FCC Identifier

The FCC identifier is embedded as a part of maintenance packets/cell in GigaLink Systems. This way, the
transmission of FCC identifier becomes transparent to the data communication over the radio systems and allows the
user to monitor the health of radio devices that make up the network from a central location.

Specifically, the FCC Identifier is embedded in SNMP packets.

Thus, the FCC identifier along with device serial number and the status of each radio on the network are received
and retransmitted by all the radios within the network. The same serial number is transmitted by each radio on the
same network. The attached letter from Karen Rackley of the FCC states that the commission's rules do not require
the transmission of a unique manufacture's serial number for each unlicensed device that operates in the 59-64GHz
band, so that one serial number can identify all transmitters operation as part of a single communications system, see
attached paper.

FCC ID in SNMP Packet format

Local Local
Network Helgder Hggger Msegls'\gpe Network
Header 9 Trailer

Msg Header Msg Scoped
Version Data Security Parameters PDU Data
Context Context
Engine ID Name Data

11 digits Product
Fccgm Unique Serials Data 24 bytes or more
"00-00-30-30"

3 Bytes FCC 4 Octets

Grantee ID | Organization

Unique ID

Sample code to view SNMP packet.

/*v1.1 WinSNMP.h */
/*v1.0 - Sep 13, 1993 */
/*v1.1-Jun 10, 1994 */

#ifndef _INC_WINSNMP /* Include WinSNMP declarations */

#define _INC_WINSNMP

#ifndef INC_WINDOWS
#include <windows.h>
#define _INC_WINDOWS
#endif

#ifdef _ cplusplus

/*Just once! */
/* Include Windows declarations, if not already done */

/* Just once! */
/* _INC_WINDOWS */

extern"C" {

#endif

/* WinSNMP API Type Definitions */

typedef HANDLE HSNMP_SESSION, FAR *LPHSNMP_SESSION;
typedef HANDLE HSNMP_ENTITY, FAR *LPHSNMP_ENTITY;
typedef HANDLE HSNMP_CONTEXT, FAR *LPHSNMP_CONTEXT;
typedef HANDLE HSNMP_PDU, FAR *LPHSNMP_PDU;
typedef HANDLE HSNMP_VBL, FAR *LPHSNMP_VBL,;
typedef unsigned char SmiBYTE, FAR *smiLPBYTE;

/* SNMP-related types from RFC1442 (SMI) */

typedef signed long SMiINT, FAR *smiLPINT;
typedef smiINT SmiINT32, FAR *smiLPINT32;
typedef unsigned long smiUINT32, FAR *smiLPUINT32;
typedef struct {

smiUINT32 len;

SmiLPBYTE ptr;} smiOCTETS, FAR *smiLPOCTETS;
typedef const smiOCTETS FAR *smiLPCOCTETS;
typedef smiOCTETS SmiBITS, FAR *smiLPBITS;
typedef struct {

SmiUINT32 len;

smiLPUINT32 ptr;} smiOID, FAR *smiLPOID;

typedef const smiOID

FAR *smiLPCOID;

typedef smiOCTETS smilPADDR, FAR *smiLPIPADDR;
typedef smiUINT32 SmMICNTR32, FAR *smiLPCNTR32;
typedef smiUINT32 sSmiGAUGE32, FAR *smi LPGAUGE32;
typedef smiUINT32 SmITIMETICKS, FAR *smiLPTIMETICKS;
typedef smiOCTETS smiOPAQUE, FAR *smi LPOPAQUE;
typedef smiOCTETS smiNSAPADDR, FAR *smiLPNSAPADDR,;
typedef struct {

smiUINT32 hipart;

SmiUINT32 lopart;} smiCNTR64, FAR *smiLPCNTR64;

/* ASN/BER Base Types */

/* (used in forming SYNTAXes and certain SNMP types/values) */

#define ASN_UNIVERSAL (0x00)
#define ASN_APPLICATION (0x40)
#define ASN_CONTEXT (0x80)

#define ASN_PRIVATE (0XCO)
#define ASN_PRIMITIVE (0x00)

#define ASN_CONSTRUCTOR (0x20)

