
REPORT ON
Type Approval Testing of the
Tellumat TELLUSART
(Ser. Nos. 00007,00077,63679)
In Accordance With IEC 1097-1
First edition 1992-07

Report No 102208B

July 1993

CE

REPORT ON:

Type Approval Testing of the Tellumat TELLUSART
in accordance with IEC 1097-1

Report No 102208B

PREPARED FOR:

Tellumat Limited
Tellumat House
Hook Rise South
Surbiton
Surrey
KT6 7LD

DISTRIBUTION:

Tellumat Ltd.

Mr D Ashmore

Copy No. 1

D.T.I.
Waterloo Bridge House

Mr J Poole

Copy No. 2

Assessment Services
Limited

Copy No. 3

COPY NO. 6

APPLICANT'S DETAILS

CATEGORY OF APPLICANT (Please tick relevant box)	(a) <input type="checkbox"/> Manufacturer
	(b) <input type="checkbox"/> Importer
If box (b),(c) or (d) is ticked complete details in box below with respect to the manufacturer	(c) <input checked="" type="checkbox"/> Distributor
	(d) <input type="checkbox"/> Agent

COMPANY NAME : Tellumat Ltd.

ADDRESS : Tellumat House
Hook Rise South
Surbiton
Surrey
KT6 7LD

NAME FOR CONTACT PURPOSES : David Ashmore

TELEPHONE No.: 081 974 1155 FAX No : 081 974 1148

TELEX No : 917340 TELLCH G

MANUFACTURERS DETAILS

COMPANY NAME : Plessey Tellumat S.A. Limited

ADDRESS : 64174 White Road
Retreat 7945
PO Box 23
Plumstead 7800
South Africa

NAME FOR CONTACT PURPOSES : Michael Urry

TELEPHONE No : 010 2721 710 2466 FAX No : 010 2721 729 609

TELEX No :

TYPE DESIGNATION⁽¹⁾

The type designation may be either a single alphanumeric code or an alphanumeric/code divided into two parts.

Please fill in

EITHER :

TYPE DESIGNATION AS
A SINGLE ALPHANUMERIC CODE

/ T / E / L / L / U / S / A / R / T / / / / /

OR :

TYPE DESIGNATION IN
TWO PARTS :

1. EQUIPMENT SERIES NO.⁽²⁾
("MODEL NUMBER")

/ / / / / / / / / / / / / / / / /

AND

2. EQUIPMENT SPECIFIC NO.⁽³⁾
("IDENTIFICATION NO")

/ / / / / / / / / / / / / / / / /

- (1) This is the manufacturer's numeric or alphanumeric code or name that is specific to a particular equipment.
- (2) This is the number, code or trade name used by the manufacturer to describe a series or 'family' of equipment of substantially the same mechanical and electrical construction which will include a number of related equipments. This number is often referred to as the "model no.".
- (3) This is the manufacturer's identification number given to a specific equipment in the series or 'family' of equipments. It is often referred to as the "identification number".

TYPE OF SART

Fixed Installation in lifeboats, life rafts or on board ship.

Portable unit

Installed in a release mechanism and/or combined with a float free EPIRB.

BATTERY

<input type="checkbox"/>	Nickel Cadmium	<input type="checkbox"/>	Lead Acid
<input type="checkbox"/>	Mercury	<input type="checkbox"/>	Leclanché
<input type="checkbox"/>	Alkaline	<input checked="" type="checkbox"/>	Lithium
<input type="checkbox"/>	Other		

Nominal voltage 15.0 Volts End point voltage 11.0 Volts

OTHER ITEMS SUPPLIED		
Spare batteries e.g. (portable equipment)	<input type="checkbox"/>	Yes
	<input checked="" type="checkbox"/>	No
Battery charging device	<input type="checkbox"/>	Yes
	<input checked="" type="checkbox"/>	No
Special tools for dismantling equipment	<input type="checkbox"/>	Yes
	<input checked="" type="checkbox"/>	No
Test interface box (if applicable) or where appropriate the RF test fixture	<input type="checkbox"/>	Yes
	<input checked="" type="checkbox"/>	No
Full documentation on equipment (Handbook and circuit diagrams)	<input checked="" type="checkbox"/>	Yes
	<input type="checkbox"/>	No
Others	<input type="checkbox"/>	Yes
	<input type="checkbox"/>	No
If Yes, please specify :		

DECLARATIONS

Does the equipment comply with the requirements of section 3.2.14

[] Yes

[] No

If no state reasons:

Are the equipments submitted representative production models?

[] Yes

[] No

If not are the equipments pre-production models? [] Yes

[] No

If pre-production equipments are submitted will the final production equipments be identical in all respects with the equipment tested

[] Yes

[] No

If no supply full details :

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Signature

Name : David M Ashmore

Position held : Managing Director

Date : 30 June 1993

LIST OF CONTENTS.

The list of observations and measured parameters called for in IEC 1097-1 is given below.

Clause	Page number
6.1 General	
6.2 Operational requirements8
6.3 Battery capacity9
6.4 Environment (temperature)	
6.4.1 Dry heat cycle10
6.4.2 Low temperature cycle11
6.5 Antenna height17
6.6 Antenna characteristics	
6.6.1 Azimuthal and vertical beamwidths17
6.6.2 Polarisation17
6.7 Range performance12
6.8 Labelling13
6.9 Technical characteristics	
6.9.3 Receiver sensitivity14
6.9.4 Sweep characteristics15
6.9.5 Radiated power16
6.9.6 Antenna characteristics17
6.9.7 Recovery time following excitation18
6.9.8 Delay - Receipt of radar interrogation and SART transmission19
6.9.9 Receiver front end protection20
Supplement to Report	
..... Manufacturer Supplied Information	Part 1
..... Range Test Verification	Part 2

Operational Requirements

Clause 6.2

Clause
No.

- 6.2.1 The unit is fitted with a single rotary switch on the base capable of activation by unskilled personnel.
- 6.2.2 The unit is fitted with a means to prevent inadvertent activation. Manual activation requires a 'weak link' to be broken. The switch must be depressed and then turned to activate.
- 6.2.3 The unit has a visual indication of correct operation (yellow flashing L.E.D.) and both visual and audible indication of activation by a radar (green flashing L.E.D. and buzzer).
- 6.2.4 The unit is capable of manual activation and deactivation. No provision is made for automatic operation.
- 6.2.5 The unit has a visual indication of the standby condition i.e. activated but not triggered.
- 6.2.6 The equipment, serial no. 00077, was set up ready for normal use and allowed to fall freely from a height of 20 m into water. The unit suffered external damage and switched on when entering the water. The test was repeated using serial no. 00007 with the mounting mast fitted. Again external damage occurred and the unit would not switch off unless struck sharply. The design of the casing was modified to increase strength and extra mechanical support provided internally. The test was repeated with the modified sample, serial no. 63679, no damage occurred and the unit functioned correctly.
- 6.2.7 Test combined with 6.2.8. No leakage was observed.
- 6.2.8 The unit, serial no. 63679, was placed in an environmental chamber at a temperature of +65°C for ≥ 3 h. It was then transferred to a pressure vessel containing water at +18°C and immersed to a depth of 100 mm. The pressure was raised to 100kPa for a period of 1 h. The test was then repeated with the environmental chamber at a temperature of -12°C. On completion the unit showed no signs of leakage or malformation and functioned correctly.
- 6.2.9 The unit is not specifically designed to be an integral part of a survival craft. The check for floating was performed (5 minutes) following test 6.2.8.
- 6.2.10 The unit is fitted with a 10 m buoyant lanyard suitable for use as a tether.
- 6.2.11 Corrosion test not performed. Manufacturer supplied information in report supplement.
- 6.2.12 Manufacturers supplied information in report supplement.
- 6.2.13 The unit is made of highly visible orange coloured plastic with yellow labels. A reflective band is fitted to the top of the unit.
- 6.2.14 See manufacturer's declaration in the application form.

Battery capacity

Clause 6.3

Average Current in Standby at V_{nom} - I_1	58.5 mA
Average Current during interrogation ⁽¹⁾ at V_{nom} - I_2	96.3 mA
Lowest voltage for correct operation	11.0V

Dowty battery pack Type No. 670-00406-V

Test Conditions	Initial Voltage at I_1	Voltage after 96 hours at I_1	Voltage after further 8 hours at I_2
$T_{nom} + 15$ to $+35^\circ C$	15.92	14.36	13.87
$T_{max} = +55^\circ C$	15.73	14.69	14.54
$T_{min} = -20^\circ C$	15.03	12.41	12.30

Tadiran battery pack Type No. 670-00408N

Test Conditions	Initial Voltage at I_1	Voltage after 96 hours at I_1	Voltage after further 8 hours at I_2
$T_{nom} + 15$ to $+35^\circ C$	13.82	13.73	13.73
$T_{max} = +55^\circ C$	13.83	14.20	14.19
$T_{min} = -20^\circ C$	13.58	12.26	12.03

Hoppecke battery pack Type No. D-5790 Brilon 2

Test Conditions	Initial Voltage at I_1	Voltage after 96 hours at I_1	Voltage after further 8 hours at I_2
$T_{nom} + 15$ to $+35^\circ C$	15.90	14.60	14.26
$T_{max} = +55^\circ C$	15.92	14.95	14.74
$T_{min} = -20^\circ C$	15.47	13.05	12.94

(1) Continuous interrogation with test signal 3.

Limit

Clause 6.3.2

Limit under normal and extreme test conditions	Final Voltage ≥ 11.0
--	---------------------------

TEST EQUIPMENT USED

5,6,8

Environment (temperature): Dry heat cycle

Clause 6.4.1

Performance check : Output Power/Modulation

Output Power (mW)	Modulation characteristics		
	F_l in range 9.2 GHz +0/-60 MHz	12 Sweeps	F_b in range 9.5 GHz +60/-0 MHz
> 400	Yes	Yes	Yes

Remarks: Unit interrogated using test signal 2

Performance check made during the final 2 hours of cycle

 F_l = lowest frequency of sweep F_b = highest frequency of sweep

TEST EQUIPMENT USED

2,3,4,5,6,7,10,12,14,15,16,17,18,20,21,22

.....

