Planned | mplementation of FCC I dentifier

Two levels of FCC identifier embedding are planned

The FCC identifier is embedded as part of the maintenance packets/cell in Harmonix's
GigalLink system. This alows the transmisson of the FCC identifier to become
transparent to the data communication over the radio system and alows the user to
monitor from a central location the hedlth of radio devices that make up the network.
Specificaly, the FCC identifier is embedded in SNMP packets OAM cdlls. OAM cdl is
required to be present every 26 ATM cdlls. Snce ATM Cdls are 53 Byteslong, This
OAM cells appears every 0.000073 second for OC-3 and every 0.000018 second OC-12.
Other ATM spec requires minimum data repetition not to exceed 2°3-1 bit long. If thereiis
no activitiesfor 223-1 (8,388,607) bits, the switch will inject an OAM cdll to maintain DC
baance. The drawback of this mechanism is that the FCC identifier, dong with device
serid number and the status of each radio on the network, is received and retranamitted
by dl the radiosin the network. Every radio in the network transmits the same serid
number.

The attached letter from Ms. Karen Rackley, Chief of the Technical Rule Branch of the
FCC dates that the commission's rules do not require the transmission of aunique
manufacturer's serial number for each unlicensad device that operates in the 59-64GHz
band, therefore one serid number can identify al transmitters operating as part of a
single communication system. (See attached paper.)

Also, attached istheillugrative sample of OAM (SNMP) structure and decoding
software source. The proposed 24-bytes user information is

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

In hex format :

68 74 74 70 3a 2f 2f 77 77 77 2e 67 69 67 61 6¢c 69 6e 6b 2e 6f 72 67 2f.

Federal Communications Commission
Washington, D.C. 20554

May 19, 1999

Mr. Mitchell Lazarus, Esq.
Fletcher, Heald & Hildreth, P.L.C.
11™ Floor, 1300 North 17" Street
Arlington, VA 22209-3801

Inre: Request for Waiver of Section 15.255(1)(2)
Dear Mr. Lazarus:

This is in response to your letter dated April 15, 1999, filed on behalf of Harmonix
Corporation (“Harmonix”) requesting waiver of Section 15.255(i)(2) of the
Commission’s rules. Specifically, you requested a waiver of the serial number portion of
the transmitter identification requirements for unlicensed devices operating in the 59-64
GHz band.

In ET Docket 94-124, the Commission adopted a spectrum etiquette for unlicensed
operation in the 59-64 GHz band. The spectrum etiquette requires that any transmitter
which operates with a peak power equal to or greater than 0.1 mW must transmit once
every second a transmitter identification data block that contains the following: (1) FCC
identifier, which is programmed at the factory; (2) Manufacturers serial number, which is
programmed at the factory; and (3) at least 24 bytes of user definable data.

Harmonix requests waiver of the manufacturer's serial number provisions of the spectrum
etiquette. Specifically, Harmonix indicates that the requirement that each unit transmit a
unique serial number will add significantly to the cost of its equipment with no benefit.
Therefore, Harmonix requests that it be permitted to use the same serial number to
identify all transmitters that are part of a single communications system.

Our review of the record in ET Docket 94-124 shows that the Commission’s rules do not
require the transmission of a unique manufacturer’s serial number for each unlicensed
device that operates in the 59-64 GHz band. As a result, we find that the waiver request
is not necessary. If you have any additional questions regarding this matter please
contact Rodney Conway at (202) 418-2904 or via e-mail at rconway@fcc.gov.

Sincerely,

Honen K.

Karen Rackley, Chief
Technical Rules Branch
Office of Engineering and Technology

FCC ID in SNMP Packet format

Local Local
Network Hefder HgaD;er MSe,\sl!.;llaP e Network
Header 9 Trailer

Msg Header Msg Scoped
Version Data Security Parameters PDU Data
Context Context S
Engine ID Name £

11 digits Product

FCCID Unique Serials Data 24 bytes or more
"00-00-30-30"

3 Bytes FCC 4 Octets
Grantee ID | Organization
Unique ID

Sample code to view SNMP packet.