/* SNMP ObjectSyntax Values */
#define SNMP_SYNTAX SEQUENCE (ASN_UNIVERSAL | ASN_CONSTRUCTOR | 0x10)
/* These values are used in the "syntax" member of the smiVVALUE structure which follows */

#define SNMP_SYNTAX_INT (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x02)
#define SNMP_SYNTAX_BITS (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x03)
#define SNMP_SYNTAX_OCTETS (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x04)
#define SNMP_SYNTAX_NULL (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x05)
#define SNMP_SYNTAX_OID (ASN_UNIVERSAL | ASN_PRIMITIVE | 0x06)
#define SNMP_SYNTAX_INT32 SNMP_SYNTAX_INT

#define SNMP_SYNTAX_IPADDR (ASN_APPLICATION | ASN_PRIMITIVE | 0x00)
#define SNMP_SYNTAX_CNTR32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x01)

#define SNMP_SYNTAX_GAUGE32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x02)
#define SNMP_SYNTAX_TIMETICKS ~ (ASN_APPLICATION |ASN_PRIMITIVE | 0x03)

#define SNMP_SYNTAX_OPAQUE (ASN_APPLICATION | ASN_PRIMITIVE | 0x04)
#define SNMP_SYNTAX_NSAPADDR (ASN_APPLICATION | ASN_PRIMITIVE | 0x05)
#define SNMP_SYNTAX_CNTR64 (ASN_APPLICATION | ASN_PRIMITIVE | 0x06)
#define SNMP_SYNTAX_UINT32 (ASN_APPLICATION | ASN_PRIMITIVE | 0x07)

/* Exception conditions in response PDUs for SNMPv2 */

#define SNMP_SYNTAX_NOSUCHOBJECT (ASN_CONTEXT | ASN_PRIMITIVE | 0x00)

#define SNMP_SYNTAX_NOSUCHINSTANCE (ASN_CONTEXT | ASN_PRIMITIVE | 0x01)
#define SNMP_SYNTAX_ENDOFMIBVIEW (ASN_CONTEXT | ASN_PRIMITIVE | 0x02)

typedef struct { /* smiVALUE portion of VarBind */
smiUINT32 syntax; /* Insert SNMP_SYNTAX_<type> */
union {
sSmiINT sNumber; /* SNMP_SYNTAX_INT
SNMP_SYNTAX_INT32 */
smiUINT32 uNumber; /* SNMP_SYNTAX_UINT32

SNMP_SYNTAX_CNTR32
SNMP_SYNTAX_GAUGE32
SNMP_SYNTAX_TIMETICKS */
smiCNTR64 hNumber; /* SNMP_SYNTAX_CNTR64 */
smiOCTETS string; /* SNMP_SYNTAX_OCTETS
SNMP_SYNTAX_BITS
SNMP_SYNTAX_OPAQUE
SNMP_SYNTAX_IPADDR
SNMP_SYNTAX_NSAPADDR */
smiOlD oid; /* SNMP_SYNTAX_OID */

SmMiBYTE empty; /* SNMP_SYNTAX_NULL
SNMP_SYNTAX_NOSUCHOBJECT
SNMP_SYNTAX_NOSUCHINSTANCE
SNMP_SYNTAX_ENDOFMIBVIEW */

} value; /* union */
} smiVALUE, FAR *smiLPVALUE;
typedef const smiVALUE FAR *smi LPCVALUE;

/* SNMP Limits */
#define MAXOBJIDSIZE 128 /* Max number of components inan OID */
#define MAXOBJIDSTRSIZE 1408 /*Max len of decoded MAXOBJIDSIZE OID */

/* PDU Type Values */

#define SNMP_PDU_GET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x0)
#define SNMP_PDU_GETNEXT (ASN_CONTEXT | ASN_CONSTRUCTOR |0x1)

#define SNMP_PDU_RESPONSE (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x2)

#define SNMP_PDU_SET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x3)

/* SNMP_PDU_VI1TRAP is obsolete in SNMPv2 */

#define SNMP_PDU_V1TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x4)
#define SNMP_PDU_GETBULK (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x5)

#define SNMP_PDU_INFORM (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x6)
#define SNMP_PDU_TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x7)

/* SNMPv1 Trap Values */
/* (These values might be superfluous wrt WinSNMP applications) */
#define SNMP_TRAP_COLDSTART