Environment (temperature): Low temperature cycle

Clause 6.4.2

Performance check : Output Power/Modulation

Output Power (mW)	Modulation characteristics		
	F_l in range 9.2 GHz +0/-60 MHz	12 Sweeps	F_h in range 9.5 GHz +60/-0 MHz
> 400	Yes	Yes	Yes

Remarks: Unit interrogated using test signal 2
Performance check made during final 2 hours of cycle
 F_l = lowest frequency of sweep
 F_h = highest frequency of sweep

TEST EQUIPMENT USED

2,3,4,5,6,7,10,12,14,15,16,17,18,20,21,22

.....

Range performance

Clause 6.7

Response to marine X band radar.

The SART operated correctly when interrogated at a distance of 7.25 n.miles by a navigational radar complying with IMO resolution A.477 (XII). Details supplied in report supplement part 2.

Response to airborne radar.

Assumptions;

Antenna height	1m (actual 1.2m)
Receiver sensitivity	-56.2 dBm (test signal 2 at 9.5 GHz)
Radiated power	28.7 dBm (minimum including antenna characteristics)

For a search height of 3000 ft and a peak power equal to 10 kW:

Approximate detection range 55 n.miles

Range deduced from Fig. 3 contained in CCIR report 1036.

Labelling**Clause 6.8**

The labelling conforms to the requirements of IMO Resolution A.694 (17). Brief operating instructions and the battery expiry date are also indicated in English on the exterior of the equipment.

Receiver sensitivity

Clause 6.9.3

Test Conditions	Test Signal	9.20 GHz (mW/m ²)	9.35 GHz (mW/m ²)	9.50 GHz (mW/m ²)
T _{amb} = +18°C V _{DD} (15.0V)	1	0.031	0.043	0.055
	2	0.015	0.017	0.024
Measurement Uncertainty	±0.3 dB			

Limit

CLAUSE 6.9.3.2

Test Signal 1	< 2.0 mW/m ²
Test Signal 2	< 0.1 mW/m ²

TEST EQUIPMENT USED

2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,20,21,22

Sweep characteristics - Frequency range

Clause 6.9.4

Test Conditions	12 Sweeps	Minimum Frequency (GHz)	Maximum Frequency (GHz)
$T_{nom} = +18^\circ\text{C}$ $V_{nom}(15.0\text{V})$	Yes	9.170	9.516
Measurement Uncertainty		$\pm 5.0 \text{ MHz}$	

Limit

Clause 6.9.4.2

12 Sweeps each covering the range 9.2 GHz (+0/-60 MHz) to 9.5 GHz (+60/-0 MHz)

Sweep characteristics - Sweep time

Clause 6.9.4

Test Conditions	Forward Sweep Time (μs)	Return Sweep Time (μs)	First Sweep Type
$T_{nom} = +17^\circ\text{C}$ $V_{nom}(15.0\text{V})$	7.523	0.386	Return
Measurement Uncertainty (μs)		± 0.022	± 0.003
			N/A

Limit

Clause 6.9.4.2

Forward Sweep	$7.5 \pm 1.0 \mu\text{s}$
Return Sweep	$0.4 \pm 0.1 \mu\text{s}$

Sweep characteristics - Sweep profile

Clause 6.9.4.1

Test Conditions	Forward Sweep Error (MHz)	Return Sweep Error (MHz)
$T_{nom} = +18^\circ\text{C}$ $V_{nom}(15.0\text{V})$	7.8	7.8
Measurement Uncertainty	$\pm 2.5 \text{ MHz}$	

Limit

Clause 6.9.4.2

Forward Sweep	Within $\pm 20 \text{ MHz}$ of a linear Sweep between 9.2 and 9.5 GHz
Return Sweep	

TEST EQUIPMENT USED

2,3,4,5,6,7,9,10,12,13,14,15,16,17,18,20,21,22

Radiated power

Clause 6.9.5

Rotation (n $\times \pi/8$)	0° (ref.)
	dBm
0	30.51
1	29.77
2	29.73
3	29.90
4	30.34
5	30.22
6	30.04
7	30.82
8	30.60
9	30.24
10	30.46
11	30.38
12	30.12
13	29.97
14	30.47
15	30.71
Maximum	30.82
Minimum	29.73
Range	1.09 dB
Measurement Uncertainty	±0.6 dB

Limit

Clause 6.9.5.2

Minimum power	≥ 400 mW (+26 dBm)
Power Range	The maximum and minimum signals shall be within 4 dB

TEST EQUIPMENT USED

2.3,4,5,6,7,9,10,12,13,14,15,16,17,18,19,20,21,22

Antenna characteristics

Clause 6.9.6

Rotation (n x $\pi/8$)	0° (ref.) (dBm)	+ 12.5° (dBm)	Variation from ref.(dB)	- 12.5° (dBm)	Variation from ref.(dB)
0	30.51	29.36	-1.15	29.77	-0.74
1	29.77	29.51	-0.26	29.25	-0.52
2	29.73	29.39	-0.34	28.94	-0.79
3	29.90	29.76	-0.14	29.28	-0.62
4	30.34	29.16	-1.18	29.17	-1.17
5	30.22	29.01	-1.21	29.05	-1.17
6	30.04	29.17	-0.87	29.20	-0.84
7	30.82	29.40	-1.42	29.36	-1.46
8	30.60	29.31	-1.29	29.42	-1.18
9	30.24	29.17	-1.07	29.34	-0.90
10	30.46	29.15	-1.31	29.12	-1.34
11	30.38	29.00	-1.38	29.26	-1.12
12	30.12	28.80	-1.32	29.18	-0.94
13	29.97	28.74	-1.23	29.07	-0.90
14	30.47	29.30	-1.17	29.78	-0.69
15	30.71	29.42	-1.29	29.87	-0.84
Maximum	30.82	29.76	-0.14	29.87	-0.52
Minimum	29.73	28.74	-1.42	28.94	-1.46
Range (dB)	1.09	1.02		0.93	
Measurement Uncertainty			±0.6 dB		

Limit

Clause 6.9.6.2

Limit under normal test conditions	Minimum horizontal power 26 dBm (400mW)
	Power at ± 12.5° within ± 2 dB of horizontal value.
	Maximum power range in each plane 4 dB

Remarks: Measured Antenna height with mounting pole 1.2 m - requirement ≥ 1 m, clause 6.5.1
 Antenna polarisation - horizontal. Requirement - horizontal, clause 5.2.

TEST EQUIPMENT USED

2,3,4,5,6,7,9,10,12,13,14,15,16,17,18,19,20,21,22

.....

Recovery time following excitation

Clause 6.9.7

Test Conditions	Recovery Time (μ s)
$T_{\text{nom}} = +18^{\circ}\text{C}$ $V_{\text{nom}}(15.0\text{V})$	9.12
Measurement Uncertainty	$\pm 0.022 \mu\text{s}$

Limit

Clause 6.9.7.2

Limit under normal test conditions	$\leq 10 \mu\text{s}$
------------------------------------	-----------------------

TEST EQUIPMENT USED

2,3,4,5,6,7,9,10,12,13,14,15,16,17,18,20,21,22

.....

Delay - Receipt of radar interrogation and SART transmission

Clause 6.9.8

Test Conditions	Delay Time (μ s)
$T_{\text{nom}} = +18^{\circ}\text{C}$ $V_{\text{nom}}(15.0\text{V})$	0.197
Measurement Uncertainty	$\pm 0.003 \mu\text{s}$

Limit

Clause 6.9.8.2

Limit under normal test conditions	$\leq 0.5 \mu\text{s}$
------------------------------------	------------------------

TEST EQUIPMENT USED

2,3,4,5,6,7,9,10,12,13,14,15,16,17,18,20,21,22

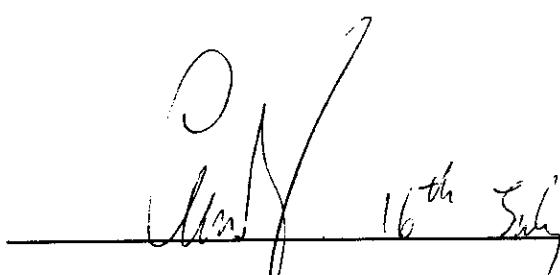
.....

Receiver front end protection

Clause 6.9.9

The receiver operated correctly after being subjected to the radiated field (28 dBW/m²) emitted from a radar complying with IMO resolution A.477 (XII). Details in report supplement part 2.

