4 Tx slots)	Right Cheek	0mm	Sample 1	ON	661	1880	18.89	19.50	1.151	-0.03	0.400	0.460
	GSM1900	EDGE (4 Tx slots)	Right Tilted	0mm	Sample 1	ON	661	1880	18.89	19.50	1.151	0.12	0.373	0.429
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 1	ON	661	1880	18.89	19.50	1.151	-0.14	0.740	0.852
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 1	ON	512	1850.2	18.72	19.50	1.197	-0.05	0.586	0.701
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 1	ON	810	1850.2	18.57	19.50	1.239	-0.02	0.793	0.982
	GSM1900	EDGE (4 Tx slots)	Left Tilted	0mm	Sample 1	ON	661	1880	18.89	19.50	1.151	0.06	0.666	0.766
02	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 2	ON	810	1909.8	18.57	19.50	1.239	-0.05	0.807	1.000
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 2	ON	512	1850.2	18.72	19.50	1.197	0.02	0.533	0.638
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	Sample 2	ON	661	1880	18.89	19.50	1.151	-0.1	0.668	0.769

TEL: 886-3-327-3456 Page 55 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Right Cheek	0mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	0.07	0.226	0.256
	WCDMA II	RMC 12.2Kbps	Right Tilted	0mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	0	0.212	0.240
03	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	-0.06	0.425	0.481
	WCDMA II	RMC 12.2Kbps	Left Tilted	0mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	-0.03	0.401	0.454
	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	Sample 2	ON	9400	1880	13.96	14.50	1.132	-0.11	0.373	0.422
	WCDMA V	RMC 12.2Kbps	Right Cheek	0mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0.02	0.234	0.272
	WCDMA V	RMC 12.2Kbps	Right Tilted	0mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0	0.217	0.253
04	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0.04	0.297	0.346
	WCDMA V	RMC 12.2Kbps	Left Tilted	0mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0.01	0.231	0.269
	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	Sample 2	ON	4233	846.6	16.84	17.50	1.164	-0.04	0.260	0.303

Report No. : FA973036

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 4	20M	QPSK	1	49	Right Cheek	0mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	0.04	0.157	0.190
	LTE Band 4	20M	QPSK	50	0	Right Cheek	0mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	0.02	0.152	0.186
	LTE Band 4	20M	QPSK	1	49	Right Tilted	0mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	0.05	0.117	0.142
	LTE Band 4	20M	QPSK	50	0	Right Tilted	0mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	0.05	0.111	0.136
05	LTE Band 4	20M	QPSK	1	49	Left Cheek	0mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	-0.03	0.274	0.332
	LTE Band 4	20M	QPSK	50	0	Left Cheek	0mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	-0.01	0.260	0.318
	LTE Band 4	20M	QPSK	1	49	Left Tilted	0mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	0.03	0.218	0.264
	LTE Band 4	20M	QPSK	50	0	Left Tilted	0mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	0.1	0.202	0.247
	LTE Band 4	20M	QPSK	1	49	Left Cheek	0mm	Sample 2	ON	20175	1732.5	14.67	15.50	1.211	0.14	0.216	0.261
	LTE Band 7	20M	QPSK	1	49	Right Cheek	0mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	0.05	0.280	0.322
	LTE Band 7	20M	QPSK	50	50	Right Cheek	0mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	0.01	0.280	0.327
	LTE Band 7	20M	QPSK	1	49	Right Tilted	0mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	0.17	0.286	0.329
	LTE Band 7	20M	QPSK	50	50	Right Tilted	0mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	0.16	0.285	0.333
	LTE Band 7	20M	QPSK	1	49	Left Cheek	0mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	-0.01	0.404	0.465
06	LTE Band 7	20M	QPSK	50	50	Left Cheek	0mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	-0.02	0.399	0.466
	LTE Band 7	20M	QPSK	1	49	Left Tilted	0mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	0.06	0.391	0.450
	LTE Band 7	20M	QPSK	50	50	Left Tilted	0mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	0.06	0.392	0.457
	LTE Band 7	20M	QPSK	1	49	Left Cheek	0mm	Sample 2	ON	21350	2560	12.89	13.50	1.151	0.01	0.372	0.428

TEL: 886-3-327-3456 Page 56 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