#define SNMP_TRAP_WARMSTART

#define SNMP_TRAP_LINKDOWN

#define SNMP_TRAP_LINKUP

#define SNMP_TRAP_AUTHFAIL

#define SNMP_TRAP_EGPNEIGHBORLOSS
#define SNMP_TRAP_ENTERPRISESPECIFIC

SO0 WNPE O

/* SNMP Error Codes Returned in Error_status Field of PDU */
/* (these are NOT WinSNMP API Error Codes */

/* Error Codes Common to SNMPv1 and SNMPv2 */

#define SNMP_ERROR_NOERROR 0
#define SNMP_ERROR_TOOBIG
#define SNMP_ERROR_NOSUCHNAME 2
#define SNMP_ERROR_BADVALUE

#define SNMP_ERROR_READONLY

#define SNMP_ERROR_GENERR 5
/* Error Codes Added for SNMPv2 */

#define SNMP_ERROR_NOACCESS

#define SNMP_ERROR_WRONGTYPE

#define SNMP_ERROR_WRONGLENGTH

#define SNMP_ERROR_WRONGENCODING

#define SNMP_ERROR_WRONGVALUE 10
#define SNMP_ERROR_NOCREATION 11
#define SNMP_ERROR_INCONSISTENTVALUE 12

#define SNMP_ERROR_RESOURCEUNAVAILABLE 13

[EN

B~ w

O oo ~N»

#define SNMP_ERROR_COMMITFAILED 14
#define SNMP_ERROR_UNDOFAILED 15
#define SNMP_ERROR_AUTHORIZATIONERROR 16
#define SNMP_ERROR_NOTWRITABLE 17

#define SNMP_ERROR_INCONSISTENTNAME 18

/* WinSNMP API Values */

/* Values used to indicate entity/context translation modes */
#define SNMPAPI_TRANSLATED 0

#define SNMPAPI_UNTRANSLATED V11

#define SNMPAPI_UNTRANSLATED_V2 2

/* Values used to indicate SNMP "communications level" supported by the implementation */

#define SNMPAPI_NO_SUPPORT 0

#define SNMPAPI_V1_SUPPORT 1

#define SNMPAPI_V2_SUPPORT 2

#define SNMPAPI_M2M_SUPPORT 3

/* Values used to indicate retransmit mode in the implementation */

#define SNMPAPI_OFF 0 /* Refuse support */

#define SNMPAPI_ON 1 /* Request support */

/* WinSNMP API Function Return Codes */

typedef smiUINT32 SNMPAPI_STATUS; /* Used for function ret values */
#define SNMPAPI_FAILURE 0 /* Generic error code */

#define SNMPAPI_SUCCESS 1 /* Generic success code */

/* WinSNMP API Error Codes (for SnmpGetLastError) */
/* (NOT SNMP Response-PDU error_status codes) */

#define SNMPAPI_ALLOC_ERROR

#define SNMPAPI_CONTEXT_INVALID
#define SNMPAPI_CONTEXT_UNKNOWN
#define SNMPAPI_ENTITY_INVALID
#define SNMPAPI_ENTITY_UNKNOWN 6
#define SNMPAPI_INDEX_INVALID
#define SNMPAPI_NOOP

#define SNMPAPI_OID_INVALID

#define SNMPAPI_OPERATION_INVALID
#define SNMPAPI_OUTPUT_TRUNCATED
#define SNMPAPI_PDU_INVALID

#define SNMPAPI_SESSION_INVALID
#define SNMPAPI_SYNTAX_INVALID
#define SNMPAPI_VBL_INVALID

#define SNMPAPI_MODE_INVALID
#define SNMPAPI_SIZE_INVALID

#define SNMPAPI_NOT_INITIALIZED
#define SNMPAPI_MESSAGE_INVALID 19
#define SNMPAPI_HWND_INVALID
#define SNMPAPI_OTHER_ERROR

/* Generic Transport Layer (TL) Errors */
#define SNMPAPI_TL_NOT_INITIALIZED
#define SNMPAPI_TL_NOT_SUPPORTED
#define SNMPAPI_TL_NOT_AVAILABLE
#define SNMPAPI_TL_RESOURCE_ERROR
#define SNMPAPI_TL_UNDELIVERABLE
#define SNMPAPI_TL_SRC_INVALID
#define SNMPAPI_TL_INVALID_PARAM
#define SNMPAPI_TL_IN_USE

