

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190702103

FCC REPORT (BLE)

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 6 inch 3G Smart Phone

Model No.: X60G, NEMESIS, W609

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: O55602119

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Jul., 2019

Date of Test: 10 Jul., to 29 Jul., 2019

Date of report issued: 30 Jul., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	30 Jul., 2019	Original

Test Engineer Tested by: Date: 30 Jul., 2019

Reviewed by: Date: 30 Jul., 2019

Project Engineer

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4	TES1	SUMMARY	4
5	GENI	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	-	GENERAL DESCRIPTION OF E.U.T.	_
	_	TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
		LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
		OCCUPY BANDWIDTH	
		POWER SPECTRAL DENSITY	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2		
		SPURIOUS EMISSION	
	6.7.1 6.7.2	Conducted Emission MethodRadiated Emission Method	
	· · · · -		
7	TEST	SETUP PHOTO	32
0	ELIT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	6 inch 3G Smart Phone
Model No.:	X60G, NEMESIS, W609
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.26 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh
AC adapter:	Model: XCM04
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Model No.: X60G, NEMESIS, W609, were identical inside, the electrical circuit design, layout, components used and internal wiring. the difference between them is as follows:
	Model: X60G corresponds to the trademark LOGIC;
	Model: NEMESIS corresponds to the trademark iSWAG;
	Model: W609 corresponds to the trademark UNONU.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE190702103

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 33

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

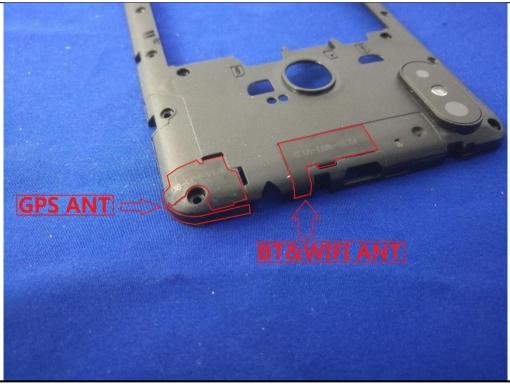
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

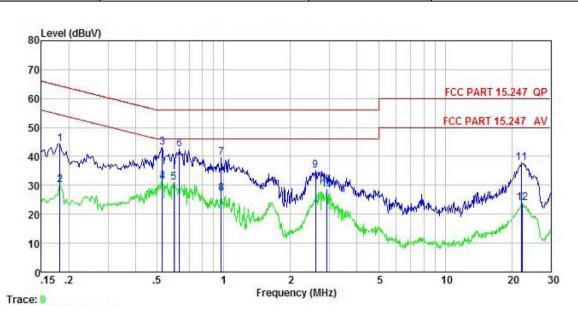

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

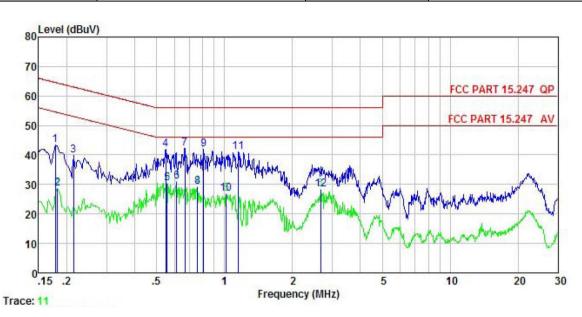
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.26 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:			(dBuV)		
Littiit.	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logar				
	 50ohm/50uH coupling 2. The peripheral device a LISN that provides a termination. (Please r photographs). 3. Both sides of A.C. line interference. In order positions of equipmer 	 a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted 			
Test setup:	Refere	Reference Plane			
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		AC power		
Test Instruments:	Refer to section 5.8 for de	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for de	Refer to section 5.3 for details			
Test results:	Passed	Passed			

Measurement Data:

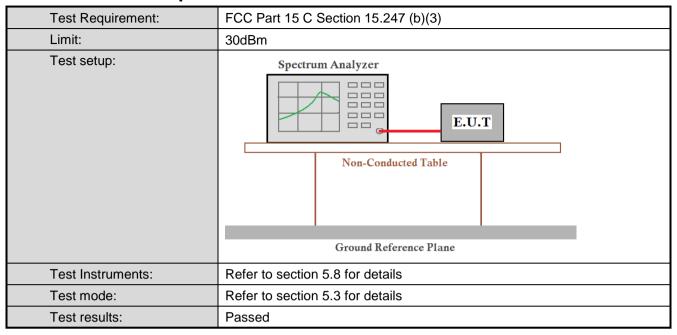
Product name:	6 inch 3G Smart Phone	Product model:	X60G
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu∜	<u>d</u> B	
1 2 3 4 5 6 7 8 9	0.182	33.91	-0.42	10.77	44.26		-20.16	
2	0.182	19.88	-0.42	10.77	30.23			Average
3	0.527	32.79	-0.39	10.76	43.16		-12.84	
4	0.527	20.96	-0.39	10.76	31.33	46.00	-14.67	Average
5	0.595	20.53	-0.38	10.77	30.92	46.00	-15.08	Average
6	0.630	32.26	-0.38	10.77	42.65	56.00	-13.35	QP
7	0.974	29.04	-0.38	10.86	39.52	56.00	-16.48	QP
8	0.974	16.72		10.86	27.20			Average
9	2.594	24.57	-0.43	10.93	35.07		-20.93	# 15 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18
10	2.915	18.11	-0.44	10.92	28.59			Average
11	22.180	27.95		10.90	37.84		-22.16	
12	22.298	14.06	-1.01	10.90	23.95			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

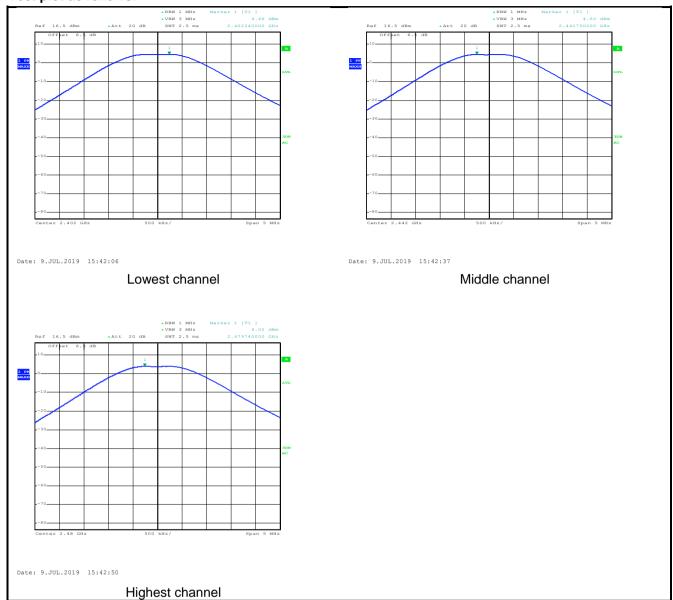
Product name:	6 inch 3G Smart Phone	Product model:	X60G
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu₹	dBu∀	<u>ab</u>	
1	0.178	33.20	-0.69	10.77	43.28	64.59	-21.31	QP
2	0.182	18.67	-0.69	10.77	28.75	54.42	-25.67	Average
1 2 3	0.214	29.76	-0.68	10.76	39.84	63.05	-23.21	QP
4	0.549	31.79	-0.65	10.76	41.90	56.00	-14.10	QP
5	0.555	20.41	-0.65	10.76	30.52	46.00	-15.48	Average
6	0.614	20.94	-0.64	10.77	31.07	46.00	-14.93	Average
7	0.668	32.10	-0.64	10.77	42.23	56.00	-13.77	QP
4 5 6 7 8 9	0.759	18.93	-0.64	10.80	29.09	46.00	-16.91	Average
9	0.809	31.65	-0.64	10.81	41.82		-14.18	
10	1.016	16.73	-0.63	10.87	26.97	46.00	-19.03	Average
11	1.153	30.92	-0.64	10.89	41.17		-14.83	
12	2.664	18.01	-0.67	10.93	28.27			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