/* vl1.1 WnSNWP. h */
/* v1.0 - Sep 13, 1993 */
/* v1.1 - Jun 10, 1994 */

#i fndef _I NC_WNSNMP /* Include WnSNMP decl arations */
#define _INC_ WNSNWP /* Just once! */

#i fndef _INC_WNDOWS/* |nclude W ndows declarations, if not already done */
#i ncl ude <wi ndows. h>

#define _INC_W NDOWS /* Just once! */

#endi f /* _I NC_W NDOWS */

#i fdef __cplusplus
extern "C" {

#endi f

/* WnSNMP APl Type Definitions */

typedef HANDLE HSNMP_SESSI ON, FAR * LPHSNMP_SESSI ON;
typedef HANDLE HSNMP_ENTI TY, FAR * LPHSNMP_ENTI TY;
typedef HANDLE HSNMP_CONTEXT, FAR * LPHSNMP_CONTEXT;
typedef HANDLE HSNMP_PDU, FAR * LPHSNMP_PDU;
typedef HANDLE HSNMP_VBL, FAR * LPHSNWMP_VBL;
typedef unsigned char sm BYTE, FAR *sm LPBYTE;

/* SNMP-rel ated types from RFC1442 (SM) */

typedef signed |ong smi | NT, FAR *sm LPI NT;
typedef sm | NT sm | NT32, FAR *sm LPI NT32;
typedef unsigned |ong sm Ul NT32, FAR *sm LPUI NT32;

typedef struct {
sm Ul NT32 | en;

sm LPBYTE ptr;} sm OCTETS, FAR *sm LPOCTETS;
typedef const sm OCTETS FAR *sm LPCOCTETS;
typedef sm OCTETS sm BI TS, FAR *sm LPBITS;
typedef struct {

sm Ul NT32 | en;

sm LPU NT32 ptr;} sm O D, FAR *sm LPO D;
typedef const sm O D FAR *sm LPCOl D
typedef sm OCTETS sm | PADDR, FAR *sm LPI PADDR;
typedef sm Ul NT32 sm CNTR32, FAR *sm LPCNTR32;
typedef sm Ul NT32 sm GAUGE32, FAR *sm LPGAUGE32;
typedef sm Ul NT32 sm TI METI CKS, FAR *sm LPTI METI CKS;
typedef sm OCTETS sm OPAQUE, FAR *sm LPOPAQUE;
typedef sm OCTETS sm NSAPADDR, FAR *sm LPNSAPADDR;

typedef struct {
sm Ul NT32 hi part;
sm Ul NT32 lopart;} sm CNTR64, FAR *sm LPCNTR64;

/* ASN BER Base Types */
/* (used in form ng SYNTAXes and certain SNWP types/val ues) */

#define ASN_UNI VERSAL (0x00)
#def i neASN_APPLI CATI ON (0x40)
#def i neASN_CONTEXT (0x80)
#def i neASN_PRI VATE (0xCO)
#defi neASN_PRI M Tl VE (0x00)
#def i neASN_CONSTRUCTOR (0x20)

/* SNMP Obj ect Syntax Val ues */

#def i neSNVMP_SYNTAX_SEQUENCE (ASN_UNI VERSAL | ASN_CONSTRUCTOR | 0x10)

/* These values are used in the "syntax" menber of the sm VALUE structure which follows
*/

#def i ne SNMP_SYNTAX_I NT (ASN_UNI VERSAL | ASN_PRIM TIVE | 0x02)
#define SNMP_SYNTAX_BI TS (ASN_UNI VERSAL | ASN_PRIM TIVE | 0x03)
#def i ne SNMP_SYNTAX_OCTETS (ASN_UNI VERSAL | ASN_PRIM TIVE | 0x04)

#define SNMP_SYNTAX_NULL (ASN_UNI VERSAL | ASN_PRIM TIVE | 0x05)
#def i ne SNMP_SYNTAX_Ol D (ASN_UNI VERSAL | ASN_PRIM TIVE | 0x06)

