

ANNEX J Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

We tested the power and got the different proximity sensor triggering distances for rear, bottom, left and top edge. The manufacturer has declared 13mm is the most conservative triggering distance for main antenna with rear and bottom. The 6mm distance for left edge. So base on the most conservative triggering distance of 13mm, additional SAR measurements were required at 12mm from the highest SAR position between rear or bottom edge of main antenna, and at 5mm between left edge.

Sincerely, the most conservative triggering distance for WIFI antenna is 6mm with rear and 5mm with top edge. So we also test SAR measurements with 5mm at rear, and 4mm at top edge.

Main antenna

Rear

Moving device toward the phantom:

	mening derived terrest and processors											
The power return value (KDB 616217 6.2.6)												
Distance [mm] 17 16 15 14 13 12 11 10 09 08 07										07		
Main antenna	22.98	22.95	22.92	22.98	16.10	16.11	16.09	16.10	16.12	16.07	16.09	

Moving device away from the phantom:

The power return value (KDB 616217 6.2.6)												
Distance [mm] 07 08 09 10 11 12 13 14 15 16 17										17		
Main antenna	16.10	16.11	16.09	16.10	16.12	16.07	16.09	22.98	22.95	22.92	22.98	

Left Edge

Moving device toward the phantom:

The power return value (KDB 616217 6.2.6)												
Distance [mm] 11 10 9 8 7 6 5 4 3 2 1											1	
Main antenna	22.91	22.96	22.92	22.95	16.10	16.11	16.09	16.10	16.12	16.07	16.09	

Moving device away from the phantom:

The power return value (KDB 616217 6.2.6)													
Distance [mm] 1 2 3 4 5 6 7 8 9 10 11											11		
Main antenna	16.10	16.11	16.09	16.10	16.12	16.07	16.09	22.91	22.96	22.92	22.95		

WIFI antenna

Rear

Moving device toward the phantom:

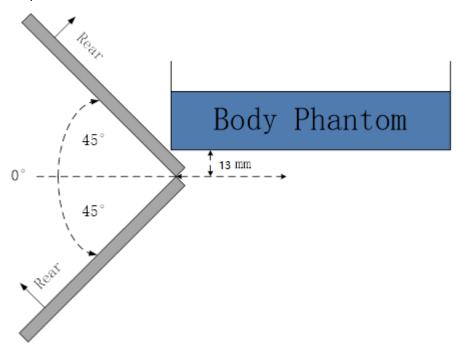
The power return value (KDB 616217 6.2.6)												
Distance [mm] 11 10 9 8 7 6 5 4 3 2 1												
Main antenna	16.25	16.22	16.26	16.21	10.58	10.54	10.59	10.61	10.60	10.58	10.57	

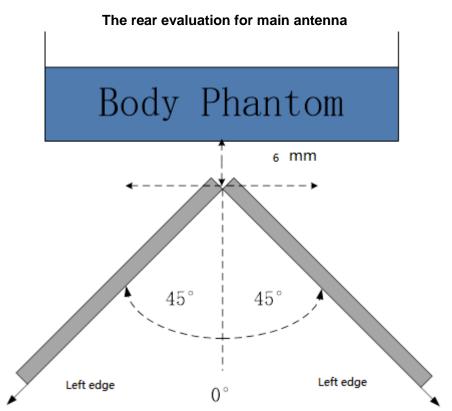
Moving device away from the phantom:

The power return value (KDB 616217 6.2.6)												
Distance [mm]	1	1 2 3 4 5 6 7 8 9 10 11										
Main antenna	10.58	10.54	10.59	10.61	10.60	10.58	10.57	16.25	16.22	16.26	16.21	

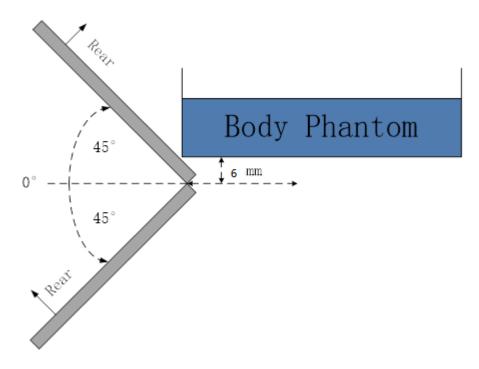
Top Edge

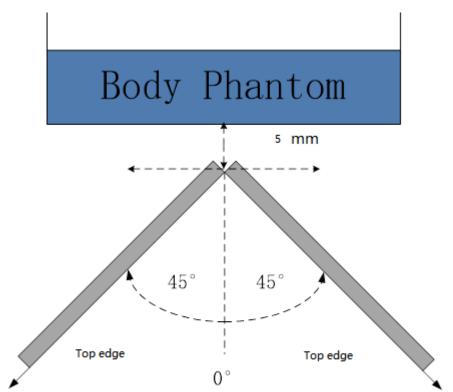
Moving device toward the phantom:


The power return value (KDB 616217 6.2.6)												
Distance [mm] 11 10 9 8 7 6 5 4 3 2 1											1	
Main antenna	16.25	16.22	16.26	16.21	16.25	16.22	10.58	10.54	10.59	10.61	10.60	


Moving device away from the phantom:

The power return value (KDB 616217 6.2.6)													
Distance [mm] 1 2 3 4 5 6 7 8 9 10 11											11		
Main antenna	10.58	10.54	10.59	10.61	10.60	16.25	16.22	16.26	16.21	16.25	16.22		


Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .



The left edge evaluation for main antenna

The rear evaluation for WIFI antenna

The top evaluation for WIFI antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX K Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2017-08-22 through 2018-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program