Date of Receipt: 29 Jan 1993

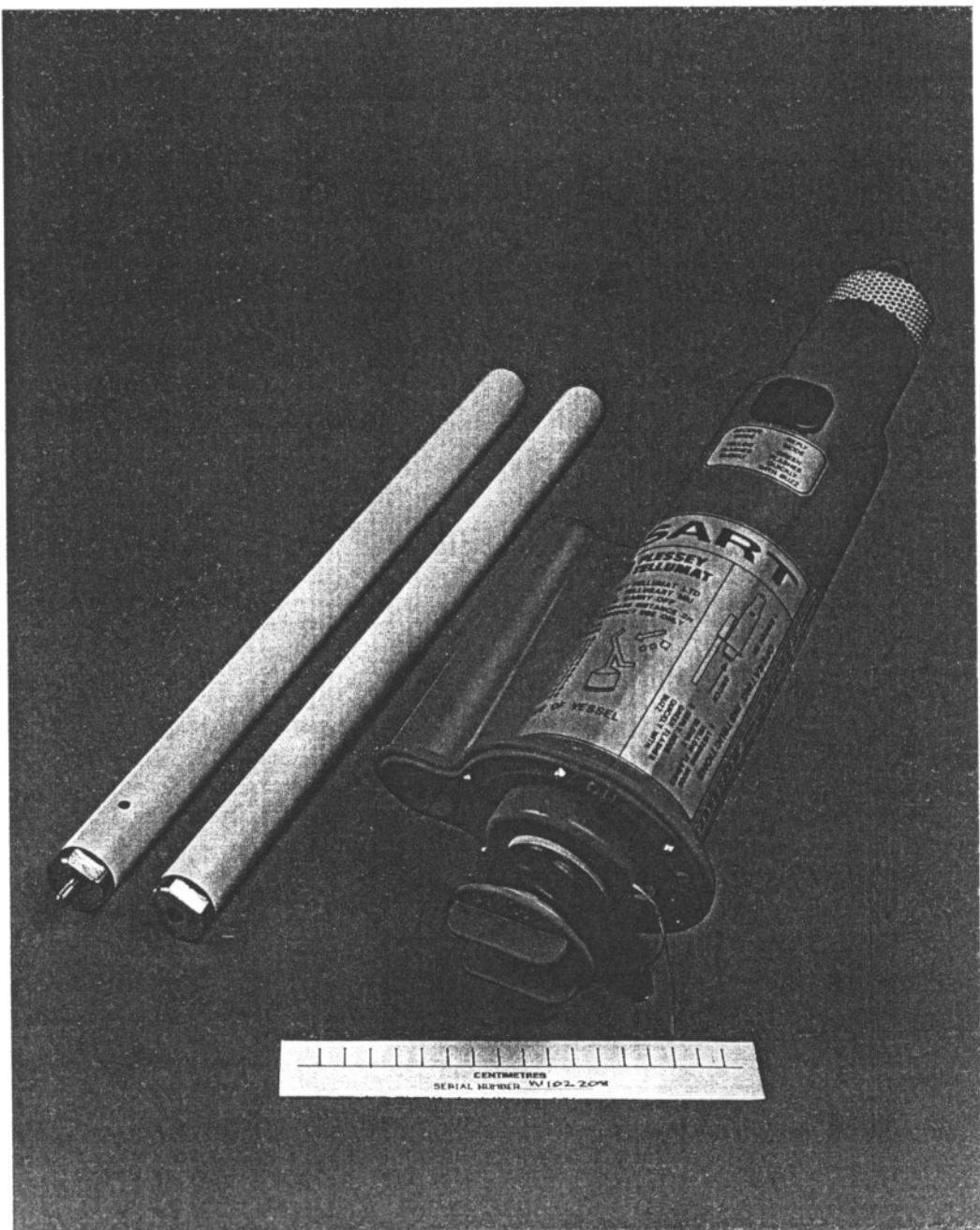

Start of Test : 03 Feb 1993

Finish of Test : 21 Jun 1993

Engineer : **T Phillips**

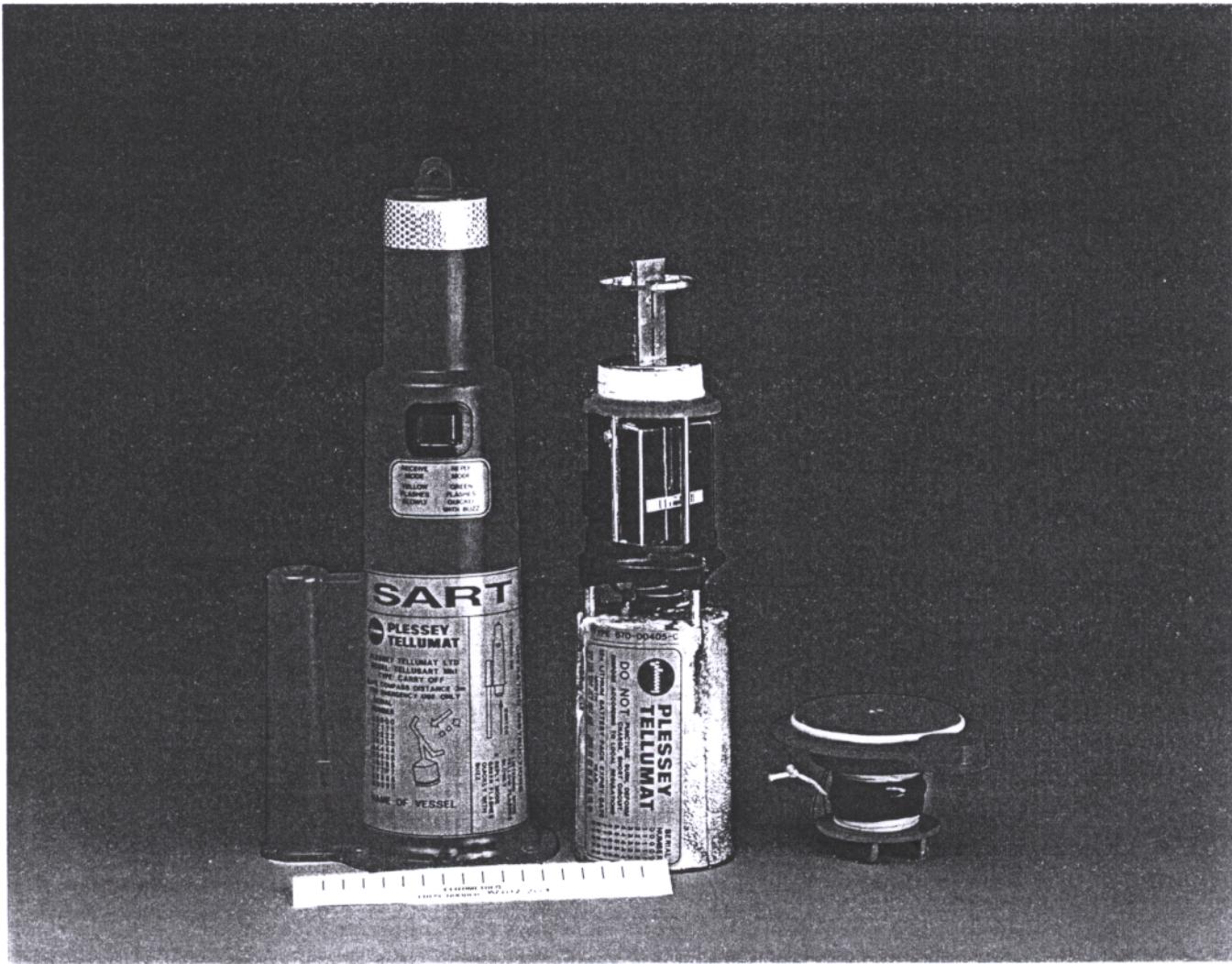
Project Manager : **H E Ward**

Approved by :

