

Technical Report to the FCC and ISED Regarding Gentex Corporation - HomeLink© V

**Model: UAHL5P
FCC ID: NZLU AHL5P
ISED: 4112A-UAHL5P**

11/12/2024

A report concerning approval for Gentex Corporation Homelink® Model UAHL5P
Please issue grant immediately upon review.

Measurements Made by:

Bolay Pacheco
Laboratory Validation Engineer III
Gentex Corporation

Measurements Reviewed by:

Dan Brasier
Laboratory Development Engineer II
Gentex Corporation

Report Prepared by:

Patricia Klawitter
Laboratory Validation Engineer I
Gentex Corporation

Report Approved by:

Jason Vargo
Laboratory Manager I
Gentex Corporation

Report Submitted by:

Brian Miller
Laboratory Group Leader – Regulatory II
Gentex Corporation

Test Report Revision

REV Number	Date	Author	Description
1.0	11/13/2024	Patricia Szeszulski	Initial Release

Results relate only to the items tested as received.

Compliance has been evaluated based on the Lab Manual section 7.6.2. The decision rule used regarding measurement uncertainty was to determine results solely on whether the measured values met the defined acceptance criteria without factoring in measurement uncertainty values.

1. General Information

1.1. Product Description

The Gentex Corporation HomeLink® HLv Universal Garage Door Opener is a low-power transceiver OEM device that is installed into a rearview mirror of an automobile. The installation is provided by trained technicians during the course of the manufacture of the automobile. It is powered by the 12 Volt system of the automobile.

This Universal Garage Door Opener has the capability to

1. Learn the frequency and bit code format of the user's existing garage door remote control devices and
2. Reproduce and transmit the frequency and bit code format to remotely operate the user's garage door.

The unit is designed for the periodic operation of a control signal, which typically activates a garage door opener receiver.

The unit is supplied to the automobile manufacturer without harness. For testing purposes, a typical assembly and 2-conductor cable harness were used to power the unit.

The unit is only operational when the user presses down the control button. It becomes inactive after the release of the control button.

The three-button HomeLink® unit replaces up to three hand-held transmitters. In addition to the typical operation of the garage door, the unit will learn the radio frequency codes of other transmitter types to activate entry door locks, estate gates, security systems, and home or office lighting.

The antenna system is an integral part of the unit. It cannot be altered nor replaced by the user. The service of this system is only available from the Automobile Manufacturer's Dealerships and Gentex Corporation.

1.2. Test Methodology

Antenna gain testing was performed according to ANSI C63.5:2017 section 6.2- Calibrations of antennas using a reference antenna.

The unit is supplied to the automobile manufacturer without harness. For testing purposes, a 2-conductor cable harness was used to interface to the unit.

1.3. Test Facility

The 3-meter semi-anechoic chamber where these measurements were taken is located on the grounds of Gentex Corporation's Corporate Labs, in the city of Zeeland, county of Ottawa, state of Michigan, United States of America.

Corporate Mailing/Shipping Address

Gentex Corporation
600 N. Centennial Street
Zeeland, MI 49464

Site Address

Gentex Corporation
380 Riley Street
Zeeland, MI 49423

2. Test Configuration

Antenna Gain measurements presented in the report were made in accordance with ANSI C63.5-2017 section 6.2. The AUT was placed on a 1 x 1.5m non-metallic table elevated 150cm above the ground plane for measurements below 1GHz. Peaks were found by moving the receive antenna up and down from 1 to 4 meters and spinning AUT 360. The AUT harness was routed down the center of the test table. The test distance was 3 meters.

3. Antenna Gain Data

3.1. Date(s) Tested: 11/12/2024

3.2. Test Method Deviations: None

3.3. Temperature and Humidity conditions

	Measured Value	Unit
Temperature	23-24.3	°C
Humidity	45.4-50.3	%R.H.