15.2 Hotspot SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	EDGE (4 Tx slots)	Front	10mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	0.13	0.135	0.157
07	GSM850	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	0.02	0.394	0.462
	GSM850	GPRS (4 Tx slots)	Right Side	10mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	-0.03	0.121	0.142
	GSM850	EDGE (4 Tx slots)	Top Side	10mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	-0.02	0.093	0.108
	GSM850	GPRS (4 Tx slots)	Front	16mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	-0.01	0.236	0.277
	GSM850	GPRS (4 Tx slots)	Top Side	17mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	0.02	0.162	0.190
	GSM850	GPRS (4 Tx slots)	Back	10mm	Sample 2	OFF	128	824.2	28.81	29.50	1.172	0	0.367	0.430
	GSM1900	EDGE (4 Tx slots)	Front	10mm	Sample 1	ON	661	1880	18.89	19.50	1.151	-0.03	0.310	0.357
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	-0.04	0.722	0.844
08	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	512	1850.2	25.03	26.50	1.403	-0.06	0.706	0.990
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	661	1880	25.34	26.50	1.306	-0.08	0.659	0.861
	GSM1900	GPRS (4 Tx slots)	Right Side	10mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	-0.01	0.075	0.088
	GSM1900	EDGE (4 Tx slots)	Top Side	10mm	Sample 1	ON	661	1880	18.89	19.50	1.151	0.1	0.162	0.186
	GSM1900	GPRS (4 Tx slots)	Front	16mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	0.08	0.439	0.513
	GSM1900	GPRS (4 Tx slots)	Top Side	17mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	0.01	0.505	0.591
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 2	OFF	512	1850.2	25.03	26.50	1.403	-0.04	0.511	0.717

Report No. : FA973036

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Front	10mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	0	0.096	0.109
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	0.01	0.702	0.854
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9262	1852.4	22.97	24.00	1.268	0	0.664	0.842
09	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9538	1907.6	23.06	24.00	1.242	-0.09	0.695	0.863
	WCDMA II	RMC 12.2Kbps	Right Side	10mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	-0.09	0.124	0.151
	WCDMA II	RMC 12.2Kbps	Top Side	10mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	0.13	0.113	0.128
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	0.08	0.674	0.820
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9262	1852.4	22.97	24.00	1.268	-0.1	0.367	0.465
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9538	1907.6	23.06	24.00	1.242	-0.03	0.561	0.697
	WCDMA II	RMC 12.2Kbps	Top Side	17mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	0.05	0.627	0.763
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 2	OFF	9538	1907.6	23.06	24.00	1.242	0.06	0.622	0.772
	WCDMA V	RMC 12.2Kbps	Front	10mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0	0.090	0.105
10	WCDMA V	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	-0.05	0.416	0.524
	WCDMA V	RMC 12.2Kbps	Right Side	10mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	-0.01	0.068	0.086
	WCDMA V	RMC 12.2Kbps	Top Side	10mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0.03	0.072	0.084
	WCDMA V	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	-0.07	0.215	0.271
	WCDMA V	RMC 12.2Kbps	Top Side	17mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	0.02	0.213	0.268
	WCDMA V	RMC 12.2Kbps	Back	10mm	Sample 2	OFF	4233	846.6	23.00	24.00	1.259	-0.05	0.376	0.473