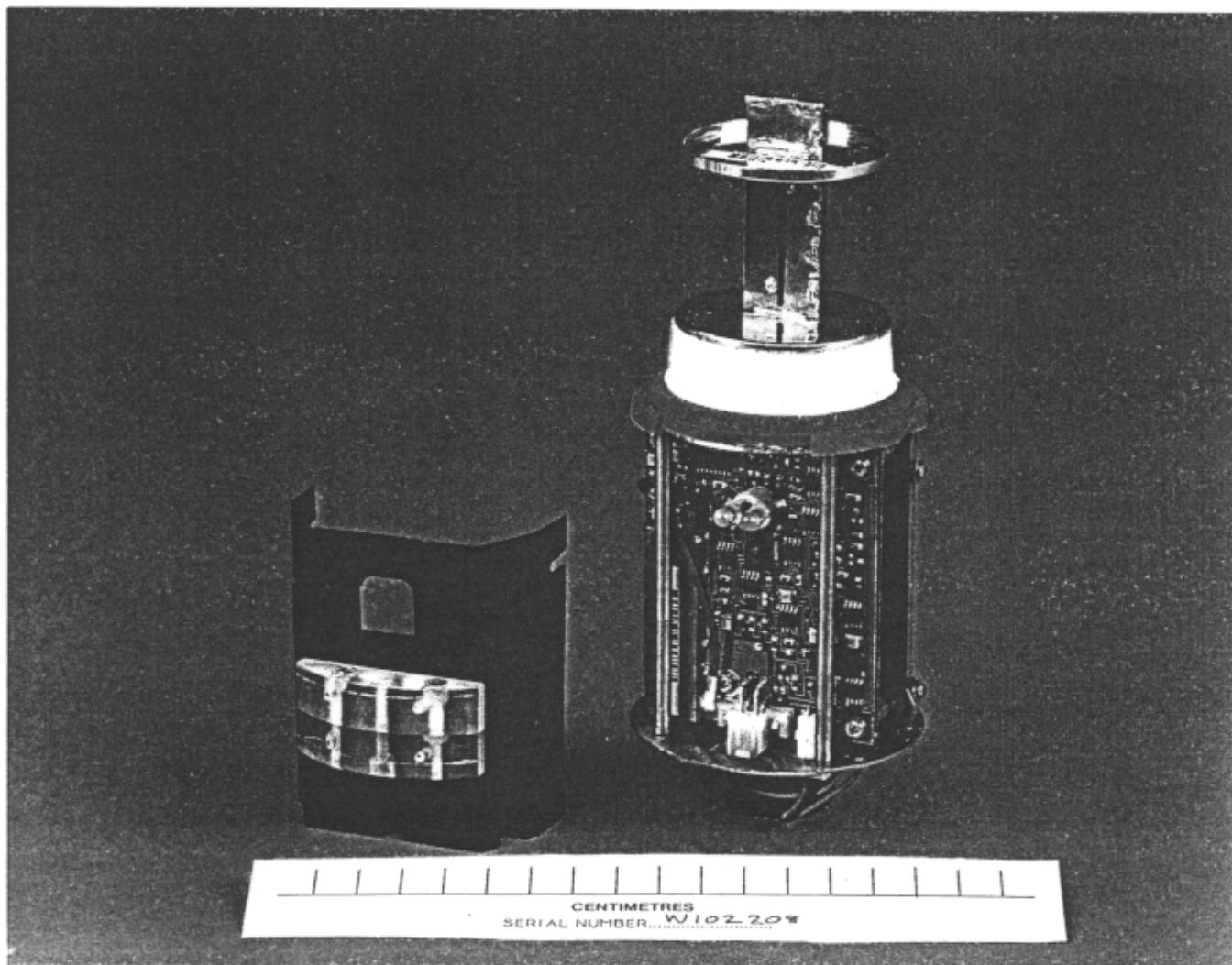


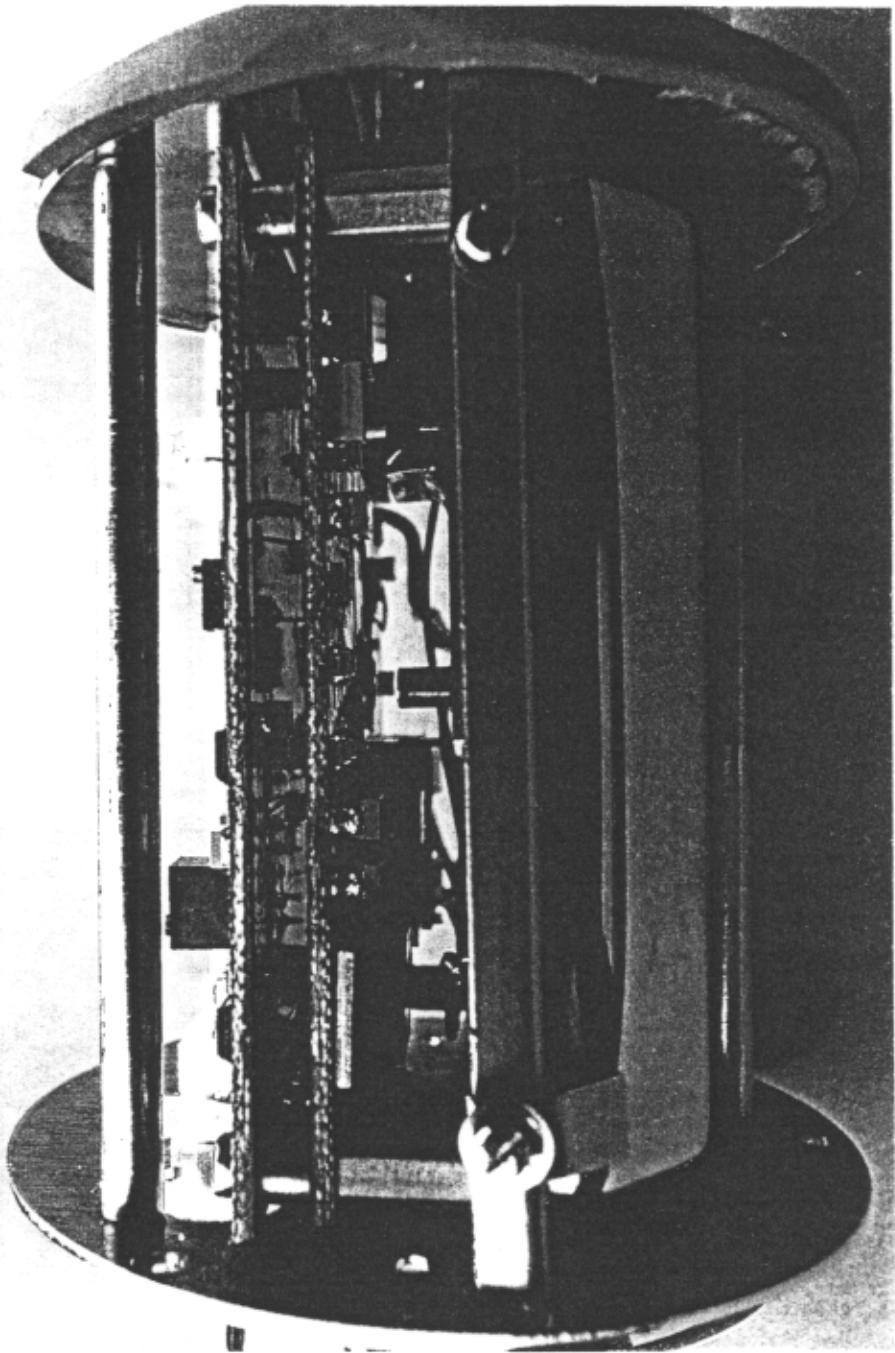
C M Parry
Radio Regulatory Manager

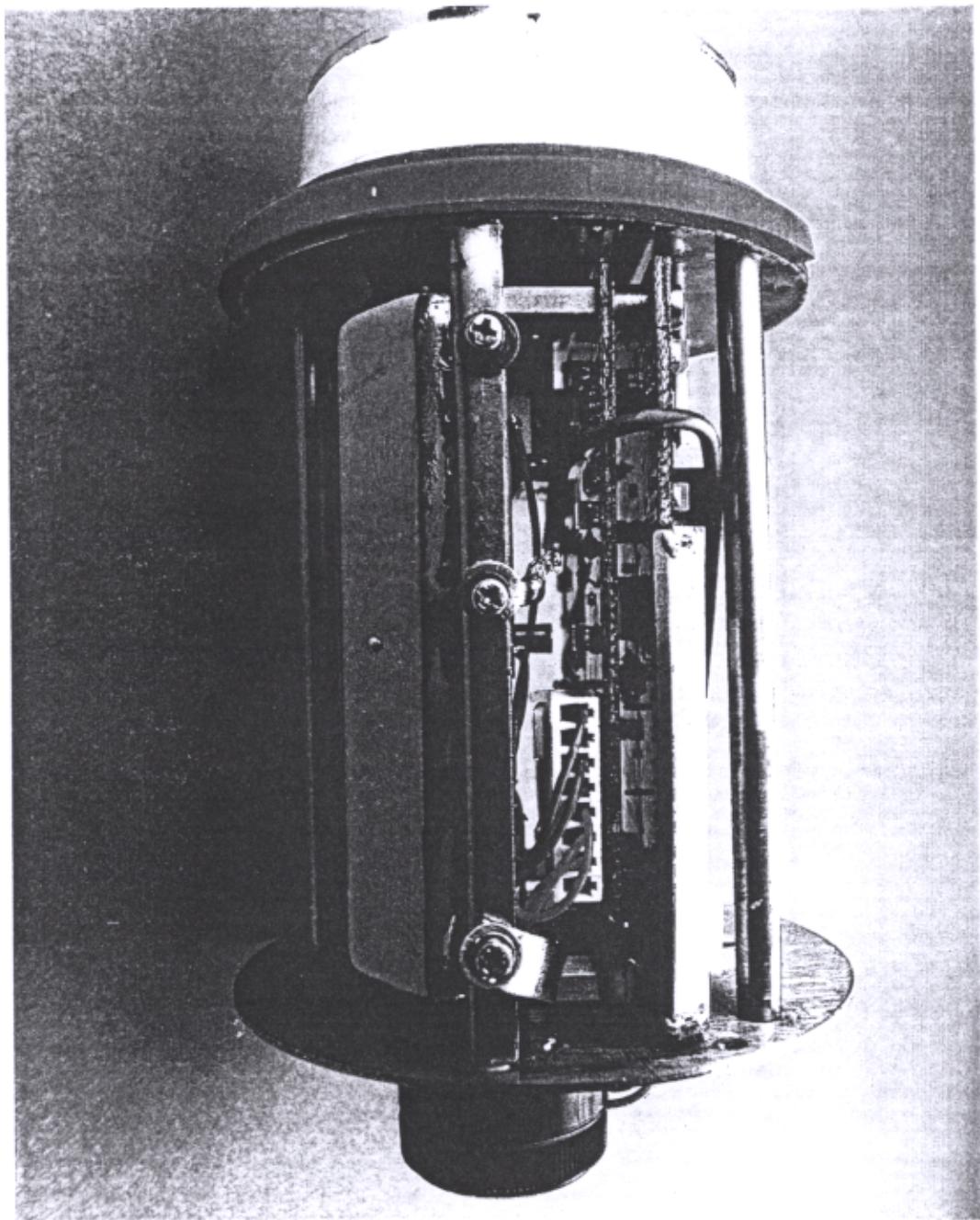
16th July 1993


TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

Each item of test and ancillary equipment is identified by number thus;


No	Instrument/Ancillary	Type	Manufacturer	Serial No.
1	Programable pulse generator	8161A	Hewlett Packard	2202G00326
2	Sweep generator	8350B	Hewlett Packard	2331U00440
3	Peak power analyser/sensor	8990A/8481	Hewlett Packard	3107A00124
4	Standard 20 dB gain horn	1624-20	Flann Microwave	326
5	Thermobygraph	T9184\C\MK	Cassella	013058
6	Digital voltmeter	8050A	Fluke	494008
7	Power supply unit	6253A	Hewlett Packard	2412A06566
8	Environmental Chamber	VM04/100	Heraeus	40608
9	Environmental Chamber	2F3	Montford	3090-K5467
10	Signal Generator	8673B	Hewlett Packard	2147A00421
11	Standard 20 dB gain horn	1624-20	Flann Microwave	238
12	Freq. & T.I. Analyser	5372A	Hewlett Packard	3141A1073
13	Function Generator	3314A	Hewlett Packard	2141A03192
14	Pulse Generator	8012B	Hewlett Packard	1448A11578
15	Oscilloscope	S-5321	Iwatsu	2618556/I
16	Circulator	7099	Phase Devices Ltd	S3C08001240A00
17	Microwave Mixer	HMXR-5001	Hewlett Packard	0489
18	Power Splitter	1506A	Weinschel	AO5346
19	Power Meter	436A	Hewlett Packard	2347A17582
20	Cable 3.5m	065-9AA-3500-000	Sealectro	Not Serialised
21	Cable 1.0m	065-9AA-1000-000	Sealectro	Not Serialised
22	Cable 1.0m	065-9AA-1000-000	Sealectro	Not Serialised


External View


Internal View 1

Internal View 2

Internal View 3

Internal View 4

PART 1
Manufacturer Supplied Information

CERTIFICATE OF CONFORMANCE

Remarks: Only limited qualification performed on unit.

Released for further qualification testing by testing house in U.K.

No pressure tests or flotation tests to be conducted on this unit.

It is certified that the whole of the supplies detailed hereon have been inspected/tested and unless otherwise stated, conform in all respects to the contract/order relative thereto.

Presented by:

Position in Company: Tech Manager

Date: 2/12/92

Authorised by:

Position in Company: R&D QA

Date: 2/12/92

17

FAX MESSAGE

Date 02.12.92 Page 1 of 3
 From R WALTERS
 To D SEDDON - PLESSEY
 FAX NO: 721278
 Subject GC7260HL SPECIFICATION

Cape Town Office :
 P.O. Box 6449, Roggebaai 8012
 Fax No : (021) 557-1846
 Tel No : (021) 557-1131
 Telex : J27923

Herewith a data sheet of GC7260, as requested.

