

**Playmates Asia Services Limited/
Playmates Toys International Limited**

Application
For
Certification
(FCC ID: O3U-98231)

Transmitter

Sample Description : Amazing Lexie
Model : 98231

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator,
mention 47 CFR [4-5-2007]

0715878
TL/at
July 31, 2007

- The test results reported in this report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Intertek Testing Services Hong Kong Limited.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

FCC ID : O3U-98231

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

**Playmates Asia Services Limited/
Playmates Toys International Limited - MODEL: 98231
FCC ID: O3U-98231**

July 31, 2007

This report concerns (check one): Original Grant Class II Change

Equipment Type: Low Power Transmitter

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes No

If yes, defer until: _____
date _____

Company Name agrees to notify the Commission by: _____

date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes No X

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [4-5-2007 Edition] provision.

Report prepared by: Leung Wai Leung, Tommy
Intertek Testing Services
2/F., Garment Center,
576, Castle Peak Road,
HONG KONG
Phone: 852-2173-8517
Fax: 852-2742-9149

INTERTEK TESTING SERVICES

Table of Contents

1.0	<u>General Description</u>	2
1.1	Product Description	2
1.2	Related Submittal(s) Grants	2
1.3	Test Methodology	3
1.4	Test Facility	3
2.0	<u>System Test Configuration</u>	5
2.1	Justification	5
2.2	EUT Exercising Software	5
2.3	Special Accessories	5
2.4	Equipment Modification	6
2.5	Measurement Uncertainty	6
2.6	Support Equipment List and Description	6
3.0	<u>Emission Results</u>	8
3.1	Field Strength Calculation	9
3.2	Radiated Emission Configuration Photograph	11
3.3	Radiated Emission Data	12
3.4	Frequency Tolerance	15
4.0	<u>Equipment Photographs</u>	17
5.0	<u>Product Labelling</u>	19
6.0	<u>Technical Specifications</u>	21
7.0	<u>Instruction Manual</u>	23
8.0	<u>Miscellaneous Information</u>	25
8.1	Measured Bandwidth	26
8.2	Emission Test Procedures	27

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.pdf
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated photos.doc
Test Report	Bandwidth Plot	bw.pdf
External Photo	External Photo	external photos.doc
Internal Photo	Internal Photo	internal photos1.doc to internal photos4.doc
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf

INTERTEK TESTING SERVICES

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The equipment under test (EUT) is a transmitter for an inductive toy dog (tag reader) operating at 13.56 MHz which is controlled by a crystal. The EUT is powered by four C size batteries. This toy consists of a toy dog (tag reader), a cell phone and doggy bone (passive-type tags), a dress and a carry bag (accessories having a snap connector with resistor inside) and a hairbrush (accessory with magnet inside). The EUT has a power on/off switch, a reset button and a speaker near the battery compartment, two control buttons on the neck, a touch sensor on the back, a relay switch and a microphone on the head, a RF tag sensor in the mouth and a snap connector on the collar. The features of the toy dog are listed below.

- the RF tag sensor in the mouth is used to detect the cell phone and the doggy bone.
- the relay on the head is used to detect the hairbrush.
- the snap connector on the collar is used to detect the dress and carry bag.
- the microphone is used for voice controlling when the user talks with the dog.
- the two control buttons on the neck are used to set time/date and to select game modes.
- the touch sensor on the back is used to wake up the toy when sleep and the toy will give response to the user when touch it.
- the speaker is used to generate sound effects and give instructions to the user.

The brief circuit description is saved with filename : descri.pdf

1.2 Related Submittal(s) Grants

The receiver for this transmitter is exempted from the Part 15 technical rules per 15.101(b).

INTERTEK TESTING SERVICES

1.3 Test Methodology

The radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Justification Section"** of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

INTERTEK TESTING SERVICES

EXHIBIT 2

SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The EUT was powered by four C size batteries during test.

For maximizing emission below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emission above 30 MHz, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The EUT was placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on the turntable and rotate through 360°, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

The EUT could transmit continuously when it switched on.

2.2 EUT Exercising Software

There was no special software to exercise the device.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

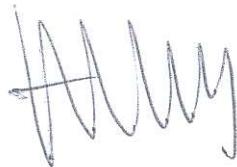
2.4 Equipment Modification

Any modifications installed previous to testing by Playmates Asia Services Limited/Playmates Toys International Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Measurement Uncertainty

When determining the test conclusion, the measurement uncertainty of test has been considered.


2.6 Support Equipment List and Description

The corresponding accessories.