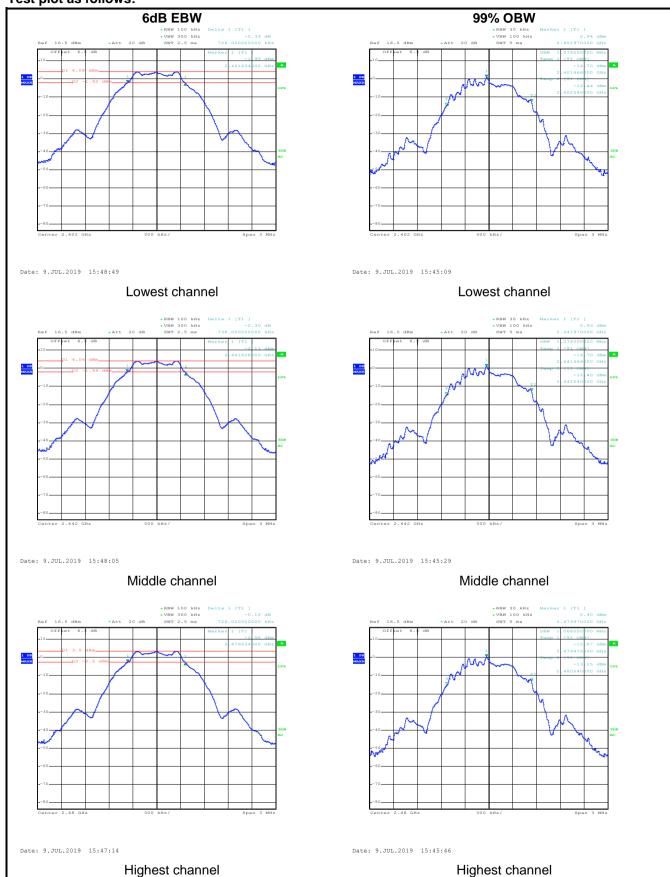


Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	4.66		
Middle	4.62	30.00	Pass
Highest	4.02		

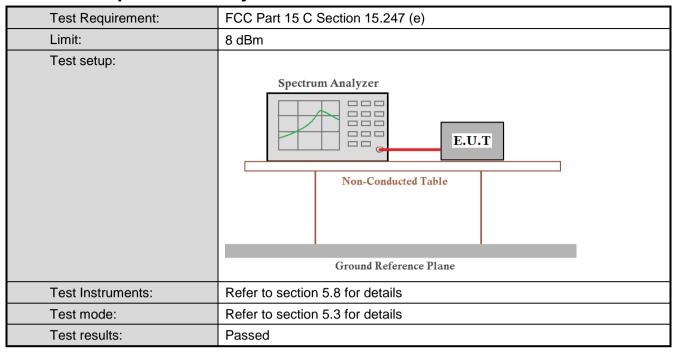
Test plot as follows:

6.4 Occupy Bandwidth


Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

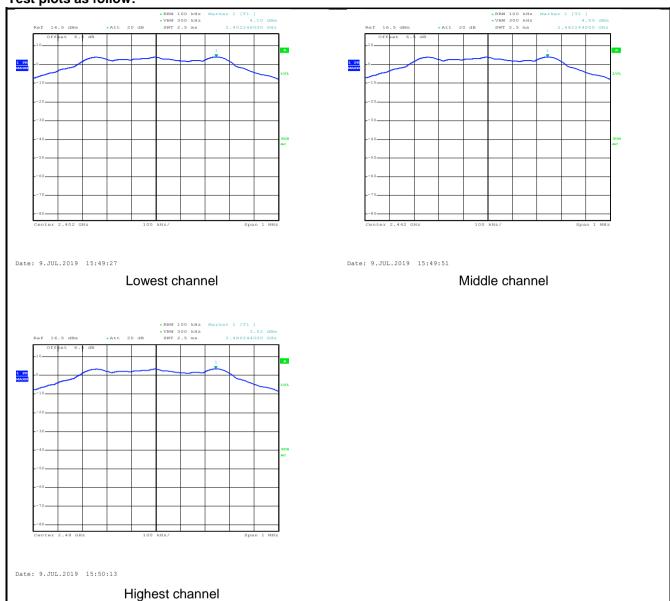
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.726			
Middle	0.738	>500	Pass	
Highest	0.726			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.074		N/A	
Middle	1.074	N/A		
Highest	1.068			



Test plot as follows:

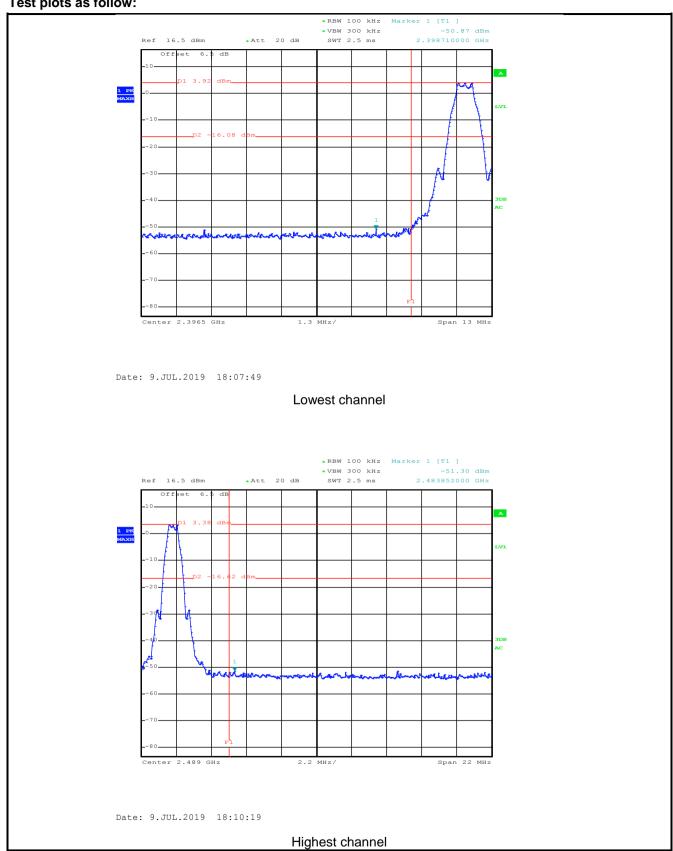
6.5 Power Spectral Density



Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	4.10		
Middle	4.09	8.00	Pass
Highest	3.52		

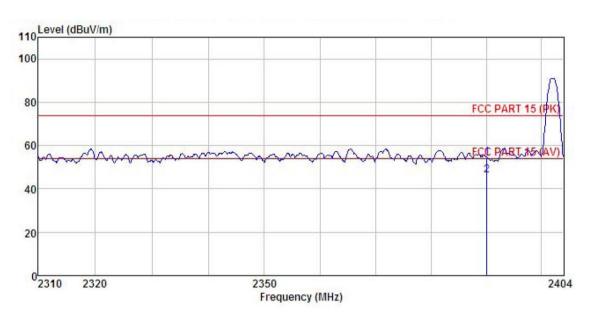
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

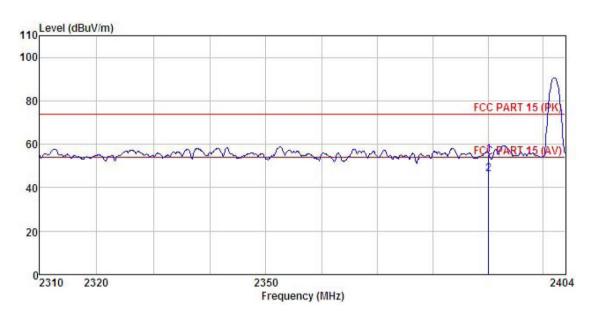
Test plots as follow:



6.6.2 Radiated Emission Method

0.0.2	Radiated Ellission	vietriou					
Т	est Requirement:	FCC Part 15 C Section 15.205 and 15.209					
Т	est Frequency Range:	2.3GHz to 2.5	GHz				
Т	est Distance:	3m					
R	Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	
_			RMS	1MHz	3MHz	Average Value	
L	.imit:	Frequer	icy L	mit (dBuV/m @3		Remark	
		Above 10	GHz —	54.00 74.00		verage Value Peak Value	
Т	est Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
Т	est setup:	AE (T	umtable) Groun Test Receiver	Horn Antenna 3m d Reference Plane Pre- Amptier Contr	Antenna Tower		
Т	est Instruments:	Refer to section	n 5.8 for deta	ils			
Т	est mode:	Refer to section 5.3 for details					
Т	est results:	Passed					