GC7260HL is a special recipe for resistance to light UV and weathering. Both these grades have the same physical as well as rheological properties.

Please contact the undersigned if you do require any further assistance.

Regards

A handwritten signature in cursive ink that appears to read "Roelof".

ROELOF WALTERS

PROPERTY		VALUE	UNIT	TEST METHOD	TEST CONDITIONS
1. Density at 23°C		0,957	g/cm ³	ASTM D 792 DIN 53 479	Method A2 Method A
2. Melt Flow Index	2.1. MFI 190/2,16	7	g/10 min	ASTM D 1238 DIN 53 735	Method A, Condition E
	2.2. MFI 190/5	21	g/10 min	ASTM D 1238 DIN 53 735	Method A, Condition P
3. Tensile Properties	3.1 Tensile yield strength 3.2. Elongation at yield	28 12	N/mm ² %	ASTM D 638	Testing rate: 100 mm/min Specimen 119, 1 mm compression moulded
	3.3. Ultimate tensile strength	29	N/mm ²	DIN 53 455	Specimen 4, 1 mm compression moulded
	3.4. Elongation at break	>600	%		
4. Hardness	4.1. Rockwell R	61	—	ASTM D 785	Procedure A, compression moulded specimen
	4.2. Ball indentation (30 sec value)	47	N/mm ²	DIN 53 456	132 N
	4.3. Shore D	62	—	ASTM D 2240 DIN 53 505	Loading time: 1 s
5. Impact Strength	5.1. Notched IZOD : 23°C	32	J/m	ASTM D 256	Compression specimen
	5.2. Charpy : 23°C	3.0	mJ/mm ²	DIN 53 453	Compression specimen
6. Crystalline Melting Range		130-132	°C		Polarizing microscope, microtome section, 20 µm
7. Vicat Softening Point		127	°C	ASTM D 1525 DIN 53 460	Rate A, 5 mm compres- sion moulded specimen Method A/50, compres- sion moulded specimen
8. Average Linear Expansion Co-efficient (between 20°C and 90°C)		1,5 x10 ⁻⁴	K ⁻¹	DIN 53 752	50 x 4 x 4 (mm)
9. Thermal Conductivity at 20°C		0,43	W m.K	DIN 52 612	8 mm specimen, injection moulded

PROCESSING

Rheolite 27413

Hostalen GC 7260 can readily be processed successfully on all modern generation injection moulding machines. Preferably reciprocating screws with non-return valves should be used (three-zone screw, 15 to 20 D long). Special designs, e.g. for venting, are not required. Typical processing conditions are:

- Melt temperature between 200 °C and 260 °C
- Injection pressure * up to the machine maximum
- Follow-up pressure * 50 MPa maximum.
- Injection rate usually maximum, depending on the moulding.
- Back pressure * 5 MPa to 30 MPa.
- Mould temperature 30 °C to 60 °C.
- Mould clamping force greater than 2 500 N per cm² projected moulding area.

The optimum moulding conditions are dependent on article flow length, mould gating, mould cooling facilities etc. and should be adhered to when processing this grade.

* at the screw tip.

APPLIANCE, BUSINESS MACHINE AND OTHER HOUSINGS

Advantages of CALIBRE: Toughness, high heat distortion and excellent appearance with the ability to mould into complex shapes.
Grades: 700 and 800 series for ignition resistance up to U.L. 94 V-O at 1 mm. 300 series up to a U.L. of 94 V-2.

ELECTRICALS

Advantages of CALIBRE: Good electrical properties with excellent heat and impact resistance.
Grades: 300, 700 and 800 series all possess these properties with varying degrees of ignition resistance.

DATA STORAGE MEDIA

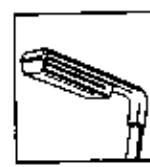
Advantages of CALIBRE: High impact strength and dimensional stability to protect critical discs and magnetic tapes.
Grades: 300 series opaque colours and smoked tints.

FOOD CONTAINERS AND UTENSILS¹

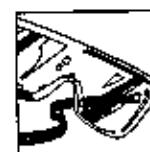
Advantages of CALIBRE: Shatterproof, glass-like transparency, good chemical resistance and food agency compliance.
Grades: 300 series high viscosity for blow moulding, lower for injection moulding.

MEDICAL¹

Advantages of CALIBRE: Biological inertness and low migration, glass-like transparency and sterilisable by many methods in compliance with International Medical Regulations as and where required.
Grades: Special CALIBRE medical grades are being made. Please request further information by completing the attached card.


STRUCTURAL AND GLAZING SHEET

Advantages of CALIBRE: Transparency, good weatherability (with added UV stabiliser), high impact strength.
Grades: 302 S (special extrusion viscosity), 700 and 800 series for specialty sheets with higher flammability requirements.


LIGHTING

Advantages of CALIBRE: High heat distortion, impact strength and mouldability into complex lens designs.
Grades: Transparent 300 series (with UV stabiliser) for lenses. 100 series in opaque colours for low maintenance domestic lighting.

SAFETY

Advantages of CALIBRE: Glass-like transparency, shatter proof.
Grades: 300 series. Specialty grades are also made for safety glasses and orthopaedic lenses. Please request further information by completing the attached card.

Physical Properties²

Melt Flow Rate (300°C, 1.2kg)	g/10min	D-1239	83708	1139
Density	g/cm ³	D-792	83473	11189
Water absorption in standard atmosphere 123°C, 50% RH	%	D-670	83473	-
Water absorption in water Equilibrium, 23°C	%	-	93498 min/d	82
Mould shrinkage	%	D-955	16901	-

Optical Properties

Transmittance	%	D-1002	-	-
Haze	%	D-1003	-	-
Refractive Index (n _D)	-	D-547	52491	-

Thermal Properties

Heat distortion temperature	°C	D-848	83481	78
Method B (0.5 MPa) annealed	°C	D-848	83481	78
Method A (1.61 MPa) annealed	°C	D-848	83481	78
Method A (1.61 MPa) unannealed	°C	D-848	83481	78
Specific heat	J/kg K	D-268	-	-
Thermal conductivity	W/m K	D-177	-	based on 92812
Coefficient of thermal expansion	mm/m K x 10 ⁻⁵	D-698	85762	-
Visco softening point (D-190)	°C	-	83400	308 B

Mechanical Properties

Tensile strength, yield break	MPa	D-838	83485	R 827
Shear strength, yield break	%	D-638	83485	R 827
Tensile modulus	MPa	D-838	83487	R 827
Percent strength	MPa	D-780	83482	178
Plastic modulus	MPa	D-780	83482	178
Compressive strength	MPa	D-895	83484	R 604
Shear strength, yield break	MPa	D-732	-	-
Isotactic strength ³	J/m	D-265	-	R 180
Notched, 9.2 mm thick	-	-	-	-
Unnotched, 3.2 mm	-	-	-	-
Charpy impact strength 23°C -40°C	J/m ²	-	83483	178
Charpy notched impact strength 23°C ³	J/m ²	-	83483	178
Gull Indentation hardness (H 20)	N/mm ²	-	83485	2039/2
Rockwell hardness, R	mm	D-784	-	-
Instrumental Dart Impact (2.4 mm/s, 3.2 mm thick)	J, at energy	-	-	-
Tabor Adhesive Resistance 1000 cycles	Δ% Mass	D-1046 (500g on each C-10F wheel)	-	-

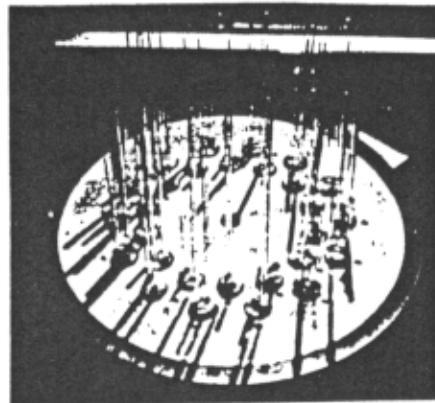
Flammability Ratings⁴

Isotactic strength ³	mm	D-438	-	-
UL 94, 1.6 mm	UL 94	-	-	-
UL 94, 1.3 mm	UL 94	-	-	-
UL 94, 3.2 mm	UL 94	-	-	-
Corrosion Index	%	D-2843	-	-
Glow Wire Test, 3 mins	°C	-	vDE 0471 pt 2	IEC 68-2

Electrical Properties

Dielectric Strength 2mm (in transformer oil with Tween)	kV/mm	-	vDE 0303 pt 2	IEC 243
Volume resistivity	Ωmm · cm	-	vDE 0303 pt 2	IEC 93
Dissipation Factor (tan δ x 10 ⁴)	-	-	vDE 0303 pt 4	IEC 250
RF (1GHz, 10GHz, 30GHz)	-	-	-	-
Surface Resistivity	Ωsq	-	vDE 0303 pt 2	IEC 93
Dielectric Permeability 50Hz	-	-	vDE 0303 pt 4	IEC 280
Dielectric Strength 1.3kV/mm	-	-	-	-
Tracking CTI, 2mm	Rating	-	vDE 0303 pt 1	IEC 112