TEL: 886-3-327-3456 Page 57 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 4	20M	QPSK	1	49	Front	10mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	-0.13	0.089	0.108
	LTE Band 4	20M	QPSK	50	0	Front	10mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	-0.13	0.085	0.104
11	LTE Band 4	20M	QPSK	1	0	Back	10mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	0	0.698	0.790
	LTE Band 4	20M	QPSK	50	0	Back	10mm	Sample 1	OFF	20175	1732.5	22.36	23.00	1.159	-0.12	0.470	0.545
	LTE Band 4	20M	QPSK	1	0	Right Side	10mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	0.05	0.323	0.366
	LTE Band 4	20M	QPSK	50	0	Right Side	10mm	Sample 1	OFF	20175	1732.5	22.36	23.00	1.159	0.01	0.272	0.315
	LTE Band 4	20M	QPSK	1	49	Top Side	10mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	0.11	0.062	0.075
	LTE Band 4	20M	QPSK	50	0	Top Side	10mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	0.19	0.057	0.070
	LTE Band 4	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	-0.09	0.298	0.337
	LTE Band 4	20M	QPSK	50	0	Front	16mm	Sample 1	OFF	20175	1732.5	22.36	23.00	1.159	-0.03	0.229	0.265
	LTE Band 4	20M	QPSK	1	0	Top Side	17mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	0.05	0.218	0.247
	LTE Band 4	20M	QPSK	50	0	Top Side	17mm	Sample 1	OFF	20175	1732.5	22.36	23.00	1.159	-0.08	0.183	0.212
	LTE Band 4	20M	QPSK	1	0	Back	10mm	Sample 2	OFF	20175	1732.5	23.46	24.00	1.132	-0.17	0.574	0.650
	LTE Band 7	20M	QPSK	1	49	Front	10mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	-0.1	0.150	0.173
	LTE Band 7	20M	QPSK	50	50	Front	10mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	-0.05	0.147	0.172
	LTE Band 7	20M	QPSK	1	0	Back	10mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	-0.07	0.649	0.761
	LTE Band 7	20M	QPSK	50	24	Back	10mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0.03	0.498	0.580
	LTE Band 7	20M	QPSK	1	0	Right Side	10mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	0	0.630	0.738
	LTE Band 7	20M	QPSK	50	24	Right Side	10mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0	0.494	0.575
	LTE Band 7	20M	QPSK	1	49	Top Side	10mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	0.15	0.179	0.206
	LTE Band 7	20M	QPSK	50	50	Top Side	10mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	0	0.177	0.207
	LTE Band 7	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	-0.11	0.726	0.851
	LTE Band 7	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	20850	2510	23.19	24.00	1.205	-0.05	0.728	0.877
	LTE Band 7	20M	QPSK	1	99	Front	16mm	Sample 1	OFF	21100	2535	23.16	24.00	1.213	-0.04	0.720	0.874
	LTE Band 7	20M	QPSK	50	24	Front	16mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0	0.613	0.714
	LTE Band 7	20M	QPSK	100	0	Front	16mm	Sample 1	OFF	21350	2560	22.38	23.00	1.153	-0.04	0.597	0.689
	LTE Band 7	20M	QPSK	1	0	Top Side	17mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	-0.04	0.706	0.828
	LTE Band 7	20M	QPSK	1	0	Top Side	17mm	Sample 1	OFF	20850	2510	23.19	24.00	1.205	0	0.716	0.863
12	LTE Band 7	20M	QPSK	1	99	Top Side	17mm	Sample 1	OFF	21100	2535	23.16	24.00	1.213	0.07	0.736	0.893
	LTE Band 7	20M	QPSK	50	24	Top Side	17mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0.01	0.545	0.634
	LTE Band 7	20M	QPSK	100	0	Top Side	17mm	Sample 1	OFF	21350	2560	22.38	23.00	1.153	0.03	0.548	0.632
	LTE Band 7	20M	QPSK	1	99	Top Side	17mm	Sample 2	OFF	21100	2535	23.16	24.00	1.213	0.08	0.702	0.852
	LTE Band 7	20M	QPSK	1	0	Top Side	17mm	Sample 2	OFF	20850	2510	23.19	24.00	1.205	0.07	0.719	0.866
	LTE Band 7	20M	QPSK	1	0	Top Side	17mm	Sample 2	OFF	21350	2560	23.31	24.00	1.172	0.02	0.752	0.881

Report No.: FA973036

TEL: 886-3-327-3456 Page 58 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cyclo		Delff	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	16mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	-0.04	0.117	0.127
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	-0.07	0.198	0.214
	WLAN2.4GHz	802.11b 1Mbps	Left Side	10mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	-0.01	0.173	0.187
	WLAN2.4GHz	802.11b 1Mbps	Top Side	17mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	0.07	0.077	0.083
13	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Sample 2	OFF	6	2437	16.66	17.00	1.081	100	1.000	0.17	0.328	0.355
	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 1	OFF	44	5220	14.95	15.50	1.135	97.36	1.027	-0.09	0.245	0.286
	WLAN5GHz	802.11a 6Mbps	Back	10mm	Sample 1	OFF	44	5220	14.95	15.50	1.135	97.36	1.027	-0.09	0.077	0.090
14	WLAN5GHz	802.11a 6Mbps	Left Side	10mm	Sample 1	OFF	44	5220	14.95	15.50	1.135	97.36	1.027	-0.11	0.261	0.304
	WLAN5GHz	802.11a 6Mbps	Top Side	17mm	Sample 1	OFF	44	5220	14.95	15.50	1.135	97.36	1.027	-0.19	0.093	0.108
	WLAN5GHz	802.11a 6Mbps	Left Side	10mm	Sample 2	OFF	44	5220	14.95	15.50	1.135	97.36	1.027	-0.07	0.182	0.212
	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.08	0.193	0.239
	WLAN5GHz	802.11a 6Mbps	Back	10mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.09	0.060	0.074
	WLAN5GHz	802.11a 6Mbps	Left Side	10mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.08	0.149	0.184
	WLAN5GHz	802.11a 6Mbps	Top Side	17mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.13	0.136	0.168
15	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 2	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.11	0.238	0.295