#def i ne SNMP_SYNTAX_| NT32 SNMP_SYNTAX_| NT

#def i ne SNMP_SYNTAX_| PADDR (ASN_APPLI CATION | ASN_PRIM TIVE | 0x00)
#defi ne SNMP_SYNTAX_CNTR32 (ASN_APPLI CATION | ASN_PRIM TIVE | 0x01)
#def i ne SNMP_SYNTAX_GAUGE32 (ASN_APPLI CATI ON | ASN_PRIM TIVE | 0x02)
#define SNVP_SYNTAX_TI METI CKS(ASN_APPLI CATI ON | ASN_PRIM TIVE | 0x03)
#def i ne SNMP_SYNTAX_OPAQUE (ASN_APPLI CATION | ASN_PRIM TIVE | 0x04)
#def i ne SNMP_SYNTAX_NSAPADDR(ASN_APPLI CATI ON | ASN_PRIM TIVE | 0x05)
#def i ne SNMP_SYNTAX_CNTR64 (ASN_APPLI CATION | ASN_PRIM TIVE | 0x06)
#define SNMP_SYNTAX_UI NT32 (ASN_APPLI CATION | ASN_PRIM TIVE | 0x07)

/* Exception conditions in response PDUs for SNWPv2 */

#defi ne SNMP_SYNTAX_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRI M TIVE | 0x00)
#defi ne SNMP_SYNTAX_NOSUCHI NSTANCE (ASN_CONTEXT | ASN_PRIM TIVE | 0x01)
#defi ne SNMP_SYNTAX_ENDOFM BVI EW (ASN_CONTEXT | ASN_PRI M TIVE | 0x02)

typedef struct { /* sm VALUE portion of VarBind */
sm Ul NT32 synt ax; /* Insert SNMP_SYNTAX <type> */
uni on {
sm | NT sNunber ; /* SNMP_SYNTAX_I NT
SNMP_SYNTAX_| NT32 */
sm Ul NT32 uNunber ; /* SNMP_SYNTAX_UI NT32

SNMP_SYNTAX_CNTR32
SNMP_SYNTAX_GAUGE32
SNMP_SYNTAX_TI METI CKS */
SNMP_SYNTAX_CNTR64 */
SNMP_SYNTAX_OCTETS
SNMP_SYNTAX_BI TS
SNMP_SYNTAX_OPAQUE
SNMP_SYNTAX_| PADDR
SNMP_SYNTAX_NSAPADDR */
sm O D 0i d; /* SNMP_SYNTAX_ O D */
sm BYTEenpty; /* SNMP_SYNTAX_NULL
SNMP_SYNTAX_NOSUCHOBJ ECT
SNMP_SYNTAX_NOSUCHI NSTANCE
SNMP_SYNTAX_ENDOFM BVI EW */
} val ue; /* union */
} sm VALUE, FAR *sm LPVALUE;
typedef const sm VALUE FAR *sm LPCVALUE;

sm CNTR64 hNumber ;
sm OCTETS string;

~ -
*

/* SNMP Limts */
#defi ne MAXOBJI DSI ZE 128 /* Max nunber of conmponents in an O D */
#defi ne MAXOBJI DSTRSI ZE 1408 /* Max len of decoded MAXOBJIDSIZE O D */

/* PDU Type Val ues */

#defi ne SNMP_PDU_GET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0xO0)

#defi ne SNMP_PDU_GETNEXT (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x1)

#defi ne SNVMP_PDU_RESPONSE (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x2)
I I

#defi ne SNMP_PDU_SET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x3)

/* SNMP_PDU_V1TRAP is obsolete in SNWPv2 */

#defi ne SNMP_PDU_V1TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x4)
#defi ne SNMP_PDU_GETBULK (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x5)

#defi ne SNMP_PDU_| NFORM (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x6)
#defi ne SNVP_PDU_TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x7)

/* SNMPv1l Trap Val ues */

/* (These val ues m ght be superfluous wt WnSNMP applications) */
#defi ne SNMP_TRAP_COLDSTART 0

#defi ne SNMP_TRAP_WARMSTART 1

#defi ne SNMP_TRAP_LI NKDOWN 2

#define SNMP_TRAP_LI NKUP 3

#defi ne SNMP_TRAP_AUTHFAI L 4

#defi ne SNMP_TRAP_EGPNEI GHBORLOSS 5

#defi ne SNMP_TRAP_ENTERPRI SESPECI FI C 6

/* SNMP Error Codes Returned in Error_status Field of PDU */
/* (these are NOT W nSNMP APl Error Codes */
/* Error Codes Common to SNMPv1l and SNMPv2 */