¹ To 200°C and ² To 200°C at 100% RH unless otherwise stated. ³ To 200°C at 50% RH unless otherwise stated. ⁴ To 200°C at 50% RH unless otherwise stated. ⁵ To 200°C at 50% RH unless otherwise stated. ⁶ To 200°C at 50% RH unless otherwise stated. ⁷ To 200°C at 50% RH unless otherwise stated. ⁸ To 200°C at 50% RH unless otherwise stated. ⁹ To 200°C at 50% RH unless otherwise stated. ¹⁰ To 200°C at 50% RH unless otherwise stated. ¹¹ To 200°C at 50% RH unless otherwise stated. ¹² To 200°C at 50% RH unless otherwise stated. ¹³ To 200°C at 50% RH unless otherwise stated. ¹⁴ To 200°C at 50% RH unless otherwise stated. ¹⁵ To 200°C at 50% RH unless otherwise stated. ¹⁶ To 200°C at 50% RH unless otherwise stated. ¹⁷ To 200°C at 50% RH unless otherwise stated. ¹⁸ To 200°C at 50% RH unless otherwise stated. ¹⁹ To 200°C at 50% RH unless otherwise stated. ²⁰ To 200°C at 50% RH unless otherwise stated. ²¹ To 200°C at 50% RH unless otherwise stated. ²² To 200°C at 50% RH unless otherwise stated. ²³ To 200°C at 50% RH unless otherwise stated. ²⁴ To 200°C at 50% RH unless otherwise stated. ²⁵ To 200°C at 50% RH unless otherwise stated. ²⁶ To 200°C at 50% RH unless otherwise stated. ²⁷ To 200°C at 50% RH unless otherwise stated. ²⁸ To 200°C at 50% RH unless otherwise stated. ²⁹ To 200°C at 50% RH unless otherwise stated. ³⁰ To 200°C at 50% RH unless otherwise stated. ³¹ To 200°C at 50% RH unless otherwise stated. ³² To 200°C at 50% RH unless otherwise stated. ³³ To 200°C at 50% RH unless otherwise stated. ³⁴ To 200°C at 50% RH unless otherwise stated. ³⁵ To 200°C at 50% RH unless otherwise stated. ³⁶ To 200°C at 50% RH unless otherwise stated. ³⁷ To 200°C at 50% RH unless otherwise stated. ³⁸ To 200°C at 50% RH unless otherwise stated. ³⁹ To 200°C at 50% RH unless otherwise stated. ⁴⁰ To 200°C at 50% RH unless otherwise stated. ⁴¹ To 200°C at 50% RH unless otherwise stated. ⁴² To 200°C at 50% RH unless otherwise stated. ⁴³ To 200°C at 50% RH unless otherwise stated. ⁴⁴ To 200°C at 50% RH unless otherwise stated. ⁴⁵ To 200°C at 50% RH unless otherwise stated. ⁴⁶ To 200°C at 50% RH unless otherwise stated. ⁴⁷ To 200°C at 50% RH unless otherwise stated. ⁴⁸ To 200°C at 50% RH unless otherwise stated. ⁴⁹ To 200°C at 50% RH unless otherwise stated. ⁵⁰ To 200°C at 50% RH unless otherwise stated. ⁵¹ To 200°C at 50% RH unless otherwise stated. ⁵² To 200°C at 50% RH unless otherwise stated. ⁵³ To 200°C at 50% RH unless otherwise stated. ⁵⁴ To 200°C at 50% RH unless otherwise stated. ⁵⁵ To 200°C at 50% RH unless otherwise stated. ⁵⁶ To 200°C at 50% RH unless otherwise stated. ⁵⁷ To 200°C at 50% RH unless otherwise stated. ⁵⁸ To 200°C at 50% RH unless otherwise stated. ⁵⁹ To 200°C at 50% RH unless otherwise stated. ⁶⁰ To 200°C at 50% RH unless otherwise stated. ⁶¹ To 200°C at 50% RH unless otherwise stated. ⁶² To 200°C at 50% RH unless otherwise stated. ⁶³ To 200°C at 50% RH unless otherwise stated. ⁶⁴ To 200°C at 50% RH unless otherwise stated. ⁶⁵ To 200°C at 50% RH unless otherwise stated. ⁶⁶ To 200°C at 50% RH unless otherwise stated. ⁶⁷ To 200°C at 50% RH unless otherwise stated. ⁶⁸ To 200°C at 50% RH unless otherwise stated. ⁶⁹ To 200°C at 50% RH unless otherwise stated. ⁷⁰ To 200°C at 50% RH unless otherwise stated. ⁷¹ To 200°C at 50% RH unless otherwise stated. ⁷² To 200°C at 50% RH unless otherwise stated. ⁷³ To 200°C at 50% RH unless otherwise stated. ⁷⁴ To 200°C at 50% RH unless otherwise stated. ⁷⁵ To 200°C at 50% RH unless otherwise stated. ⁷⁶ To 200°C at 50% RH unless otherwise stated. ⁷⁷ To 200°C at 50% RH unless otherwise stated. ⁷⁸ To 200°C at 50% RH unless otherwise stated. ⁷⁹ To 200°C at 50% RH unless otherwise stated. ⁸⁰ To 200°C at 50% RH unless otherwise stated. ⁸¹ To 200°C at 50% RH unless otherwise stated. ⁸² To 200°C at 50% RH unless otherwise stated. ⁸³ To 200°C at 50% RH unless otherwise stated. ⁸⁴ To 200°C at 50% RH unless otherwise stated. ⁸⁵ To 200°C at 50% RH unless otherwise stated. ⁸⁶ To 200°C at 50% RH unless otherwise stated. ⁸⁷ To 200°C at 50% RH unless otherwise stated. ⁸⁸ To 200°C at 50% RH unless otherwise stated. ⁸⁹ To 200°C at 50% RH unless otherwise stated. ⁹⁰ To 200°C at 50% RH unless otherwise stated. ⁹¹ To 200°C at 50% RH unless otherwise stated. ⁹² To 200°C at 50% RH unless otherwise stated. ⁹³ To 200°C at 50% RH unless otherwise stated. ⁹⁴ To 200°C at 50% RH unless otherwise stated. ⁹⁵ To 200°C at 50% RH unless otherwise stated. ⁹⁶ To 200°C at 50% RH unless otherwise stated. ⁹⁷ To 200°C at 50% RH unless otherwise stated. ⁹⁸ To 200°C at 50% RH unless otherwise stated. ⁹⁹ To 200°C at 50% RH unless otherwise stated. ¹⁰⁰ To 200°C at 50% RH unless otherwise stated. ¹⁰¹ To 200°C at 50% RH unless otherwise stated. ¹⁰² To 200°C at 50% RH unless otherwise stated. ¹⁰³ To 200°C at 50% RH unless otherwise stated. ¹⁰⁴ To 200°C at 50% RH unless otherwise stated. ¹⁰⁵ To 200°C at 50% RH unless otherwise stated. ¹⁰⁶ To 200°C at 50% RH unless otherwise stated. ¹⁰⁷ To 200°C at 50% RH unless otherwise stated. ¹⁰⁸ To 200°C at 50% RH unless otherwise stated. ¹⁰⁹ To 200°C at 50% RH unless otherwise stated. ¹¹⁰ To 200°C at 50% RH unless otherwise stated. ¹¹¹ To 200°C at 50% RH unless otherwise stated. ¹¹² To 200°C at 50% RH unless otherwise stated. ¹¹³ To 200°C at 50% RH unless otherwise stated. ¹¹⁴ To 200°C at 50% RH unless otherwise stated. ¹¹⁵ To 200°C at 50% RH unless otherwise stated. ¹¹⁶ To 200°C at 50% RH unless otherwise stated. ¹¹⁷ To 200°C at 50% RH unless otherwise stated. ¹¹⁸ To 200°C at 50% RH unless otherwise stated. ¹¹⁹ To 200°C at 50% RH unless otherwise stated. ¹²⁰ To 200°C at 50% RH unless otherwise stated. ¹²¹ To 200°C at 50% RH unless otherwise stated. ¹²² To 200°C at 50% RH unless otherwise stated. ¹²³ To 200°C at 50% RH unless otherwise stated. ¹²⁴ To 200°C at 50% RH unless otherwise stated. ¹²⁵ To 200°C at 50% RH unless otherwise stated. ¹²⁶ To 200°C at 50% RH unless otherwise stated. ¹²⁷ To 200°C at 50% RH unless otherwise stated. ¹²⁸ To 200°C at 50% RH unless otherwise stated. ¹²⁹ To 200°C at 50% RH unless otherwise stated. ¹³⁰ To 200°C at 50% RH unless otherwise stated. ¹³¹ To 200°C at 50% RH unless otherwise stated. ¹³² To 200°C at 50% RH unless otherwise stated. ¹³³ To 200°C at 50% RH unless otherwise stated. ¹³⁴ To 200°C at 50% RH unless otherwise stated. ¹³⁵ To 200°C at 50% RH unless otherwise stated. ¹³⁶ To 200°C at 50% RH unless otherwise stated. ¹³⁷ To 200°C at 50% RH unless otherwise stated. ¹³⁸ To 200°C at 50% RH unless otherwise stated. ¹³⁹ To 200°C at 50% RH unless otherwise stated. ¹⁴⁰ To 200°C at 50% RH unless otherwise stated. ¹⁴¹ To 200°C at 50% RH unless otherwise stated. ¹⁴² To 200°C at 50% RH unless otherwise stated. ¹⁴³ To 200°C at 50% RH unless otherwise stated. ¹⁴⁴ To 200°C at 50% RH unless otherwise stated. ¹⁴⁵ To 200°C at 50% RH unless otherwise stated. ¹⁴⁶ To 200°C at 50% RH unless otherwise stated. ¹⁴⁷ To 200°C at 50% RH unless otherwise stated. ¹⁴⁸ To 200°C at 50% RH unless otherwise stated. ¹⁴⁹ To 200°C at 50% RH unless otherwise stated. ¹⁵⁰ To 200°C at 50% RH unless otherwise stated. ¹⁵¹ To 200°C at 50% RH unless otherwise stated. ¹⁵² To 200°C at 50% RH unless otherwise stated. ¹⁵³ To 200°C at 50% RH unless otherwise stated. ¹⁵⁴ To 200°C at 50% RH unless otherwise stated. ¹⁵⁵ To 200°C at 50% RH unless otherwise stated. ¹⁵⁶ To 200°C at 50% RH unless otherwise stated. ¹⁵⁷ To 200°C at 50% RH unless otherwise stated. ¹⁵⁸ To 200°C at 50% RH unless otherwise stated. ¹⁵⁹ To 200°C at 50% RH unless otherwise stated. ¹⁶⁰ To 200°C at 50% RH unless otherwise stated. ¹⁶¹ To 200°C at 50% RH unless otherwise stated. ¹⁶² To 200°C at 50% RH unless otherwise stated. ¹⁶³ To 200°C at 50% RH unless otherwise stated. ¹⁶⁴ To 200°C at 50% RH unless otherwise stated. ¹⁶⁵ To 200°C at 50% RH unless otherwise stated. ¹⁶⁶ To 200°C at 50% RH unless otherwise stated. ¹⁶⁷ To 200°C at 50% RH unless otherwise stated. ¹⁶⁸ To 200°C at 50% RH unless otherwise stated. ¹⁶⁹ To 200°C at 50% RH unless otherwise stated. ¹⁷⁰ To 200°C at 50% RH unless otherwise stated. ¹⁷¹ To 200°C at 50% RH unless otherwise stated. ¹⁷² To 200°C at 50% RH unless otherwise stated. ¹⁷³ To 200°C at 50% RH unless otherwise stated. ¹⁷⁴ To 200°C at 50% RH unless otherwise stated. ¹⁷⁵ To 200°C at 50% RH unless otherwise stated. ¹⁷⁶ To 200°C at 50% RH unless otherwise stated. ¹⁷⁷ To 200°C at 50% RH unless otherwise stated. ¹⁷⁸ To 200°C at 50% RH unless otherwise stated. ¹⁷⁹ To 200°C at 50% RH unless otherwise stated. ¹⁸⁰ To 200°C at 50% RH unless otherwise stated. ¹⁸¹ To 200°C at 50% RH unless otherwise stated. ¹⁸² To 200°C at 50% RH unless otherwise stated. ¹⁸³ To 200°C at 50% RH unless otherwise stated. ¹⁸⁴ To 200°C at 50% RH unless otherwise stated. ¹⁸⁵ To 200°C at 50% RH unless otherwise stated. ¹⁸⁶ To 200°C at 50% RH unless otherwise stated. ¹⁸⁷ To 200°C at 50% RH unless otherwise stated. ¹⁸⁸ To 200°C at 50% RH unless otherwise stated. ¹⁸⁹ To 200°C at 50% RH unless otherwise stated. ¹⁹⁰ To 200°C at 50% RH unless otherwise stated. ¹⁹¹ To 200°C at 50% RH unless otherwise stated. ¹⁹² To 200°C at 50% RH unless otherwise stated. ¹⁹³ To 200°C at 50% RH unless otherwise stated. ¹⁹⁴ To 200°C at 50% RH unless otherwise stated. ¹⁹⁵ To 200°C at 50% RH unless otherwise stated. ¹⁹⁶ To 200°C at 50% RH unless otherwise stated. ¹⁹⁷ To 200°C at 50% RH unless otherwise stated. ¹⁹⁸ To 200°C at 50% RH unless otherwise stated. ¹⁹⁹ To 200°C at 50% RH unless otherwise stated. ²⁰⁰ To 200°C at 50% RH unless otherwise stated. ²⁰¹ To 200°C at 50% RH unless otherwise stated. ²⁰² To 200°C at 50% RH unless otherwise stated. ²⁰³ To 200°C at 50% RH unless otherwise stated. ²⁰⁴ To 200°C at 50% RH unless otherwise stated. ²⁰⁵ To 200°C at 50% RH unless otherwise stated. ²⁰⁶ To 200°C at 50% RH unless otherwise stated. ²⁰⁷ To 200°C at 50% RH unless otherwise stated. ²⁰⁸ To 200°C at 50% RH unless otherwise stated. ²⁰⁹ To 200°C at 50% RH unless otherwise stated. ²¹⁰ To 200°C at 50% RH unless otherwise stated. ²¹¹ To 200°C at 50% RH unless otherwise stated. ²¹² To 200°C at 50% RH unless otherwise stated. ²¹³ To 200°C at 50% RH unless otherwise stated. ²¹⁴ To 200°C at 50% RH unless otherwise stated. ²¹⁵ To 200°C at 50% RH unless otherwise stated. ²¹⁶ To 200°C at 50% RH unless otherwise stated. ²¹⁷ To 200°C at 50% RH unless otherwise stated. ²¹⁸ To 200°C at 50% RH unless otherwise stated. ²¹⁹ To 200°C at 50% RH unless otherwise stated. ²²⁰ To 200°C at 50% RH unless otherwise stated. ²²¹ To 200°C at 50% RH unless otherwise stated. ²²² To 200°C at 50% RH unless otherwise stated. ²²³ To 200°C at 50% RH unless otherwise stated. ²²⁴ To 200°C at 50% RH unless otherwise stated. ²²⁵ To 200°C at 50% RH unless otherwise stated. ²²⁶ To 200°C at 50% RH unless otherwise stated. ²²⁷ To 200°C at 50% RH unless otherwise stated. ²²⁸ To 200°C at 50% RH unless otherwise stated. ²²⁹ To 200°C at 50% RH unless otherwise stated. ²³⁰ To 200°C at 50% RH unless otherwise stated. ²³¹ To 200°C at 50% RH unless otherwise stated. ²³² To 200°C at 50% RH unless otherwise stated. ²³³ To 200°C at 50% RH unless otherwise stated. ²³⁴ To 200°C at 50% RH unless otherwise stated. ²³⁵ To 200°C at 50% RH unless otherwise stated. ²³⁶ To 200°C at 50% RH unless otherwise stated. ²³⁷ To 200°C at 50% RH unless otherwise stated. ²³⁸ To 200°C at 50% RH unless otherwise stated. ²³⁹ To 200°C at 50% RH unless otherwise stated. ²⁴⁰ To 200°C at 50% RH unless otherwise stated. ²⁴¹ To 200°C at 50% RH unless otherwise stated. ²⁴² To 200°C at 50% RH unless otherwise stated. ²⁴³ To 200°C at 50% RH unless otherwise stated. ²⁴⁴ To 200°C at 50% RH unless otherwise stated. ²⁴⁵ To 200°C at 50% RH unless otherwise stated. ²⁴⁶ To 200°C at 50% RH unless otherwise stated. ²⁴⁷ To 200°C at 50% RH unless otherwise stated. ²⁴⁸ To 200°C at 50% RH unless otherwise stated. ²⁴⁹ To 200°C at 50% RH unless otherwise stated. ²⁵⁰ To 200°C at 50% RH unless otherwise stated. ²⁵¹ To 200°C at 50% RH unless otherwise stated. ²⁵² To 200°C at 50% RH unless otherwise stated. ²⁵³ To 200°C at 50% RH unless otherwise stated. ²⁵⁴ To 200°C at 50% RH unless otherwise stated. ²⁵⁵ To 200°C at 50% RH unless otherwise stated. ²⁵⁶ To 200°C at 50% RH unless otherwise stated. ²⁵⁷ To 200°C at 50% RH unless otherwise stated. ²⁵⁸ To 200°C at 50% RH unless otherwise stated. ²⁵⁹ To 200°C at 50% RH unless otherwise stated. ²⁶⁰ To 200°C at 50% RH unless otherwise stated. ²⁶¹ To 200°C at 50% RH unless otherwise stated. ²⁶² To 200°C at 50% RH unless otherwise stated. ²⁶³ To 200°C at 50% RH unless otherwise stated. ²⁶⁴ To 200°C at 50% RH unless otherwise stated. ²⁶⁵ To 200°C at 50% RH unless otherwise stated. ²⁶⁶ To 200°C at 50% RH unless otherwise stated. ²⁶⁷ To 200°C at 50% RH unless otherwise stated. ²⁶⁸ To 200°C at 50% RH unless otherwise stated. ²⁶⁹ To 200°C at 50% RH unless otherwise stated. ²⁷⁰ To 200°C at 50% RH unless otherwise stated. ²⁷¹ To 200°C at 50% RH unless otherwise stated. ²⁷² To 200°C at 50% RH unless otherwise stated. ²⁷³ To 200°C at 50% RH unless otherwise stated. ²⁷⁴ To 200°C at 50% RH unless otherwise stated. ²⁷⁵ To 200°C at 50% RH unless otherwise stated. ²⁷⁶ To 200°C at 50% RH unless otherwise stated. ²⁷⁷ To 200°C at