Report No. : FA973036

15.3 Body Worn Accessory SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	EDGE (4 Tx slots)	Front	10mm	Sample 1	ON	189	836.4	22.34	23.00	1.164	0.13	0.135	0.157
	GSM850	GPRS (4 Tx slots)	Front	16mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	-0.01	0.236	0.277
16	GSM850	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	128	824.2	28.81	29.50	1.172	0.02	0.394	0.462
	GSM850	GPRS (4 Tx slots)	Back	10mm	Sample 2	OFF	128	824.2	28.81	29.50	1.172	0	0.367	0.430
	GSM1900	EDGE (4 Tx slots)	Front	10mm	Sample 1	ON	661	1880	18.89	19.50	1.151	-0.03	0.310	0.357
	GSM1900	GPRS (4 Tx slots)	Front	16mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	0.08	0.439	0.513
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	810	1909.8	25.82	26.50	1.169	-0.04	0.722	0.844
17	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	512	1850.2	25.03	26.50	1.403	-0.06	0.706	0.990
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 1	OFF	661	1880	25.34	26.50	1.306	-0.08	0.659	0.861
	GSM1900	GPRS (4 Tx slots)	Back	10mm	Sample 2	OFF	512	1850.2	25.03	26.50	1.403	-0.04	0.511	0.717

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Front	10mm	Sample 1	ON	9400	1880	13.96	14.50	1.132	0	0.096	0.109
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	0.08	0.674	0.820
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9262	1852.4	22.97	24.00	1.268	-0.1	0.367	0.465
	WCDMA II	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	9538	1907.6	23.06	24.00	1.242	-0.03	0.561	0.697
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9400	1880	23.15	24.00	1.216	0.01	0.702	0.854
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9262	1852.4	22.97	24.00	1.268	0	0.664	0.842
18	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	9538	1907.6	23.06	24.00	1.242	-0.09	0.695	0.863
	WCDMA II	RMC 12.2Kbps	Back	10mm	Sample 2	OFF	9538	1907.6	23.06	24.00	1.242	0.06	0.622	0.772
	WCDMA V	RMC 12.2Kbps	Front	10mm	Sample 1	ON	4233	846.6	16.84	17.50	1.164	0	0.090	0.105
	WCDMA V	RMC 12.2Kbps	Front	16mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	-0.07	0.215	0.271
19	WCDMA V	RMC 12.2Kbps	Back	10mm	Sample 1	OFF	4233	846.6	23.00	24.00	1.259	-0.05	0.416	0.524
	WCDMA V	RMC 12.2Kbps	Back	10mm	Sample 2	OFF	4233	846.6	23.00	24.00	1.259	-0.05	0.376	0.473

TEL: 886-3-327-3456 Page 59 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 4	20M	QPSK	1	49	Front	10mm	Sample 1	ON	20175	1732.5	14.67	15.50	1.211	-0.13	0.089	0.108
	LTE Band 4	20M	QPSK	50	0	Front	10mm	Sample 1	ON	20175	1732.5	14.63	15.50	1.222	-0.13	0.085	0.104
	LTE Band 4	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	-0.09	0.298	0.337
	LTE Band 4	20M	QPSK	50	0	Front	16mm	Sample 1	OFF	20175	1732.5	22.36	24.00	1.459	-0.03	0.229	0.334
20	LTE Band 4	20M	QPSK	1	0	Back	10mm	Sample 1	OFF	20175	1732.5	23.46	24.00	1.132	0	0.698	0.790
	LTE Band 4	20M	QPSK	50	0	Back	10mm	Sample 1	OFF	20175	1732.5	22.36	24.00	1.459	-0.12	0.470	0.686
	LTE Band 4	20M	QPSK	1	0	Back	10mm	Sample 2	OFF	20175	1732.5	23.46	24.00	1.132	-0.17	0.574	0.650
	LTE Band 7	20M	QPSK	1	49	Front	10mm	Sample 1	ON	21350	2560	12.89	13.50	1.151	-0.1	0.150	0.173
	LTE Band 7	20M	QPSK	50	50	Front	10mm	Sample 1	ON	21350	2560	12.83	13.50	1.167	-0.05	0.147	0.172
	LTE Band 7	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	-0.11	0.726	0.851
21	LTE Band 7	20M	QPSK	1	0	Front	16mm	Sample 1	OFF	20850	2510	23.19	24.00	1.205	-0.05	0.728	0.877
	LTE Band 7	20M	QPSK	1	99	Front	16mm	Sample 1	OFF	21100	2535	23.16	24.00	1.213	-0.04	0.720	0.874
	LTE Band 7	20M	QPSK	50	24	Front	16mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0	0.613	0.714
	LTE Band 7	20M	QPSK	100	0	Front	16mm	Sample 1	OFF	21350	2560	22.38	23.00	1.153	-0.04	0.597	0.689
	LTE Band 7	20M	QPSK	1	0	Back	10mm	Sample 1	OFF	21350	2560	23.31	24.00	1.172	-0.07	0.649	0.761
	LTE Band 7	20M	QPSK	50	24	Back	10mm	Sample 1	OFF	21350	2560	22.34	23.00	1.164	0.03	0.498	0.580
	LTE Band 7	20M	QPSK	1	0	Front	16mm	Sample 2	OFF	20850	2510	23.19	24.00	1.205	-0.02	0.150	0.181