#defi ne SNMP_ERROR_NOERROR 0
#defi ne SNMP_ERROR_TOOBI G 1
#def i ne SNVP_ERROR_NOSUCHNANMVE 2

#def i ne SNMP_ERROR BADVALUE 3

#defi ne SNMP_ERROR_READONLY 4
#defi ne SNMP_ERROR_GENERR 5
/* Error Codes Added for SNMPv2 */

#defi ne SNMP_ERROR_NOACCESS 6
#defi ne SNMP_ERROR_WRONGTYPE 7
#defi ne SNMP_ERROR_WRONGLENGTH 8
#defi ne SNMP_ERROR WRONGENCODI NG 9
#defi ne SNVP_ERROR_WRONGVALUE 10
#def i ne SNVP_ERROR_NOCREATI ON 11
#def i ne SNMP_ERROR_| NCONSI STENTVALUEL2

#defi ne SNMP_ERROR_RESOURCEUNAVAI LABLE 13

#defi ne SNMP_ERROR_COWM TFAI LED 14
#def i ne SNVP_ERROR_UNDOFAI LED 15
#defi ne SNVP_ERRCR_AUTHORI ZATI ONERROR16

#defi ne SNMP_ERROR_NOTWRI TABLE 17

#defi ne SNVMP_ERROR_| NCONSI STENTNAMEL8

/* W nSNWMP APl Val ues */

/* Values used to indicate entity/context translation nodes */
#defi ne SNMPAPI _TRANSLATED 0

#defi ne SNMPAPI _UNTRANSLATED_V1 1

#defi ne SNMPAPI _UNTRANSLATED_V2 2

/* Val ues used to indicate SNVP "communi cations |evel" supported by the inplenentation
*/

#defi ne SNMPAPI _NO_SUPPORT 0

#defi ne SNMPAPI _V1_SUPPORT 1

#defi ne SNMPAPI _V2_SUPPORT 2

#defi ne SNMPAPI _M2M SUPPORT 3

/* Values used to indicate retransnmit nmode in the inplenentation */
#defi ne SNMPAPI _OFF 0 /* Refuse support */
#defi ne SNMPAPI _ON 1 /* Request support */

/* W nSNMP APl Function Return Codes */

typedef sm Ul NT32 SNMPAPI _STATUS; /* Used for function ret values */
#defi ne SNMPAPI _FAI LURE 0 /* Generic error code */
#defi ne SNMPAPI _SUCCESS 1 /* Generic success code */

/* WnSNMP APl Error Codes (for SnnpGetLastError) */
/* (NOT SNMP Response-PDU error_status codes) */
#defi ne SNMPAPI _ALLOC_ERROR 2 /* Error allocating memory */

#defi ne SNMPAPI _CONTEXT_I NVALI D 3 /* Invalid context parameter */
#defi ne SNMPAPI _CONTEXT_UNKNOWN 4 /* Unknown context paraneter */

#defi ne SNMPAPI _ENTI TY_I NVALI D 5 /* Invalid entity paranmeter */
#defi ne SNMPAPI _ENTI TY_UNKNOWN 6 /* Unknown entity parameter */

#defi ne SNVPAPI _| NDEX_I NVALI D 7 /* Invalid VBL index paraneter */

#defi ne SNMPAPI _NOOP 8 /* No operation performed */

#define SNMPAPI _Ol D_I NVALI D 9 /* Invalid O D paranmeter */

#defi ne SNMPAPI _OPERATI ON_I NVALID 10 /* Invalid/ unsupported operation */
#defi ne SNMPAPI _OUTPUT_TRUNCATED 11 /* Insufficient output buf len */

#defi ne SNMPAPI _PDU_| NVALI D 12 /* Invalid PDU paranmeter */

#defi ne SNMPAPI _SESSI ON_| NVALI D 13 /* Invalid session paranmeter */
#defi ne SNMPAPI _SYNTAX_| NVALI D 14 /* Invalid syntax in sm VALUE */
#defi ne SNMPAPI _VBL_I NVALI D 15 /* Invalid VBL paranmeter */