3.4. Results

Worst Case Antenna Gain (dBd)		
Frequency (MHz)	AUT Orientation	Antenna Gain (dBd)
288	Side	-26.58
310	Side	-25.02
340	End	-27.36
365	Side	-26.81
390	Side	-26.89
430	Side	-20.77
902	Side	-5.86
914	Side	-6.48
926	Side	-7.92

3.5. Test Equipment Setup and Procedure

3.5.1. Test Equipment Used

Equipment used			
ID / Serial #	Manufacturer	Description	Cal / PM Due Date
12090	Com-Power	AD-100A Dipole Antenna	5/4/2026
4574	Agilent	Spectrum Analyzer	9/12/2025
CF GCL	Megaphase/Pasternack	3m Chamber Port and Cables	4/30/2025
H6192	EMCO	3148 Log Periodic RX	5/13/2027
Tower 2	ETS-Lindgren	2171B Boresight Tower	VBU
PJ2246	ETS-Lindgren	Shielded Enclosure	12/31/2024
7182	Omega	iBTHX-W Virtual	9/24/2025
Absorber 1	ETS-Lindgren	Absorbers	VBU
6539	Stanley	Tape Measure	6/19/2026
6368	Rohde and Schwarz	Signal Generator	9/14/2025
CBL 143	Megaphase	GC29-N1N1-192	4/30/2025
CBL 174	Megaphase	GC12-S1S1-360	4/30/2025

Spectrum Analyzer Settings:

Detector: Peak
 Resolution Bandwidth: 120 kHz
 Video Bandwidth 300 kHz
 Span 1 MHz
 Sweep Time: 25ms

For testing, the AUT was placed at the center of a non-conducting table 150cm above the ground plane pursuant to ANSI C63.5:2017 section 6.2. The AUT harness was held ~75cm straight back and away from AUT.

Equipment is placed in one of the three orthogonal orientations, End, Side, and Flat. These orientations are described below in Figure 6.2.1.