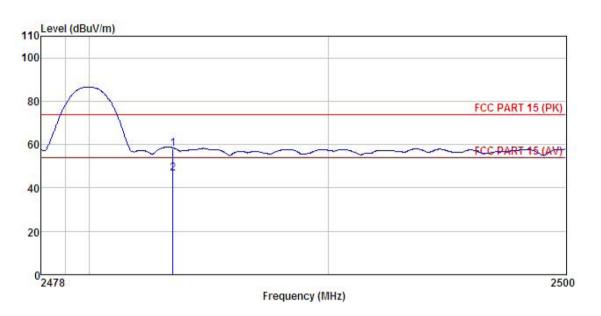
Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor						
	MHz	−dBuV	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

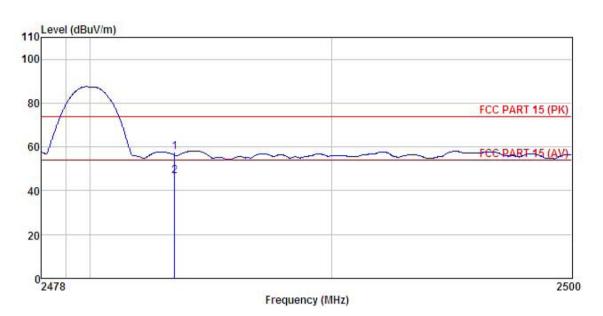
Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor					
	MHz	dBu₹		 <u>ab</u>	dBu√/m	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1 2	2483.500 2483.500							

Remark:

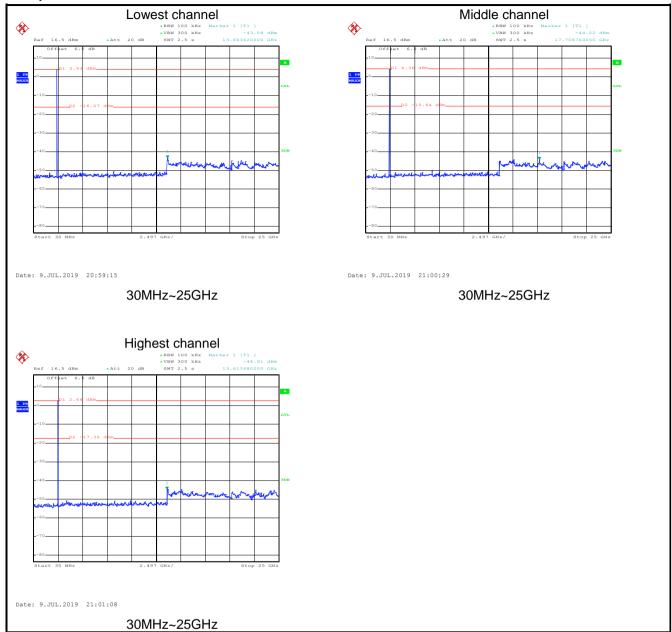
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna Freq Level Factor		Cable Loss	Preamp Factor	Limit Over Level Line Limit Rem			
	MHz	—dBu∜		dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

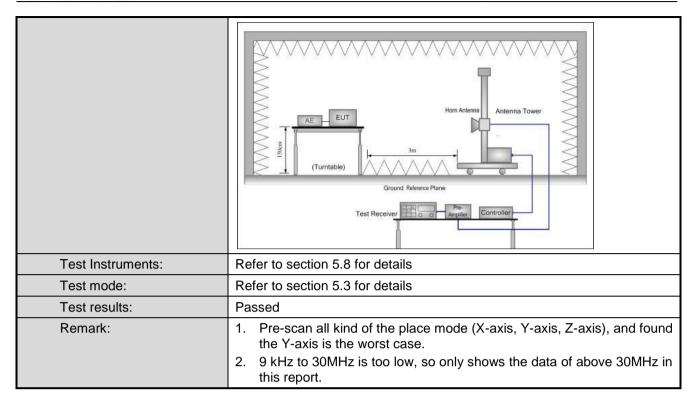
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