#defi ne SNMPAPI _MODE_I NVALI D 16 /* Invalid node paraneter */

#def i ne SNMPAPI _SI ZE_| NVALI D 17 /* Invalid size/length parameter */
#defi ne SNMPAPI _NOT_I NI Tl ALl ZED 18 /* SnnpStartup failed/not called */
#defi ne SNMPAPI _MESSAGE_| NVALI D 19 /* Invalid SNMP message format */

#defi ne SNMPAPI _HWND_ | NVALI D 20 /* Invalid Wndow handl e */

#defi ne SNMPAPI _OTHER ERROR 99 /* For internal/undefined errors */

/* Ceneric Transport Layer (TL) Errors */
#defi ne SNMPAPI _TL_NOT_I NI TI ALI ZED100
#defi ne SNMPAPI _TL_NOT_SUPPORTED 101
#defi ne SNMPAPI _TL_NOT_AVAI LABLE 102

/* TL not initialized */

/

/
#defi ne SNMPAPI _TL_RESOURCE_ERROR 103 /

/

1

*
* TL does not support protocol */
* Network subsystem has failed */
* TL resource error */

* Destination unreachable */

05 /* Source endpoint invalid */

#define SNMPAPI _TL_UNDELI VERABLE 104
#define SNMPAPI _TL_SRC_| NVALI D

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne

SNMPAPI _TL_| NVALI D_PARAM 106
SNMPAPI _TL_I N_USE

SNMPAPI _TL_TI NEOUT 108
SNMPAPI _TL_PDU_TOO BI G
SNMPAPI _TL_OTHER

/* W nSNMP APl Function Prototypes */
#define IN
#define OUT
#defi ne SNMPAPI _CALL W NAPI /*

/* Input paraneter invalid */

107 /* Source endpoint in use */

/* No response before timeout */

109 /* PDU too big for send/receive */
199 /* Undefined TL error */

/* Docunmentation only */
/* Docunentation only */
FAR PASCAL cal ling conventions */

/* Local Database Functions */

SNMPAP| _STATUSSNMPAPI _CALL SnnpGet Tr ansl at eMode

(OUT sm LPUI NT32 nTransl at eMode) ;
SNMPAP| _STATUSSNMPAPI _CALL SnnpSet Tr ansl at eMode

(I'N sm U NT32 nTransl at eMbde) ;
SNMPAPI _STATUSSNMPAPI _CALL SnnpGet Retransm t Mode

(OUT sm LPUI NT32 nRetransm t Mode) ;
SNMPAPI _STATUSSNMPAPI _CALL SnnpSet Retransm t Mode

(I'N sm U NT32 nRetransm t Mode) ;
SNMPAPI _STATUSSNMPAPI _CALL SnnpGet Ti meout

(I'N HSNMP_ENTI TY hEntity,

OUT sm LPTI METI CKS nPol i cyTi meout,

OUT sm LPTI METI CKS nAct ual Ti neout) ;
SNMPAPI _STATUSSNMPAPI _CALL SnnpSet Ti meout

(I'N HSNMP_ENTI TY hEntity,

I'N sm TI METI CKS nPol i cyTi neout) ;
SNVPAPI _STATUSSNMPAPI _CALL SnnpGCet Retry

(I'N HSNMP_ENTI TY hEntity,

OUT sm LPUI NT32 nPolicyRetry,

OUT sm LPUI NT32 nActual Retry);
SNVPAPI _STATUSSNMPAPI _CALL SnnpSet Retry

(I'N HSNMP_ENTI TY hEntity,

I'N sm U NT32 nPolicyRetry);