#define SNMPAPI_TL_TIMEOUT 108
#define SNMPAPI_TL_PDU TOO_BIG
#define SNMPAPI_TL_OTHER

/* WinSNMP API Function Prototypes */
#define IN

#define OUT

#define SNMPAPI_CALL WINAPI

2 /* Error allocating memory */

3 /* Invalid context parameter */

4 /* Unknown context parameter */
5 /* Invalid entity parameter */

/* Unknown entity parameter */

7 /* Invalid VBL index parameter */
8 /* No operation performed */

9 /* Invalid OID parameter */

10 /* Invalid/unsupported operation */
11 /* Insufficient output buf len */

12 /* Invalid PDU parameter */

13 /* Invalid session parameter */

14 /* Invalid syntax in smiVALUE */
15 /* Invalid VBL parameter */

16 /* Invalid mode parameter */

17 /* Invalid size/length parameter */

18 /* SnmpStartup failed/not called */
/* Invalid SNMP message format */

20 /* Invalid Window handle */

99 /* For internal/undefined errors */

100 /* TL not initialized */

101 /* TL does not support protocol */
102 /* Network subsystem has failed */
103 /* TL resource error */

104 /* Destination unreachable */

105 /* Source endpoint invalid */

106 /* Input parameter invalid */

107 /* Source endpoint in use */

/* No response before timeout */

109 /*PDU too big for send/receive */
199 /* Undefined TL error */

/* Documentation only */
/* Documentation only */
/* FAR PASCAL calling conventions */

/* Local Database Functions */

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SnmpGetTranslateMode
(OUT smiLPUINT32 nTranslateMode);

SnmpSetTranslateMode
(IN'smiUINT32 nTranslate Mode);

SnmpGetRetransmitMode
(OUT smiLPUINT32 nRetransmitMode);

SnmpSetRetransmitMode
(IN smiUINT32 nRetransmitMode);

SnmpGetTimeout

(INHSNMP_ENTITY hEntity,

OUT smiLPTIMETICKS nPolicyTimeout,
OUT smiLPTIMETICKS nActual Timeout);

SnmpSetTimeout
(INHSNMP_ENTITY hEntity,
IN smiTIMETICKS nPolicyTimeout);

SnmpGetRetry
(INHSNMP_ENTITY hEntity,
OUT smiLPUINT32 nPolicyRetry,
OUT smiLPUINT32 nActualRetry);

SnmpSetRetry
(INHSNMP_ENTITY hEntity,
IN smiUINT32 nPolicyRetry);

/* Communications Functions */

SNMPAPI_STATUS SNMPAPI_CALL SnmpStartup
(OUT smiLPUINT32 nMajorVersion,
OUT smiLPUINT32 nMinorVersion,
OUT smiLPUINT32 nLevel,
OUT smiLPUINT32 nTranslateMode,
OUT smiLPUINT32 nRetransmitMode);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCleanup
(void);

HSNMP_SESSION SNMPAPI_CALL SnmpOpen
(IN HWND hwnd,
IN UINT wMsg);

SNMPAPI_STATUS SNMPAPI_CALL SnmpClose
(IN HSNMP_SESSION session);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSendMsg
(IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN HSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRecvMsg
(IN HSNMP_SESSION session,
OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU PDU);

SNMPAPI_STATUS SNMPAPI_CALL SnmpRegister
(IN HSNMP_SESSION session,
IN HSNMP_ENTITY srcEntity,
IN HSNMP_ENTITY dstEntity,
IN HSNMP_CONTEXT context,
IN smiLPCOID notification,
IN smiUINT32 state);

[* Entity/Context Functions */

HSNMP_ENTITY

SNMPAPI_STATUS

SNMPAPI_STATUS

HSNMP_CONTEXT

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SnmpStrToEntity
(IN HSNMP_SESSION session,
IN LPCSTR string);

SnmpEntityToStr

(IN HSNMP_ENTITY entity,
IN smiUINT32 size,

OUT LPSTR string);

SnmpFreeEntity
(IN HSNMP_ENTITY entity);