All the items listed under section 2.0 of this report are

Confirmed by:

*Leung Wai Leung, Tommy
Manager
Intertek Testing Services
Agent for Playmates Asia Services Limited/
Playmates Toys International Limited*

Signature

July 31, 2007 _____ Date

INTERTEK TESTING SERVICES

EXHIBIT 3

EMISSION RESULTS

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$$

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission

54.240 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos.doc

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 5.8 dB

TEST PERSONNEL:

Signature

Gary K. M. Li, Compliance Engineer
Typed/Printed Name

July 31, 2007

Date

INTERTEK TESTING SERVICES

Company: Playmates Asia Services Limited/
Playmates Toys International Limited

Date of Test: July 10, 2007

Model: 98231

Mode: TX

Sample: 1/2

Table 1

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Distance Factor (-dB)	Calculated at 30m (dB μ V/m)	Limit at 30m (dB μ V/m)	Margin (dB)
V	13.564	40.0	10.8	0.0	50.8	40.0	10.8	84.0	-73.2
V	27.120	24.1	9.5	0.0	33.6	40.0	-6.4	29.5	-35.9

Table 2

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	40.680	40.1	10	16	34.1	40.0	-5.9
V	54.240	39.2	11	16	34.2	40.0	-5.8
V	67.800	41.9	8	16	33.9	40.0	-6.1
V	81.360	42.4	7	16	33.4	40.0	-6.6
V	94.920	38.2	11	16	33.2	43.5	-10.3
V	108.480	32.9	14	16	30.9	43.5	-12.6
V	122.040	32.2	14	16	30.2	43.5	-13.3
V	135.600	32.1	14	16	30.1	43.5	-13.4

Notes:

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3 meter distance were measured at 0.3 meter and an inverse proportional extrapolation was performed to compare the signal level to the 3 meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3 meter.
3. Negative value in the margin column shows emission below limit.
4. Loop antenna is used for emissions below 30 MHz.
5. Worst case emissions were measured.

Test Engineer: Gary K. M. Li

INTERTEK TESTING SERVICES

Company: Playmates Asia Services Limited/
Playmates Toys International Limited

Date of Test: July 10, 2007

Model: 98231

Mode: Operation

Sample: 1/2

Table 3

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre- Amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	38.496	35.4	16	10	29.4	40	-10.6
V	43.869	35.2	16	10	29.2	40	-10.8
V	52.248	33.6	16	11	28.6	40	-11.4
V	55.731	33.4	16	11	28.4	40	-11.6
V	63.256	34.9	16	9	27.9	40	-12.1
V	72.483	36.2	16	7	27.2	40	-12.8

Notes: Negative signs (-) in the margin column signify levels below the limit.

Test Engineer: Gary M. K. Li

FCC ID: O3U-98231

INTERTEK TESTING SERVICES

3.4 Frequency Tolerance

FCC Part 15 Section 15.225(e)

Data Table
Frequency tolerance of Transmitter
(Temperature Variation : -20°C to +50°C)

Operating frequency			13.563856 MHz	
Test Voltage (V)	Temperature (°C)	Measured frequency (MHz)	Frequency shift (%)	Limit (%)
6	+50	13.563927	+0.00052	±0.01
	+40	13.563880	+0.00018	±0.01
	+30	13.563867	+0.00008	±0.01
	+20	13.563856	0	±0.01
	+10	13.563824	-0.00024	±0.01
	0	13.563793	-0.00046	±0.01
	-10	13.563757	-0.00073	±0.01
	-20	13.563725	-0.00097	±0.01

We found that the EUT met the requirement of FCC Part 15 Section 15.225(e).

Test Engineer: Gary K. M. Li

INTERTEK TESTING SERVICES

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename:
external photos.doc and internal photos1.doc to internal photos4.doc

INTERTEK TESTING SERVICES

EXHIBIT 5

PRODUCT LABELLING

INTERTEK TESTING SERVICES

5.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf

INTERTEK TESTING SERVICES

EXHIBIT 6

TECHNICAL SPECIFICATIONS

INTERTEK TESTING SERVICES

6.0 Technical Specifications

For electronic filing, the block diagram and schematics are saved with filename: block.pdf and circuit.pdf

INTERTEK TESTING SERVICES

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf

INTERTEK TESTING SERVICES

EXHIBIT 8

MISCELLANEOUS INFORMATION

INTERTEK TESTING SERVICES

8.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandwidth and the test procedure.

INTERTEK TESTING SERVICES

8.1 Measured Bandwidth

The plot saved in bw.pdf which shows the fundamental emission is confined in the specified band. The fundamental emission is 10.8 dB μ V/m at 30m. It meets the requirement of Section 15.225(b), (c), & (d).

Figure 8.1 Bandwidth

INTERTEK TESTING SERVICES

8.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

INTERTEK TESTING SERVICES

8.2 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.