/* Communi cations Functions */

SNMPAPI _STATUSSNMPAPI _CALL SnnpStartup
(OUT sm LPUI NT32 nMaj or Ver si on,
OUT sm LPUI NT32 nM nor Ver si on,
OUT smi LPUI NT32 nLevel ,
OUT sm LPUI NT32 nTransl at eMbde,
OUT sm LPUI NT32 nRetransm t Mode);
SNMPAPI _STATUSSNMPAPI _CALL SnnpCl eanup
(void);
HSNMP_SESSI ON SNMPAPI _CALL SnnpOpen
(I'N HAND hWhd,
I'N Ul NT w\vsg);
SNMPAPI _STATUSSNMPAPI _CALL SnnpCl ose
(I'N HSNMP_SESSI ON sessi on);
SNMPAPI _STATUSSNMPAPI _CALL SnnpSendMsg
I' N HSNMP_SESSI ON sessi on,
HSNMP_ENTI TY srcEntity,
HSNMP_ENTI TY dstEntity,
HSNMP_CONTEXT cont ext,

(
|
[
| _
I N HSNMP_PDU PDU)

N
N
N
N

SNVPAPI _ STATUSSNMPAPI _CALL SnnpRecvMsg
(I'N HSNMP_SESSI ON sessi on,
OUT LPHSNMP_ENTI TY srcEntity,
OUT LPHSNMP_ENTI TY dstEntity,
OUT LPHSNMP_CONTEXT cont ext,
OUT LPHSNMP_PDU PDU) ;
SNVPAPI _ STATUSSNMPAPI _CALL SnnpRegi st er
N HSNMP_SESSI ON sessi on,
HSNMP_ENTI TY srcEntity,
HSNMP_ENTI TY dstEntity,
HSNMP_CONTEXT cont ext,
sm LPCOI D notification,
sm Ul NT32 state);

—_——————~

22Z222_

/* Entity/ Context Functions */

HSNMP_ENTI TY SNMPAPI _CALL SnnpStrToEntity
(I'N HSNMP_SESSI ON sessi on,
I'N LPCSTR string);

SNMVPAPI _ STATUSSNMPAPI _CALL SnnpEntityToStr
(I'N HSNMP_ENTI TY entity,
I'N sm Ul NT32 size,
OUT LPSTR string);

SNMPAPI _STATUSSNMPAPI _CALL SnnpFreeEntity
(I'N HSNMP_ENTI TY entity);

HSNMP_CONTEXT SNMPAPI _CALL SnnpStr ToCont ext
(I'N HSNMP_SESSI ON sessi on,
I'N sm LPCOCTETS string);
SNVPAPI _ STATUSSNMPAPI _CALL SnnpCont ext ToSt r
(I'N HSNMP_CONTEXT cont ext,
OUT sm LPOCTETS string);
SNMPAPI _STATUSSNMPAPI _CALL SnnpFr eeCont ext
(I' N HSNMP_CONTEXT cont ext);

/* PDU Functions */

HSNMP_PDU SNMPAPI _CALL SnnpCr eat ePdu

(I'N HSNMP_SESSI ON sessi on,
sm | NT PDU_type,
sm | NT32 request _id,
sm | NT error_status,
sm | NT error_index,
HSNMP_VBL var bi ndlist);

z2z2z222

SNVPAPI _ STATUSSNMPAPI _CALL SnnpGet PduDat a

—
bz

HSNMP_PDU PDU,

sm LPI NT PDU type,

sm LPI NT32 request _id,
sm LPI NT error_status,
sm LPI NT error_index,
LPHSNMP_VBL var bi ndl i st);

§E888

SNMPAPI _STATUSSNMPAPI _CALL SnnpSet PduDat a
(I'N HSNMP_PDU PDU,
IN const sm I NT FAR *PDU_type,
I'N const sm I NT32 FAR *request _id,
IN const sm I NT FAR *non_repeaters,
I'N const sm I NT FAR *max_repetitions,
I'N const HSNMP_VBL FAR *varbindlist);
HSNMP_PDU SNMPAPI _CALL SnnpDupl i cat ePdu
(I'N HSNMP_SESSI ON sessi on,
I'N HSNMP_PDU PDU) ;
SNMPAP| _ STATUSSNMPAPI _CALL SnnpFr eePdu
(I'N HSNMP_PDU PDU) ;