physical properties of Santoprene® thermoplastic rubber

environmental stability

The environmental stability of SANTOPRENE rubber is excellent, exceeding many thermoset rubbers. Table III illustrates the retention of physical properties for SANTOPRENE rubber grades 101-73 and 103-40 after exposure in a xenon arc weatherometer. The retention of tensile strength, elongation and 100% modulus after 2000 hours exceeds 90% in all cases.

Many thermoset rubbers deteriorate when they have prolonged exposure to air, oxygen or ozone. SANTOPRENE rubber is designed to be resistant to these gases, with its ozone resistance rated as outstanding. Testing according to ASTM D-518 demonstrates that all grades surpass the required criteria after 70 hours in 50 ppmh ozone.

Extensive heat-aging of thermoset rubber compounds frequently causes a severe change

SANTOPRENE rubber has excellent heat aging characteristics.

in mechanical properties. Table IV illustrates the retention of tensile strength, elongation and 100% modulus for SANTOPRENE rubber after hot-air aging for up to 1000 hours (41.7 days) at 125°C.

SANTOPRENE rubber shows less than a 25% change in these mechanical properties at all conditions. This excellent hot-air aging represents a significant performance advantage compared to most thermoset rubber compounds. Improved heat aging can be achieved by additives designed for this purpose.

SANTOPRENE rubber has superior static and dynamic ozone resistance.

weatherability of Santoprene® rubber in xenon arc weatherometer,
percent retention of tensile properties after exposure¹

TABLE III.

Time, Hrs.	SANTOPRENE RUBBER 101-73			SANTOPRENE RUBBER 103-40		
	Tensile Strength	Elonga- tion	100% Modulus	Tensile Strength	Elonga- tion	100% Modulus
1000	103%	94%	104%	101%	98%	105%
2000	102%	94%	106%	107%	100%	107%

heat aging, percent retention of mechanical properties
for Santoprene rubber at 125°C¹

TABLE IV.