Report No. : FA973036

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor			Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	16mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	-0.04	0.117	0.127
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Sample 1	OFF	6	2437	16.66	17.00	1.081	100	1.000	-0.07	0.198	0.214
22	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Sample 2	OFF	6	2437	16.66	17.00	1.081	100	1.000	0.17	0.328	0.355
	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 1	OFF	64	5320	14.83	15.50	1.167	97.36	1.027	-0.06	0.128	0.153
	WLAN5GHz	802.11a 6Mbps	Back	10mm	Sample 1	OFF	64	5320	14.83	15.50	1.167	97.36	1.027	0.12	0.049	0.059
23	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 2	OFF	64	5320	14.83	15.50	1.167	97.36	1.027	0.01	0.200	0.240
	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 1	OFF	144	5720	14.37	15.50	1.297	97.36	1.027	-0.02	0.200	0.266
	WLAN5GHz	802.11a 6Mbps	Back	10mm	Sample 1	OFF	144	5720	14.37	15.50	1.297	97.36	1.027	-0.06	0.057	0.076
24	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 2	OFF	144	5720	14.37	15.50	1.297	97.36	1.027	-0.06	0.254	0.338
	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.08	0.193	0.239
	WLAN5GHz	802.11a 6Mbps	Back	10mm	Sample 1	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.09	0.060	0.074
25	WLAN5GHz	802.11a 6Mbps	Front	16mm	Sample 2	OFF	165	5825	14.19	15.00	1.205	97.36	1.027	-0.11	0.238	0.295

15.4 Product Specific SAR

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)		Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle		Drift	Measured 10g SAR (W/kg)	
26	WLAN5GHz	802.11a 6Mbps	Left Side	0mm	Sample 1	OFF	64	5320	14.83	15.50	1.167	97.36	1.027	-0.1	0.340	0.407
	WLAN5GHz	802.11a 6Mbps	Left Side	0mm	Sample 2	OFF	64	5320	14.83	15.50	1.167	97.36	1.027	-0.17	0.264	0.316
27	WLAN5GHz	802.11a 6Mbps	Left Side	0mm	Sample 1	OFF	144	5720	14.37	15.50	1.297	97.36	1.027	-0.13	0.291	0.388
	WLAN5GHz	802.11a 6Mbps	Left Side	0mm	Sample 2	OFF	144	5720	14.37	15.50	1.297	97.36	1.027	-0.16	0.286	0.381

TEL: 886-3-327-3456 Page 60 of 67 FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

15.5 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.		Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	ON	810	1909.8	18.57	19.50	1.239	-0.05	0.807	-	1.000
2nd	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	ON	810	1909.8	18.57	19.50	1.239	-0.09	0.760	1.06	0.941

Report No.: FA973036

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

16. Simultaneous Transmission Analysis

			Portable	Handset	
NO.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Product Specific
1.	WWAN + WLAN 2.4GHz	Yes	Yes	Yes	Yes
2.	WWAN + WLAN 5GHz	Yes	Yes	Yes	Yes
3.	WWAN + BT	Yes	Yes	Yes	Yes

General Note:

- 1. This device WLAN 2.4GHz / 5.2GHz / 5.8GHz supports Hotspot operation and Bluetooth support tethering applications.
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. All licensed modes share the same antenna part and cannot transmit simultaneously.
- 4. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.
- 5. The Scaled SAR summation is calculated based on the same configuration and test position.
- 6. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- 7. For simultaneous transmission analysis, 2.4GHz / 5GHz head SAR is estimated per KDB 447498 D01v06 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-q SAR, and x = 18.75 for 10-q SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Wireless	Max Power	Exposure Position	Head	Hotspot/Body-worn
Technology	iviax Powei	Test separation	0 mm	10 mm
2.4GHz WLAN (P-sensor active)	8 dBm	Estimated SAR (W/kg)	0.264 W/kg	0.132 W/kg
5GHz WLAN (P-sensor active)	6.5 dBm	Estimated SAR (W/kg)	0.288 W/kg	0.144 W/kg
Bluetooth	8 dBm	Estimated SAR (W/kg)	0.264 W/kg	0.132 W/kg

TEL: 886-3-327-3456 Page 61 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

16.1 Head Exposure Conditions

<P-Sensor active>

<p-seliso< th=""><th></th><th></th><th>1</th><th>2</th><th>3</th><th>4</th><th></th><th></th><th></th></p-seliso<>			1	2	3	4			
WWA	N Band	Exposure	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed	1+4 Summed
•	TT Barra	Position	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Right Cheek	0.354	0.264	0.288	0.264	0.618	0.642	0.618
	GSM850	Right Tilted	0.306	0.264	0.288	0.264	0.570	0.594	0.570
	GSIVIOSU	Left Cheek	0.413	0.264	0.288	0.264	0.677	0.701	0.677
GSM		Left Tilted	0.318	0.264	0.288	0.264	0.582	0.606	0.582
GSIVI		Right Cheek	0.460	0.264	0.288	0.264	0.724	0.748	0.724
	GSM1900	Right Tilted	0.429	0.264	0.288	0.264	0.693	0.717	0.693
	GSW1900	Left Cheek	1.000	0.264	0.288	0.264	1.264	1.288	1.264
		Left Tilted	0.766	0.264	0.288	0.264	1.030	1.054	1.030
		Right Cheek	0.256	0.264	0.288	0.264	0.520	0.544	0.520
	WCDMA II	Right Tilted	0.240	0.264	0.288	0.264	0.504	0.528	0.504
	WCDIVIA II	Left Cheek	0.481	0.264	0.288	0.264	0.745	0.769	0.745
MODMA		Left Tilted	0.454	0.264	0.288	0.264	0.718	0.742	0.718
WCDMA		Right Cheek	0.272	0.264	0.288	0.264	0.536	0.560	0.536
	WCDMA V	Right Tilted	0.253	0.264	0.288	0.264	0.517	0.541	0.517
	WCDIVIA V	Left Cheek	0.346	0.264	0.288	0.264	0.610	0.634	0.610
		Left Tilted	0.269	0.264	0.288	0.264	0.533	0.557	0.533
		Right Cheek	0.190	0.264	0.288	0.264	0.454	0.478	0.454
	LTE Band 4	Right Tilted	0.142	0.264	0.288	0.264	0.406	0.430	0.406
	LIE Band 4	Left Cheek	0.332	0.264	0.288	0.264	0.596	0.620	0.596
LTE		Left Tilted	0.264	0.264	0.288	0.264	0.528	0.552	0.528
LIE		Right Cheek	0.327	0.264	0.288	0.264	0.591	0.615	0.591
	LTE Band 7	Right Tilted	0.333	0.264	0.288	0.264	0.597	0.621	0.597
	LIE Band /	Left Cheek	0.466	0.264	0.288	0.264	0.730	0.754	0.730
		Left Tilted	0.457	0.264	0.288	0.264	0.721	0.745	0.721

Report No.: FA973036

TEL: 886-3-327-3456 Page 62 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