/* Vari abl e-Bi ndi ng Functions */

HSNMP_VBL SNMPAPI _CALL SnnpCr eat eVbl
(I'N HSNMP_SESSI ON sessi on,
IN sm LPCO D nane,
I'N sm LPCVALUE val ue);
HSNMP_VBL SNMPAPI _CALL SnnpDupl i cat eVbl
(I'N HSNMP_SESSI ON sessi on,
I'N HSNMP_VBL vbl);
SNVPAPI _STATUSSNMPAPI _CALL SnnpFr eeVbl
(I'N HSNMP_VBL vbl);
SNVPAPI _ STATUSSNMPAPI _CALL SnnpCount Vbl
(I'N HSNMP_VBL vbl);
SNVPAPI _ STATUSSNMPAPI _CALL SnnpGet Vb
(I'N HSNMP_VBL vbl ,
I'N sm Ul NT32 i ndex,
OUT sm LPO D name,
OUT sm LPVALUE val ue);

(
|
|
[

SNMPAPI _STATUSSNMPAPI _CALL SnnpSet Vb
I N HSNMP_VBL vbl ,
N sm Ul NT32 i ndex,
N sm LPCO D nane,
N sm LPCVALUE val ue);
SNMVPAPI _STATUSSNMPAPI _CALL SnnpDel et eVb
(I'N HSNMP_VBL vbl ,
I'N sm Ul NT32 index);

/* Utility Functions */

SNMPAPI _STATUSSNMPAPI _CALL

SNMPAPI _STATUSSNMPAPI _CALL

SNMPAPI _ STATUSSNMPAPI _CALL
SNMPAPI _STATUSSNVPAPI _CALL

SNMVPAPI _STATUSSNVPAPI _CALL

SNMPAPI _ STATUSSNMPAPI _CALL

SNMPAPI _STATUSSNVPAPI _CALL

SNVPAPI _STATUSSNMPAPI _CALL

#i fdef __cplusplus

oo
#endi f
#endif

/* _I NC_W NSNMP */

SNVPAPI _STATUS Tr apProcess (HSNMP_

{
HSNMP_ENTI TY hSrc, hDest;

HSNMP_CONTEXT hCont ext ;
HSNMP_PDU hPDU;
HSNMP_VBL hVBL;
sm | NT32 Request _i d;
sm | NT PduType, Err_stat,
SNMPAPI _STATUS Ret St at us,
sm O D Name;
sm VALUE Val ue;
sm BYTE NaneBuffer[100],
Request _id = SnnpRecvMsg (
hSessi on,
&hSrc,
&hDest ,
&hCont ext ,
&hPDU) ;

/'l Error

condi ti on checking for

SnnpGet Last Error

(I'N HSNMP_SESSI ON sessi on);

SnnpStr ToO d

(I'N LPCSTR string,
OUT sm LPO D dst O D);

SnnpOi dToSt r

(I'N sm LPCO D srcd D,
I'N sm Ul NT32 size,
OUT LPSTR string);

SnnpOi dCopy

(I'N sm LPCO D srcd D,
OUT sm LPOI D dstQ D);

SnnpOi dConpar e

(I'N smi LPCOI D xQl D,
IN sm LPCO D yQ D,
I'N sm U NT32 maxl en,
OUT sm LPINT result);

SnnpEncodeMsg

HSNMP_ENTI TY srcEntity,
HSNMP_ENTI TY dstEntity,
HSNMP_CONTEXT cont ext,
HSNMP_PDU pdu,

sm LPOCTETS nmsgBuf Desc) ;

(I'N HSNMP_SESSI ON sessi on,
I'N
I'N
I'N
I'N

out

SnnpDecodeMsg

HSNMP_SESSI ON sessi on,
LPHSNMP_ENTI TY srcEntity,
LPHSNMP_ENTI TY dstEntity,
LPHSNMP_CONTEXT cont ext,
LPHSNMP_PDU pdu,

sm LPCOCTETS nsgBuf Desc) ;

(IN
ouT
ouT
ouT
ouT

N
t

SnnpFr eeDescri pt or

(I'N sm U NT32 synt ax,
I'N sm LPOPAQUE descri ptor);

SESSI ON hSessi on)

Err _i ndex;
I ndex, VBCount;

Val ueBuf f er [256] ;

Il
Il
Il
11
Il

Trap Session Handl e

Source Entity Handl e
Destination Entity Handl e

Cont ext Handl e

PDU Handl e

SnnpRecvMsg() performs here.