SANTOPRENE Rubber Grade, Property	1 Day (24 hrs.)	7 Days (168 hrs.)	15 Days (360 hrs.)	30 Days (720 hrs.)	41.7 Days (1000 hrs.)
201-55, 101-55					
Change in hardness, Shore A units	+2	+3	+5	+3	+7
Tensile Strength	92.0	101.0	99.0	80.0	88.0
% Elongation	86.0	97.0	104.0	92.0	99.0
100% Modulus	107.0	106.0	104.0	105.0	110.0
201-64, 101-64					
Change in hardness, Shore A units	0	0	0	+3	+3
Tensile Strength	96.1	94.1	103.0	113.9	112.8
% Elongation	88.9	88.9	93.6	101.3	100.5
100% Modulus	102.8	105.7	103.4	107.7	109.9
201-73, 101-73					
Change in hardness, Shore A units	-1	-1	0	+2	+4
Tensile Strength	93.7	100.0	105.1	119.8	107.9
% Elongation	87.4	97.7	98.2	105.1	89.2
100% Modulus	100.6	103.1	103.5	106.9	112.1
201-80, 101-80					
Change in hardness, Shore A units	-1	-1	0	+2	+2
Tensile Strength	96.6	96.5	107.1	102.5	92.8
% Elongation	92.1	89.1	91.7	83.2	73.3
100% Modulus	105.5	110.3	111.5	116.3	121.7
201-87, 101-87					
Change in hardness, Shore A units	-3	-2	-3	-1	0
Tensile Strength	95.4	94.2	98.8	96.4	85.4
% Elongation	89.1	85.4	83.5	80.1	67.5
100% Modulus	107.2	107.5	113.6	116.6	120.0
203-40, 103-40					
Change in hardness, Shore D units	-1	-1	+2	+3	+4
Tensile Strength	98.8	96.5	97.6	97.4	93.9
% Elongation	89.8	83.3	83.6	78.9	71.0
100% Modulus	106.6	111.8	112.4	118.3	126.6
203-50, 103-50					
Change in hardness, Shore D units	0	0	+1	+3	+4
Tensile Strength	98.8	100.8	98.6	93.1	92.9
% Elongation	97.5	94.4	87.3	83.9	84.8
100% Modulus	115.4	119.2	121.6	121.6	124.9

PART 2
Range Test Verification

DEFENCE
RESEARCH
AGENCY

FRASER, PORTSMOUTH PO4 9LJ

CIVIL MARINE GROUP
SART RANGE TEST REPORT

No: TT 42/92/1 Date of Issue 27/4/1992

SPECIFICATION of TEST IEC 1097 First Edition 1992-07 Part 1
Test Requirement Para 3.7. Range Performance (Page 15)

Equipment under test Date(s) 14 April 1993
Manufacturer Plessey Tellumat **Serial No** 00077
Model or type TelluSART Mk.1 **Date of Manufacture** 1992
Submitted by Assessment Services **Address** Segensworth Road
Titchfield Fareham Hampshire PO15 5RH

Range Details

Radar site Fraser, Eastney Target site Bracklesham Bay Separation 7.25 nm

Radar installation Details

Test Radar FR-1505DA **Manufacturer** Furuno **Serial No** 343-0318
Frequency 9.410 GHz **Output power** 5 Kw Peak **PRF** 1200 Hz
Antenna Height 15 metres **Antenna size** 1.23m **Pulse width** 0.6uS

Environmental Conditions

Sea state 3-4 **Visibility** Approx 5 nm **Tide** Low - 2hrs

Performance Checks Date 14 April 1993 Time 1000 - 1100

SART response was tested as defined in above specification with an X Band marine radar meeting IMO Resolution A477(XII).
Screen photographs were taken using a Polaroid screen camera.

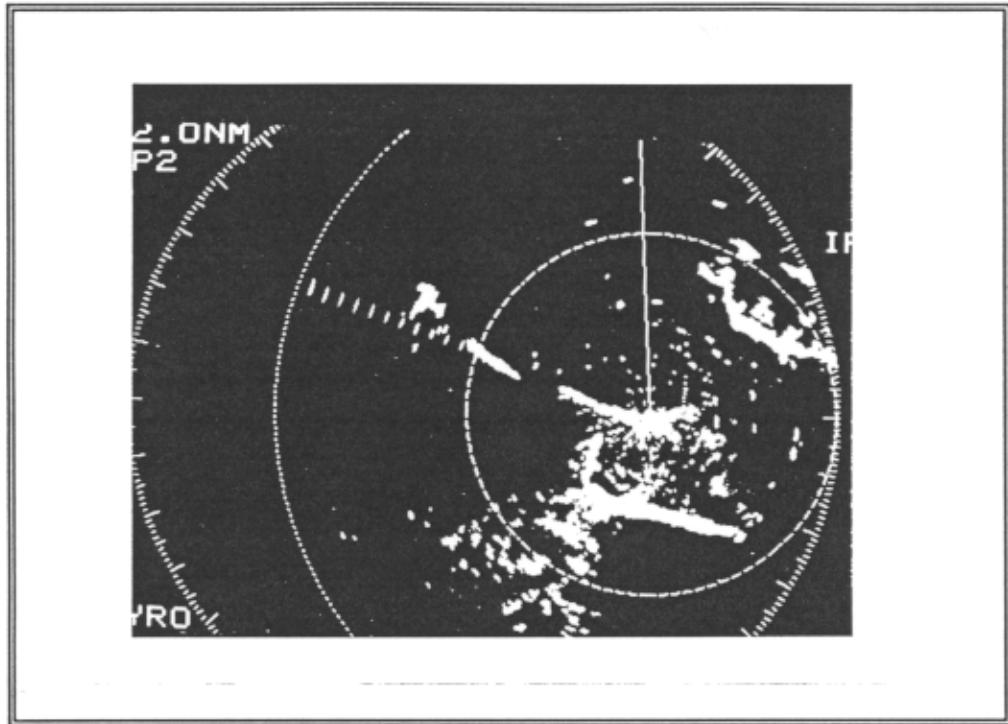
No of Photographs taken 3 (1 enclosed) **RESULT** Satisfactory / Unsatisfactory

Remarks

Test was conducted with the SART positioned at the waters edge with the lowest part of the antenna set at 1 metre above the surface of the sea and in line of sight to the radar antenna at Fraser Range over a sea path.

Signature

Officer conducting tests Mr. J. Hiscock



DEFENCE
RESEARCH
AGENCY

FRASER, PORTSMOUTH PO4 9LJ

CIVIL MARINE GROUP
SART RANGE TEST REPORT

No: TT 42/92/1 Date of Issue 27/4/1992

SART Response during testing

Signature

Officer conducting tests

Mr J. Hiscock

DEFENCE
RESEARCH
AGENCY

FRASER, PORTSMOUTH PO4 9LJ

CIVIL MARINE GROUP
SART RECEIVER FRONT END
PROTECTION TEST REPORT

No: TT 42/92/1 Date of Issue 27/4/1992

SPECIFICATION of TEST IEC 1097 First Edition 1992-07 Part 1

Test Requirement Para 5 Note 1.4 Receiver Front End Protection

Equipment under test Date(s) 14 April 1993

Manufacturer Plessey Tellumat **Serial No** 00077

Model or type TelluSART Mk 1 **Date of Manufacture** 1992

Submitted by Assessment Services **Address** Segensworth Road
Titchfield Fareham Hampshire PO15 5RH

Radar installation Details

Test Radar Pathfinder **Manufacturer** Raytheon **Serial No** 50-9248

Frequency 9.375 GHz **Output power** 50 Kw Peak **PRF** 1800 Hz

Antenna Height 15 metres **Antenna size** 1.83m **Pulse width** 0.5us

Performance Checks Date 14 April 1992 Time 1000 - 1100

SART response was tested as defined in above specification with an X Band marine radar meeting IMO Resolution A477(XII).
Screen photographs were taken using a Polaroid screen camera.

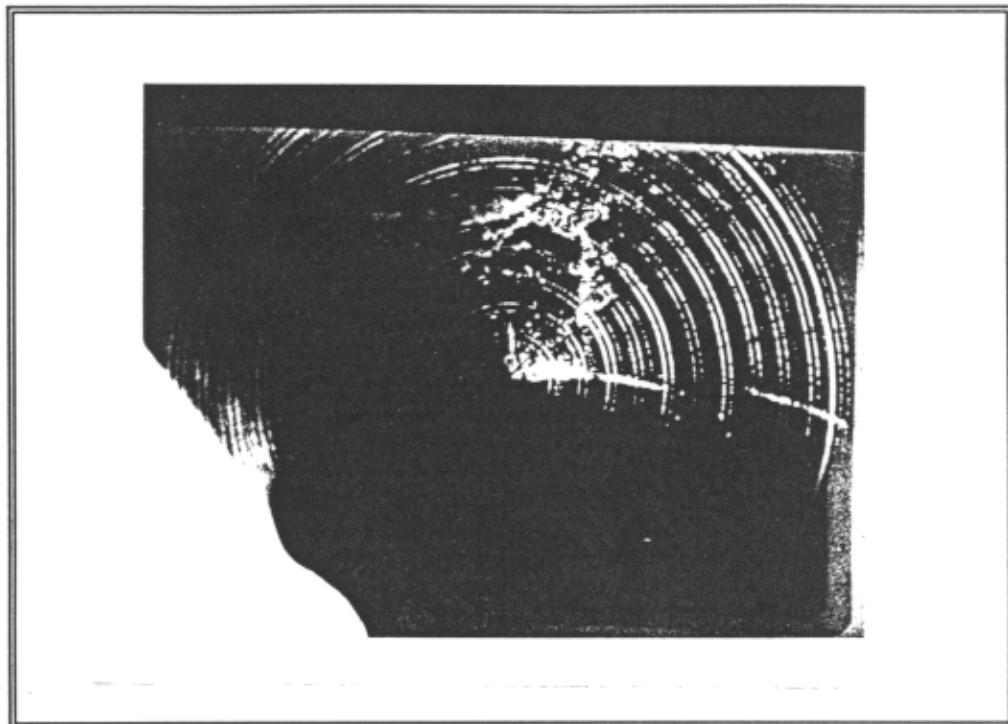
No of Photographs taken 3 (1 enclosed) **RESULT** Satisfactory / Unsatisfactory

Remarks

Test was conducted with the SART positioned at the distance required to give the specified radiated field. The SART was switched on and the response was monitored on the test radar.

Signature

Officer conducting tests Mr. J. Hiscock



FRASER, PORTSMOUTH PO4 9LJ

DEFENCE
RESEARCH
AGENCY

CIVIL MARINE GROUP
SART RECEIVER FRONT END
PROTECTION TEST REPORT

No: TT 42/92/1 Date of Issue 27/4/1992

SART Response during testing

Signature

Officer conducting tests

Mr. J. Hiscock