16.2 Hotspot Exposure Conditions

<P-Sensor active>

<p-senso< th=""><th></th><th></th><th>1</th><th>2</th><th>3</th><th>4</th><th></th><th></th><th></th></p-senso<>			1	2	3	4			
WWAI	N Band	Exposure	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed	1+4 Summed
		Position	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front	0.157	0.132	0.144	0.132	0.289	0.301	0.289
		Back	0.462	0.132	0.144	0.132	0.594	0.606	0.594
	GSM850	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	GSIVI850	Right side	0.142				0.142	0.142	0.142
		Top side	0.108	0.132	0.144	0.132	0.240	0.252	0.240
0014		Bottom side					0.000	0.000	0.000
GSM		Front	0.357	0.132	0.144	0.132	0.489	0.501	0.489
		Back	0.990	0.132	0.144	0.132	1.122	1.134	1.122
	GSM1900	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	GSM1900	Right side	0.088				0.088	0.088	0.088
		Top side	0.186	0.132	0.144	0.132	0.318	0.330	0.318
		Bottom side					0.000	0.000	0.000
		Front	0.109	0.132	0.144	0.132	0.241	0.253	0.241
		Back	0.863	0.132	0.144	0.132	0.995	1.007	0.995
	VA/CDAAA II	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	WCDMA II	Right side	0.151				0.151	0.151	0.151
		Top side	0.128	0.132	0.144	0.132	0.260	0.272	0.260
MODMA		Bottom side					0.000	0.000	0.000
WCDMA		Front	0.105	0.132	0.144	0.132	0.237	0.249	0.237
		Back	0.524	0.132	0.144	0.132	0.656	0.668	0.656
	MODMA M	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	WCDMA V	Right side	0.086				0.086	0.086	0.086
		Top side	0.084	0.132	0.144	0.132	0.216	0.228	0.216
		Bottom side					0.000	0.000	0.000
		Front	0.108	0.132	0.144	0.132	0.240	0.252	0.240
		Back	0.790	0.132	0.144	0.132	0.922	0.934	0.922
	1.75 5 1.4	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	LTE Band 4	Right side	0.366				0.366	0.366	0.366
		Top side	0.075	0.132	0.144	0.132	0.207	0.219	0.207
		Bottom side					0.000	0.000	0.000
LTE		Front	0.173	0.132	0.144	0.132	0.305	0.317	0.305
		Back	0.761	0.132	0.144	0.132	0.893	0.905	0.893
	LTE D	Left side		0.132	0.144	0.132	0.132	0.144	0.132
	LTE Band 7	Right side	0.738				0.738	0.738	0.738
		Top side	0.207	0.132	0.144	0.132	0.339	0.351	0.339
		Bottom side					0.000	0.000	0.000

Report No.: FA973036

TEL: 886-3-327-3456 Page 63 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

Report No. : FA973036

<P-Sensor non-active>

			1	2	3	4			
\/\\\	N Band	Exposure	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed	1+4 Summed
*****	14 Barra	Position	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front	0.277	0.127	0.338	0.132	0.404	0.615	0.409
		Back	0.462	0.355	0.076	0.132	0.817	0.538	0.594
	GSM850	Left side		0.187	0.304	0.132	0.187	0.304	0.132
	GSIVIOSU	Right side	0.142				0.142	0.142	0.142
		Top side	0.190	0.083	0.168	0.132	0.273	0.358	0.322
0014		Bottom side					0.000	0.000	0.000
GSM		Front	0.513	0.127	0.338	0.132	0.640	0.851	0.645
		Back	0.990	0.355	0.076	0.132	1.345	1.066	1.122
	00144000	Left side		0.187	0.304	0.132	0.187	0.304	0.132
	GSM1900	Right side	0.088				0.088	0.088	0.088
		Top side	0.591	0.083	0.168	0.132	0.674	0.759	0.723
		Bottom side					0.000	0.000	0.000
		Front	0.820	0.127	0.338	0.132	0.947	1.158	0.952
		Back	0.863	0.355	0.076	0.132	1.218	0.939	0.995
		Left side		0.187	0.304	0.132	0.187	0.304	0.132
	WCDMA II	Right side	0.151				0.151	0.151	0.151
		Top side	0.763	0.083	0.168	0.132	0.846	0.931	0.895
		Bottom side					0.000	0.000	0.000
WCDMA		Front	0.271	0.127	0.338	0.132	0.398	0.609	0.403
		Back	0.524	0.355	0.076	0.132	0.879	0.600	0.656
		Left side		0.187	0.304	0.132	0.187	0.304	0.132
	WCDMA V	Right side	0.086				0.086	0.086	0.086
		Top side	0.268	0.083	0.168	0.132	0.351	0.436	0.400
		Bottom side					0.000	0.000	0.000
		Front	0.337	0.127	0.338	0.132	0.464	0.675	0.469
		Back	0.790	0.355	0.076	0.132	1.145	0.866	0.922
		Left side		0.187	0.304	0.132	0.187	0.304	0.132
	LTE Band 4	Right side	0.366				0.366	0.366	0.366
		Top side	0.247	0.083	0.168	0.132	0.330	0.415	0.379
		Bottom side					0.000	0.000	0.000
LTE		Front	0.877	0.127	0.338	0.132	1.004	1.215	1.009
		Back	0.761	0.355	0.076	0.132	1.116	0.837	0.893
		Left side		0.187	0.304	0.132	0.187	0.304	0.132
	LTE Band 7	Right side	0.738				0.738	0.738	0.738
		Top side	0.893	0.083	0.168	0.132	0.976	1.061	1.025
		Bottom side					0.000	0.000	0.000