Handl e

/1 PDU return type

I D of the Trap

/'l Error status for a variable

Ret St at us = SnnpGet PduDat a (
hPDU, /1 PDU
&PduType,

&Request _id, // Request
&Err_st at,
&Err _i ndex, Il

&hVBL) ;

Index to the variable with error
// Handl e to the Varbindlist

/1 Sanple error checking for SnnmpGet PduDat a():
if ((RetStatus == SNMPAPI _FAI LURE) ||
(PduType != SNMP_PDU TRAP) ||
(Err_stat != SNMP_ERROR NOERROR)) {
SnnpFr eePdu(hPDU) ;
SnnpFreeEntity(hSrc);
SnnpFreeEntity(hDest);
SnnpFr eeCont ext (hCont ext) ;
return (SnnpGet LastError(hSession));

}
VBCount = SnnmpCount Vbl (hVBL) ;
for (Index = 1; i <= VBCount; Index ++) {
/1 When Index = 1,
/I Od = sysUpTi meGi d
/1 Value = uptime value for the V1 time-stanp trap field
/1 VWhen | ndex = 2,
/1 Od = v2snnpTrapO d
/1 value = can be one of the follow ng O ds:
/1 v2coldStartO d
/1l v2warnStart O d
/1 v2l i nkDownQOi d
/1 v2linkUpQOi d
/1 v2aut henFai l ureG d
/1 v2egpNei ghbor LossOi d
/1 v2snnpTrapEnterpri seO d+0+specific_trap
/1 \When | ndex = VBCount, (the last O d in the v2 trap)
/1 Od = v2snnpTrapEnterpriseO d
/1 Value = enterprise specific Od fromV1l trap

/1 Get a particular variable fromthe Varbindlist
/'l using the given |ndex.

Ret St atus = SnnpGet Vb (

hVBL, /1 Input Varbindlist Handle

I ndex, /1 Index to a variable

&Nane, /1 CQutput name of the variable
&Val ue) ; /'l CQutput value of the variable

/1 Error condition checking for RetStatus perforns here

SnnpOi dToStr (&Nane, 100, (LPSTR)NanmeBuffer);
SnnpFr eeDescri ptor (SNMP_SYNTAX_O D, &Nane);

switch (Val ue.syntax) {

case SNMP_SYNTAX_I NT :
_ltoa ((long)Val ue.val ue. sNunber, Val ueBuffer, 10);
br eak;

case SNMP_SYNTAX_ Ul NT32 :

case SNMP_SYNTAX_CNTR32 :

case SNMP_SYNTAX_GAUGE32

case SNMP_SYNTAX_TI METI CKS :

Itoa ((long)Val ue.val ue. uNumber, Val ueBuffer, 10);
br eak;

case SNMP_SYNTAX_CNTR64 :
br eak; /1 Need routine to convert 64-bit nunmber to string
her e!

case SNMP_SYNTAX_OCTETS :
case SNMP_SYNTAX_BITS :
case SNMP_SYNTAX_OPAQUE :
case SNMP_SYNTAX_| PADDR :
case SNMP_SYNTAX_NSAPADDR :
_fmencpy (Val ueBuffer, Value.value.string.ptr,
(size_t)Val ue.value.string.len);
SnnpFreeDescri pt or (SNVP_SYNTAX CCTETS, &Val ue.val ue.string);
br eak;

case SNMP_SYNTAX_OI D :

SnnpOi dToStr (&Val ue. val ue. oid, 256, Val ueBuffer);
SnnpFreeDescri ptor (SNMP_SYNTAX_O D, &Val ue. val ue. oid);
br eak;

} /1 switch

Qut put Vari abl e (
I ndex, /1 Index to a given variable for output
NameBuf fer,// Trap variable O d Name Output Buffer

Val ueBuffer);// Trap variabl e Val ue Qutput Buffer
} //for 1oop

SnnpFreeEntity (hSrc);
SnnpFreeEntity (hDest);
SnnpFr eeCont ext (hContext);
SnnpFreeVbl (hVBL);
SnnpFreePdu (hPDU) ;

return SNMPAPI _SUCCESS;
} // TrapProcess