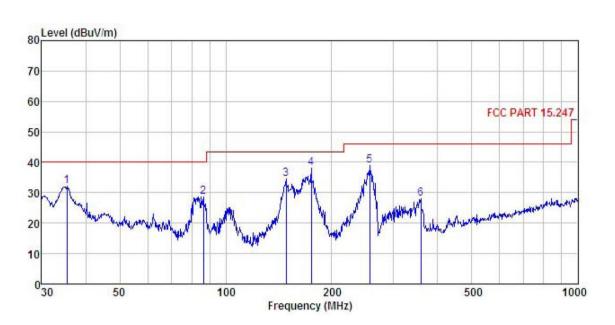
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:



6.7.2 Radiated Emission Method

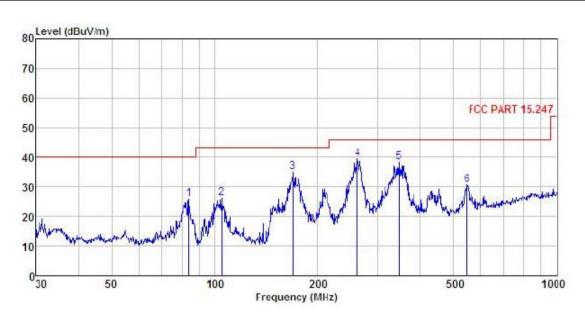
9kHz to 25GHz 3m Frequency 30MHz-1GHz					
Frequency					
30MHz-1GHz	Detector	RBW	VB	VBW Remar	
	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value
Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
Above IGHZ	RMS	1MHz	3M	Hz	Average Value
Frequency	/ Li	mit (dBuV/m @	3m)		Remark
30MHz-88M	Hz	40.0		C	Quasi-peak Value
88MHz-216N	1Hz	43.5		C	Quasi-peak Value
216MHz-960I	MHz	46.0		C	Quasi-peak Value
960MHz-1G	Hz	54.0		C	Quasi-peak Value
Above 1GH	17	54.0			Average Value
		74.0			Peak Value
highest rad 2. The EUT antenna, w tower. 3. The antenn the ground Both horize make the n 4. For each s case and t meters and to find the n 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 m which was more a height is v to determine ontal and very neasurement. suspected en hen the ante d the rota table maximum rea eceiver syste Bandwidth with sion level of the cified, then the would be re margin would	neters away funted on the funted on the function of the maximutical polarizations was tuned awas turned ding. In Maximum How Euting could be esting could be ported. Other discretes the function of the func	from the top of a me met um valitions of EUT was do not be from 0 to Pealold Moak more be stop wise the done be	ne interior variation of the arms arranged arms degree arms ped arms y one	erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and the peak values ssions that did not using peak, quasi-
Turn Table Ground Plane	4m			Search Antenn Test	
	30MHz-88M 88MHz-216M 216MHz-960I 960MHz-1G Above 1GH 1. The EUT 1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna the ground Both horized make their of the ground to find their of the extension of the EUT have 10 decension of the EUT have 10 dec	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz 1. The EUT was placed 1GHz)/1.5m(above 1GH The table was rotated 3 highest radiation. 2. The EUT was set 3 m antenna, which was more tower. 3. The antenna height is with the ground to determine Both horizontal and ver make the measurement. 4. For each suspected emine case and then the antel meters and the rota table to find the maximum react to find the maximum react specified Bandwidth with 6. If the emission level of the EUT would be rephave 10 dB margin would peak or average method sheet. Below 1GHz	30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 1. The EUT was placed on the top of 1GHz)/1.5m(above 1GHz) above the The table was rotated 360 degrees thighest radiation. 2. The EUT was set 3 meters away antenna, which was mounted on the tower. 3. The antenna height is varied from of the ground to determine the maxim Both horizontal and vertical polarization make the measurement. 4. For each suspected emission, the Ecase and then the antenna was tune meters and the rota table was turned to find the maximum reading. 5. The test-receiver system was set Specified Bandwidth with Maximum He. If the emission level of the EUT in peter the limit specified, then testing could be of the EUT would be reported. Other have 10 dB margin would be re-tested peak or average method as specified sheet. Below 1GHz	30MHz-88MHz 40.0 88MHz-960MHz 43.5 216MHz-960MHz 54.0 Above 1GHz 54.0 Above 1GHz 74.0 1. The EUT was placed on the top of a ro 1GHz)/1.5m(above 1GHz) above the groun The table was rotated 360 degrees to deter highest radiation. 2. The EUT was set 3 meters away from the antenna, which was mounted on the top of a tower. 3. The antenna height is varied from one met the ground to determine the maximum val Both horizontal and vertical polarizations of make the measurement. 4. For each suspected emission, the EUT was case and then the antenna was tuned to the meters and the rota table was turned from 0 to find the maximum reading. 5. The test-receiver system was set to Pea Specified Bandwidth with Maximum Hold Mo 6. If the emission level of the EUT in peak most the limit specified, then testing could be stop of the EUT would be reported. Otherwise the have 10 dB margin would be re-tested one be peak or average method as specified and sheet. Below 1GHz	30MHz-88MHz 40.0 60 88MHz-216MHz 43.5 60 960MHz-1GHz 54.0 60 Above 1GHz 74.0 74.0 1. The EUT was placed on the top of a rotating 1GHz)/1.5m(above 1GHz) above the ground at a The table was rotated 360 degrees to determine highest radiation. 2. The EUT was set 3 meters away from the integration and the top of a variat tower. 3. The antenna height is varied from one meter to the ground to determine the maximum value of Both horizontal and vertical polarizations of the amake the measurement. 4. For each suspected emission, the EUT was arracase and then the antenna was tuned to heights meters and the rota table was turned from 0 degree to find the maximum reading. 5. The test-receiver system was set to Peak Des Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was the limit specified, then testing could be stopped and of the EUT would be reported. Otherwise the emi have 10 dB margin would be re-tested one by one peak or average method as specified and then in sheet. Below 1GHz