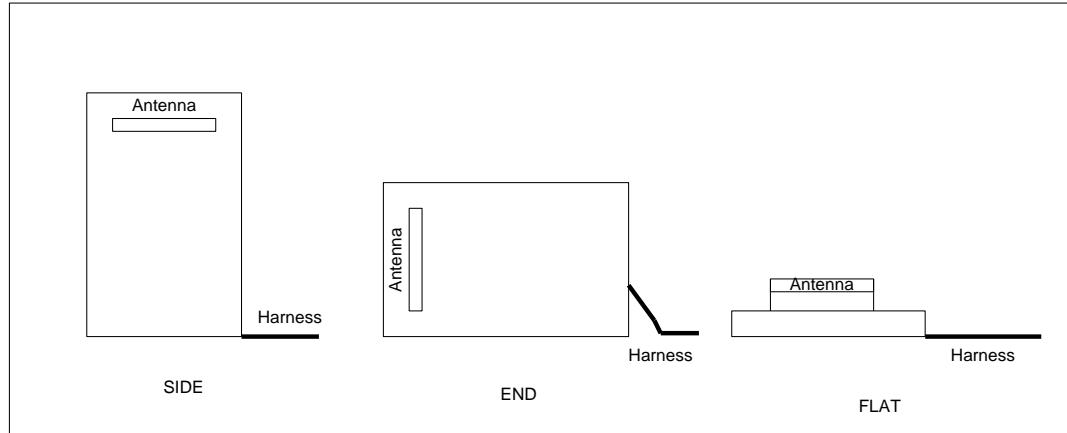


Figure 6.2.1 EUT Orthogonal Orientations

4. Formulas and Sample Calculations

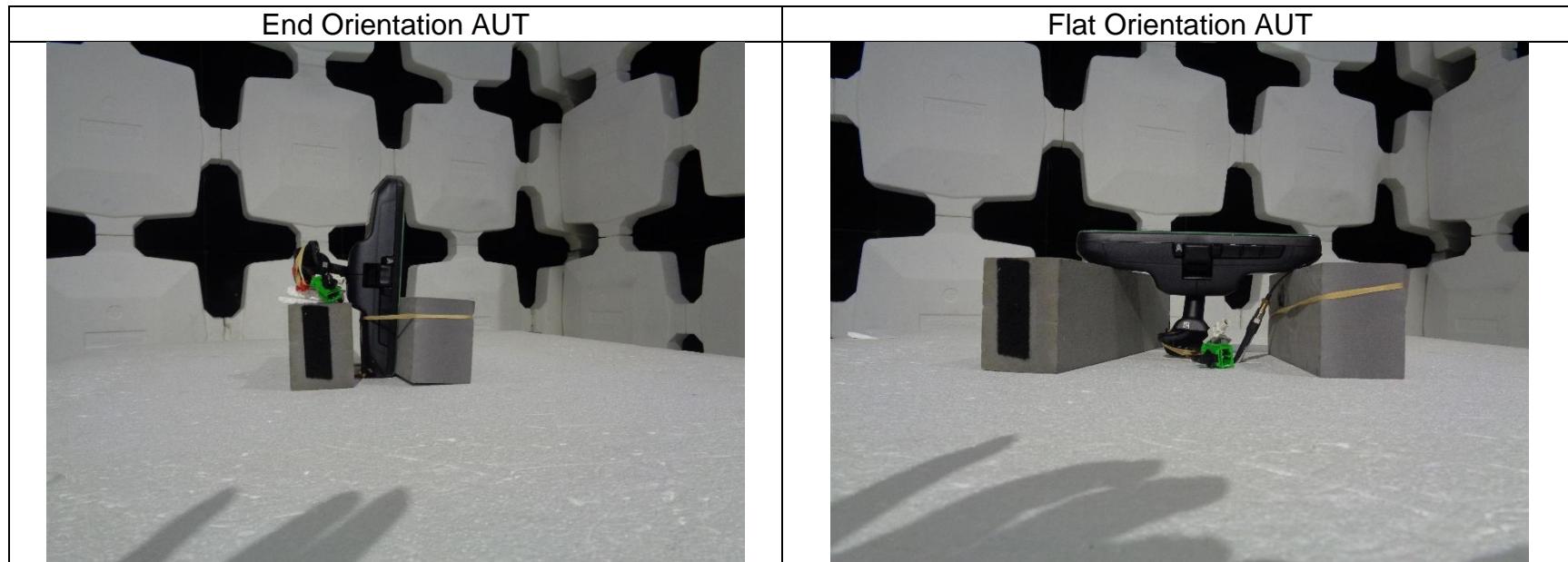
4.1. Antenna Gain Calculation

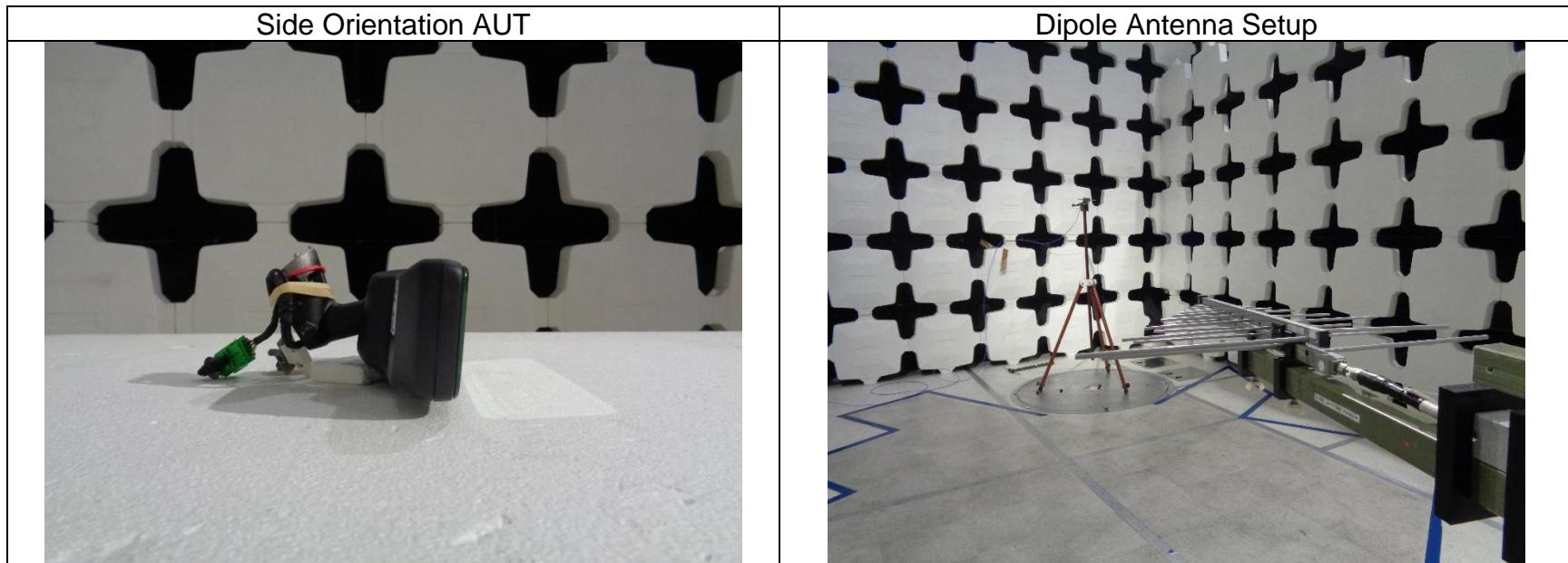
Gain (dBd) = Reference Gain + (Measured Level - Reference Level), where Reference Gain is the gain of the reference Dipole antenna in dBd. The Measured Level is the peak value recorded with the AUT and the Reference Level is the peak value recorded with the Dipole Antenna.