SnmpStrToContext
(IN HSNMP_SESSION session,
IN smiLPCOCTETS string);

SnmpContextToStr
(IN HSNMP_CONTEXT context,
OUT smiLPOCTETS string);

SnmpFreeContext
(IN HSNMP_CONTEXT context);

/*PDU Functions */

HSNMP_PDU

SNMPAPI_STATUS

SNMPAPI_STATUS

HSNMP_PDU

SNMPAPI_STATUS

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SnmpCreatePdu

(IN HSNMP_SESSION session,
IN smiINT PDU_type,

IN smiINT32 request _id,

IN smiINT error_status,

IN smilNT error_index,

IN HSNMP_VBL varbindlist);

SnmpGetPduData

(IN HSNMP_PDU PDU,

OUT smiLPINT PDU_type,

OUT smiLPINT32 request_id,

OUT smiLPINT error_status,

OUT smiLPINT error_index,

OUT LPHSNMP_VBL varbindlist);

SnmpSetPduData

(IN HSNMP_PDU PDU,

IN const smiINT FAR *PDU_ type,

IN const smiINT32 FAR *request id,

IN const smiINT FAR *non_repeaters,

IN const smiINT FAR *max_repetitions,
IN const HSNMP_VBL FAR *varbindlist);

SnmpDuplicatePdu
(IN HSNMP_SESSION session,
IN HSNMP_PDU PDU);

SnmpFreePdu
(INHSNMP_PDU PDU));

/* Variable-Binding Functions */

HSNMP_VBL SNMPAPI_CALL SnmpCreate Vbl
(IN HSNMP_SESSION session,
IN smiLPCOID name,
IN smiLPCVALUE value);

HSNMP_VBL SNMPAPI_CALL SnmpDuplicate Vbl
(IN HSNMP_SESSION session,
IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpFreeVbl
(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpCountVbl
(IN HSNMP_VBL vbl);

SNMPAPI_STATUS SNMPAPI_CALL SnmpGetVb
(IN HSNMP_VBL vhl,
IN smiUINT32 index,
OUT smiLPOID name,
OUT smiLPVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpSetVb
(IN HSNMP_VBL vbl,
IN smiUINT32 index,
IN smiLPCOID name,
IN smiLPCVALUE value);

SNMPAPI_STATUS SNMPAPI_CALL SnmpDelete Vb
(IN HSNMP_VBL vhl,
IN smiUINT32 index);

/* Utility Functions */

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

SNMPAPI_STATUS

#ifdef _ cplusplus

}
#endif

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

SNMPAPI_CALL

#endif /* _INC_WINSNMP */

SnmpGetLastError
(IN HSNMP_SESSION session);

SnmpStrToOid
(IN LPCSTR string,
OUT smiLPOID dstOID);

SnmpOidToStr
(IN'smiLPCOID srcOID,
IN smiUINT32 size,
OUT LPSTR string);

SnmpOidCopy
(IN'smiLPCOID srcOID,
OUT smiLPOID dstOID);

SnmpOidCompare

(IN smiLPCOID xOID,
IN smiLPCOID yOID,
IN smiUINT32 maxlen,
OUT smiLPINT result);

SnmpEncodeMsg

(IN HSNMP_SESSION session,

IN HSNMP_ENTITY srcEntity,

IN HSNMP_ENTITY dstEntity,

IN HSNMP_CONTEXT context,

IN HSNMP_PDU pdu,

OUT smiLPOCTETS msgBufDesc);

SnmpDecodeMsg

(IN HSNMP_SESSION session,

OUT LPHSNMP_ENTITY srcEntity,
OUT LPHSNMP_ENTITY dstEntity,
OUT LPHSNMP_CONTEXT context,
OUT LPHSNMP_PDU pdu,

IN smiLPCOCTETS msgBufDesc);

SnmpFreeDescriptor
(IN smiUINT32 syntax,
IN smiLPOPAQUE descriptor);

SNMPAPI_STATUS TrapProcess (HSNMP_SESSION hSession)
{
HSNMP_ENTITY hSrc, hDest;
HSNMP_CONTEXT hContext;
HSNMP_PDU hPDU;
HSNMP_VBL hVBL;
smiINT32 Request _id;
smiINT PduType, Err_stat, Err_index;
SNMPAPI_STATUS RetStatus, Index, VBCount;
smiOID Name;
smiVALUE Val ue;
smiBYTE NameBuffer[100], ValueBuffer[256];

é‘equest_id = SnmpRecvMsg (

hSession, /I Trap Session Handle
&hSrc, /I Source Entity Handle

&hDest, /I Destination Entity Handle
&hContext, /I Context Handle
&hPDU); // PDU Handle

/I Error condition checking for SnmpRecvMsg() performs here.