Measurement Data (worst case):

Below 1GHz:

Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Intenna Factor					Over Limit	
_	MHz	—dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dB} \overline{uV}/\overline{m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	35.375	49.89	11.27	1.07	29.95	32.28	40.00	-7.72	QP
2	86.503	47.38	9.07	1.91	29.59	28.77	40.00	-11.23	QP
3	148.441	52.41	8.97	2.50	29.23	34.65	43.50	-8.85	QP
4	175.037	54.70	9.81	2.69	29.01	38.19	43.50	-5.31	QP
5	256.521	51.83	12.83	2.83	28.53	38.96	46.00	-7.04	QP
5 6	357.929	38.72	14.71			27.94			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6 inch 3G Smart Phone	Product Model:	X60G
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
2	MHz	dBu∜	$-\overline{dB}/\overline{n}$	dB	<u>d</u> B	dBu7/m	dBuV/m	dB	
1	84.110	45. 25	8.46	1.79	29.61	25.89	40.00	-14.11	QP
2	104.903	41.60	12.09	2.00	29.49	26.20	43.50	-17.30	QP
3	169.005	51.82	9.61	2.65	29.06	35.02	43.50	-8.48	QP
4	261.975	52.24	12.93	2.84	28.52	39.49	46.00	-6.51	QP
5	345.595	49.45	14.52	3.08	28.55	38.50	46.00	-7.50	QP
6	545.183	37. 58	18.38	3, 86	29.08	30.74	46.00	-15.26	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

	Test channel: Lowest channel									
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	47.24	30.85	6.80	41.81	43.08	74.00	-30.92	Vertical		
4804.00	48.26	30.85	6.80	41.81	44.10	74.00	-29.90	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	37.95	30.85	6.80	41.81	33.79	54.00	-20.21	Vertical		
4804.00	38.14	30.85	6.80	41.81	33.98	54.00	-20.02	Horizontal		
			Test ch	nannel: Midd	dle channel					
		I	De	tector: Peak	Value			1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	48.62	31.20	6.86	41.84	44.84	74.00	-29.16	Vertical		
4884.00	48.60	31.20	6.86	41.84	44.82	74.00	-29.18	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	38.13	31.20	6.86	41.84	34.35	54.00	-19.65	Vertical		
4884.00	38.62	31.20	6.86	41.84	34.84	54.00	-19.16	Horizontal		

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.92	31.63	6.91	41.87	44.59	74.00	-29.41	Vertical
4960.00	48.53	31.63	6.91	41.87	45.20	74.00	-28.80	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.13	31.63	6.91	41.87	33.80	54.00	-20.20	Vertical
4960.00	38.26	31.63	6.91	41.87	34.93	54.00	-19.07	Horizontal

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.