

1.) Please resubmit Exhibit 5 the Schematics, they are unreadable.

Gary Slater (KTL) has submitted Schematics again on-line (20-09-02).

2.) Please submit a Block Diagram Exhibit 4 per Section 2.1033 of the FCC Rules.

Gary Slater (KTL) has submitted Block Diagrams again on-line.(20-09-02)

3.) What are the analyzer settings for the conducted power measurements?

Res Bandwidth 3MHz & Video Bandwidth 30 Hz

4.) What are the analyzer settings for the occupied bandwidth plots?

Res Bandwidth 300 Hz & Video Bandwidth 300 Hz

5.) What is the emission designator for Section 90.210 (j)?

10KF1D

6.) On page 25 of test report, what rule part did the mask come from? What are the analyzer settings?

Rule part 24 Section 24.133(a)(2), Res Bandwidth 300 Hz & Video Bandwidth 300 Hz

7.) Please submit plots showing band edge compliance for Section 24 (901-902 MHz).

Plots to follow (should be submitted on-line to the FCC by KTL during the week starting 30-09-02)

8.) What is the emission designator for Section 24?

10KF1D

9.) Please note that the attenuation requirement for radiated spurious emissions is referenced to the desired signal yielding dBc. The attenuation specification is not XX uV/M, or derived from absolute value of the field strength. The dBc is determined from the substitution method such as described in the ANSI/TIA/EIA-603-A-2001 document.

Testing was performed using substitution method, hence results are in terms of ERP in dBm rather than field strength in dBuV/m, is further clarification required?.

What is needed is a determination of the actual power levels necessary to reproduce these field strength levels. Those power levels (from a signal generator source and a dipole antenna replacing the EUT) are then compared to the power output of the transmitter to determine dBc. That is the basis of the "substitution method".

Please submit data / results obtained in this manner.

see above

10.) It is unclear how you did the conducted spurious at the antenna terminal measurement. Please submit a test procedure for this measurement. It appears the substitution signal generator accounts for 20 dB attenuator plus the cable loss Please verify.

Conducted spurious emissions were performed by connecting the output of the unit under test into the input of a spectrum analyser via a 20 dB attenuator to prevent overload. At each frequency at which emissions were detected, the equipment under test was substituted with a signal generator tuned to the emission frequency. The level was adjusted to give the same level on the spectrum analyser display as the emission. The signal generator output level was then recorded and compared to the test limit.

11.) What is the maximum gain of the antenna(s) that can be used with this device.

The maximum antenna gain is 2.5dBi.

12.) The RF Exposure is unexceptionable. Please resubmit an MPE calculation based on the maximum antenna gain if this device can be used for mobile applications. If this device is used only for fixed applications submit a statement indicating this.

Since the device can be mobile or portable SAR measurements will follow.

13.) Is this device used for mobile operations, fixed operations or both?

The device is Mobile as well as portable.

14.) You have requested confidentiality. However, there is no letter exhibit requesting confidentiality. Please submit a signed letter requesting confidentiality. Letter should include a list of exhibits to be marked confidential. Letter should include a brief explanation as to why confidentiality is requested.

See attachment supplied on-line: Confidential.tif

16.) Provide some antenna installation instructions and RF exposure information in the User's Manual. What antenna(s) will be used with the device?

As soon we have done SAR information the user manual will be updated with installation instruction and RF exposure.

17.) Indicate whether the device is capable of operating at the lower output power. Indicate whether the power is switchable between the higher and lower power or variable throughout the range from the highest to the lowest power.

Power is switchable over 8 steps, 3dB per step.

18.) Specifically justify use of the device under part 24. What specific Subpart will the device be used for?

Justification is that the Equipment operates in the 901 to 902 MHz band and I believe it operates with PCS equipment, and would therefore come under the scope of Subpart D (Narrowband PCS)