RetStatus = SnmpGetPduData (

hPDU, {// PDU Handle

&PduType, /I PDU return type

&Request_id, // Request ID of the Trap

&Err_stat, /I Error status for a variable
&Err_index, /I Index to the variable with error
&hVBL); /I Handle to the Varbindlist

/I Sample error checking for SnmpGetPduData():
if ((RetStatus == SNMPAPI_FAILURE) ||
(PduType !'=SNMP_PDU_TRAP) ||
(Err_stat I= SNMP_ERROR_NOERROR)) {
SnmpFreePdu(hPDU);
SnmpFreeEntity(hSrc);
SnmpFreeEntity(hDest);
SnmpFreeContext(hContext);
return (SnmpGetLastError(hSession));

}

VBCount = SnmpCountVbl(hVBL);
for (Index = 1; i <= VBCount; Index ++) {

/I When Index =1,

/I Oid =sysUpTimeOid

/I Value = uptime value for the V1 time-stamp trap field
/I When Index = 2,

/Il Oid =v2snmpTrapOid

/I value = can be one of the following Oids:

/! v2coldStartOid

/! v2warmStartOid

/! v2linkDownOid

1 v2linkUpOid

/! v2authenFailureOid

1 v2egpNeighborLossOid

1 v2snmp TrapEnterpriseOid+0+specific_trap

/I When Index = VBCount, (the last Oid in the v2 trap)
/I Oid =v2snmpTrapEnterpriseOid
/I Value = enterprise specific Oid from V1 trap

/I Get a particular variable from the Varbindlist
/' using the given Index.

RetStatus = SnmpGetVb (

hVBL, /I 'Input Varbindlist Handle
Index, /I Index to a variable

&Name, /I Output name of the variable
&Value); /I Output value of the variable

/I Error condition checking for RetStatus performs here

SnmpOidToStr (&Name, 100, (LPSTR)NameBuffer);
SnmpFreeDescriptor (SNMP_SYNTAX_OID, &Name);

switch (Value.syntax) {

case SNMP_SYNTAX_INT :
_ltoa ((long) Value.value.sNumber, ValueBuffer, 10);
break;

case SNMP_SYNTAX_UINT32:

case SNMP_SYNTAX_CNTR32:

case SNMP_SYNTAX_GAUGE32 :

case SNMP_SYNTAX_TIMETICKS :

_Itoa ((long) Value.value.uNumber, ValueBuffer, 10);
break;

case SNMP_SYNTAX_CNTR64 :
break; /I Need routine to convert 64-bit number to string here!

case SNMP_SYNTAX_OCTETS::

case SNMP_SYNTAX_BITS:

case SNMP_SYNTAX_OPAQUE :

case SNMP_SYNTAX_IPADDR:

case SNMP_SYNTAX_NSAPADDR :

_fmemcpy (ValueBuffer, Value.value.string.ptr, (size_t) Value.value.string.len);
SnmpFreeDescriptor (SNMP_SYNTAX_OCTETS, &Value.value.string);
break;

case SNMP_SYNTAX_OID:

SnmpOidToStr (&Value.value.oid, 256, ValueBuffer);
SnmpFreeDescriptor (SNMP_SYNTAX_OID, &Value.value.oid);
break;

} // switch

OutputVariable (
Index, /I Index to a given variable for output
NameBuffer, /I Trap variable Oid Name Output Buffer
ValueBuffer); /I Trap variable Value Output Buffer
} //for loop

SnmpFreeEntity (hSrc);

SnmpFreeEntity (hDest);
SnmpFreeContext (hContext);
SnmpFreeVbl (hVBL);
SnmpFreePdu (hPDU);

return SNMPAPI_SUCCESS;
} // TrapProcess