Appendix A

A. Antenna Gain Measurements

Measurements described in this section were taken according to ANSI C63.5-2017-Section 6.2 on the Gentex Corporation 3m test table.


* Measurements include Cable corrections and Antenna Factors


Measurement Settings:

Detector: Peak
 Resolution Bandwidth: 120 kHz
 Video Bandwidth 300 kHz
 Span 1 MHz
 Sweep Time: 25ms

Balun	Frequency	Receive Antenna Orientation	Signal Generator Output	Reference Antenna Gain (dBi)	Reference Antenna Output (dBuV)	AUT Output (dBuV/m)			Max Output (dBuV/m)	Antenna Gain (dBi)	Antenna Gain (dBd)
						Side	End	Flat			
AD-100A (180-400MHz)	288	H	107	2	76.42	49.99	47.25	44.41	49.99	-24.43	-26.58
	310	H	107	2	76.78	51.91	49.8	40.65	51.91	-22.87	-25.02
	340	H	107	1.9	76.71	49.43	49.6	43.67	49.6	-25.21	-27.36
	365	H	107	1.8	75.99	49.53	48.08	48.34	49.53	-24.66	-26.81
	390	H	107	1.7	75.69	49.25	48.78	47.99	49.25	-24.74	-26.89
AD-100A (400-1000MHz)	430	H	107	1.7	74.9	54.58	48.06	52.3	54.58	-18.62	-20.77
	902	H	107	1.8	63.12	57.61	53.75	53.53	57.61	-3.71	-5.86
	914	H	107	1.8	64.73	58.6	53.05	53.95	58.6	-4.33	-6.48
	926	H	107	1.8	64.73	57.16	51.6	54.75	57.16	-5.77	-7.92

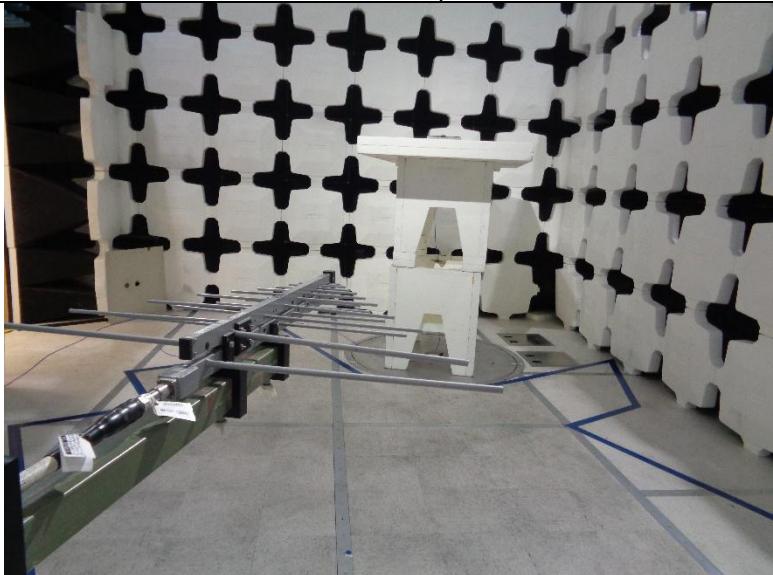
5. Test Set Up Photos

Lab Project ID#: EMC2024-12614

Test ID: Test-108299

FCC Report Form for Antenna Gain

Revision: 02/27/2024 Approved By: Jason Vargo


Uncontrolled copy if printed unless stamped as a Lab Controlled Document

Model: UAHL5P

Date: 11/12/2024

Page **9** of **10**

AUT Setup

Lab Project ID#: EMC2024-12614

Test ID: Test-108299

FCC Report Form for Antenna Gain

Revision: 02/27/2024 Approved By: Jason Vargo

Uncontrolled copy if printed unless stamped as a Lab Controlled Document

Model: UAHL5P

Date: 11/12/2024

Page **10** of **10**