TEL: 886-3-327-3456 Page 64 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

16.3 Body-Worn Accessory Exposure Conditions

<P-Sensor active>

		Exposure Position	1	2	3	4			
1AWW	N Band		WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed	1+4 Summed
		Position	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
	GSM850	Front	0.157	0.132	0.144	0.132	0.289	0.301	0.289
GSM	GSIVIOSO	Back	0.462	0.132	0.144	0.132	0.594	0.606	0.594
GSIVI	GSM1900	Front	0.357	0.132	0.144	0.132	0.489	0.501	0.489
	GSW1900	Back	0.990	0.132	0.144	0.132	1.122	1.134	1.122
	WCDMA II	Front	0.109	0.132	0.144	0.132	0.241	0.253	0.241
MODAAA	WCDIVIA II	Back	0.863	0.132	0.144	0.132	0.995	1.007	0.995
WCDMA	MODMAN	Front	0.105	0.132	0.144	0.132	0.237	0.249	0.237
	WCDMA V	Back	0.524	0.132	0.144	0.132	0.656	0.668	0.656
	LTE Dand 4	Front	0.108	0.132	0.144	0.132	0.240	0.252	0.240
LTE	LTE Band 4	Back	0.790	0.132	0.144	0.132	0.922	0.934	0.922
LIE		Front	0.173	0.132	0.144	0.132	0.305	0.317	0.305
	LIE Band /	Back	0.761	0.132	0.144	0.132	0.893	0.905	0.893

Report No. : FA973036

<P-Sensor non-active>

CF-Seliso	r non-activ	<u>62</u>								
				2	3	4				
1AWW	N Band	Exposure	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed	1+3 Summed	1+4 Summed	
		Position	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	
	CCMOEO	Front	0.277	0.127	0.338	0.132	0.404	0.615	0.409	
GSM	GSM850	Back	0.462	0.355	0.076	0.132	0.817	0.538	0.594	
GSIVI	GSM1900	Front	0.513	0.127	0.338	0.132	0.640	0.851	0.645	
	GSW1900	Back	0.990	0.355	0.076	0.132	1.345	1.066	1.122	
	WCDMA II	Front	0.820	0.127	0.338	0.132	0.947	1.158	0.952	
MCDMA	WCDIVIA II	Back	0.863	0.355	0.076	0.132	1.218	0.939	0.995	
WCDMA	WCDMA V	Front	0.271	0.127	0.338	0.132	0.398	0.609	0.403	
	WCDIVIA V	Back	0.524	0.355	0.076	0.132	0.879	0.600	0.656	
	LTE Bond 4	Front	0.337	0.127	0.338	0.132	0.464	0.675	0.469	
LTE	LTE Band 4 LTE Band 7	LTE Band 4	Back	0.790	0.355	0.076	0.132	1.145	0.866	0.922
LIE		Front	0.877	0.127	0.338	0.132	1.004	1.215	1.009	
		LTE Band 7	Back	0.761	0.355	0.076	0.132	1.116	0.837	0.893

TEL: 886-3-327-3456 Page 65 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

16.4 Product Specific Exposure Conditions

	1	2	3	4	1+2	1+3	1+4
Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed	Summed	Summed
,	1g SAR (W/kg)						
Front at 0mm	-	-	-	-	0.000	0.000	0.000
Back at 0mm	-	-	-	-	0.000	0.000	0.000
Left side at 0mm	-	-	0.407	-	0.000	0.407	0.000
Right side at 0mm	-	-	-	-	0.000	0.000	0.000
Top side at 0mm	-	=	=	=	0.000	0.000	0.000

Report No.: FA973036

Remark:

1. According to KDB 941225 D06 v02r01 and KDB 648474 D04v01r03, for (-) SAR was excluded, due to transmitting antenna located larger 25mm from that surface or hotspot SAR was < 1.2W/kg.

Test Engineer: Tommy Chen White Huang Jay Jian and Tom Jiang

TEL: 886-3-327-3456 Page 66 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019

17. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 3.75 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA973036

18. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [11] FCC KDB 941225 D07 v01r02, " SAR Evaluation Procedures for UMPC Mini-Tablet Devices", Oct 2015.
- [12] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015
- [13] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 Page 67 of 67
FAX: 886-3-328-4978 Issued Date: Aug. 29, 2019