

TABLE OF CONTENTS

<u>RULE</u>	<u>DESCRIPTION</u>	<u>PAGE</u>
	Test Report	1
2.1033 (c)	General Information Required	2
		4
2.1033 (c) (14)	Rule Summary	5
	Standard Test Conditions and Engineering Practices	
	Carrier Output Power (Conducted)	6
2.1046 (a)	Unwanted Emissions (Transmitter Conducted)	8
2.1051	Field Strength of Spurious Radiation	11
2.1053 (a)	Emission Masks (Occupied Bandwidth)	15
2.1049 (c) (1)	Transient Frequency Behavior	19
90.214	Frequency Stability (Temperature Variation)	25
2.1055 (a) (1)	Frequency Stability (Voltage Variation)	28
2.1055 (b) (1)	Necessary Bandwidth and Emission Bandwidth	29
2.202 (g)		

PAGE NO.

2 of 29.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATIONIN ACCORDANCE WITH FCC RULES AND REGULATIONS,
VOLUME II, PART 2 AND TO

90

Sub-part 2.1033

(c) (1): NAME AND ADDRESS OF APPLICANT:

Dassault Sercel Navigation-Positionnement
16 rue de Bel Air
B.P. 433, 44474 Carquefou Cedex
Nantes, France

MANUFACTURER:

Applicant

(c) (2): FCC ID: NZI26E1075203CMODEL NO: 26E1075203C(c) (3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c) (4): TYPE OF EMISSION: 14K6G1D(c) (5): FREQUENCY RANGE, MHz: 410 to 470(c) (6): POWER RATING, Watts: 0.5
____ Switchable ____ Variable N/A(c) (7): MAXIMUM POWER RATING, Watts: 500

PAGE NO.

3 of 29.

Subpart 2.1033 (continued)
(c) (8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE,
INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual
COLLECTOR VOLTAGE, Vdc = per manual
SUPPLY VOLTAGE, Vdc = 12

(c) (9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c) (10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:
Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c) (11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c) (12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c) (13): DIGITAL MODULATION DESCRIPTION:

ATTACHED EXHIBITS

N/A

(c) (14): TEST AND MEASUREMENT DATA:

FOLLOWS

PAGE NO.

4 of 29.

Sub-part
2.1033(c) (14):TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

- 21 - Domestic Public Fixed Radio Services
- 22 - Public Mobile Services
- 22 Subpart H - Cellular Radiotelephone Service
- 22.901(d) - Alternative technologies and auxiliary services
- 23 - International Fixed Public Radiocommunication services
- 24 - Personal Communications Services
- 74 Subpart H - Low Power Auxiliary Stations
- 80 - Stations in the Maritime Services
- 80 Subpart E - General Technical Standards
- 80 Subpart F - Equipment Authorization for Compulsory Ships
- 80 Subpart K - Private Coast Stations and Marine Utility Stations
- 80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
- 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
- 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
- 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
- 80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
- 80 Subpart X - Voluntary Radio Installations
- 87 - Aviation Services
- x 90 - Private Land Mobile Radio Services
- 94 - Private Operational-Fixed Microwave Service
- 95 Subpart A - General Mobile Radio Service (GMRS)
- 95 Subpart C - Radio Control (R/C) Radio Service
- 95 Subpart D - Citizens Band (CB) Radio Service
- 95 Subpart E - Family Radio Service
- 95 Subpart F - Interactive Video and Data Service (IVDS)
- 101 - Fixed Microwave Services

PAGE NO.

5 of 29.

STANDARD TEST CONDITIONS
and
ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 6 of 29.

NAME OF TEST: Carrier Output Power (Conducted)

SPECIFICATION: 47 CFR 2.1046(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

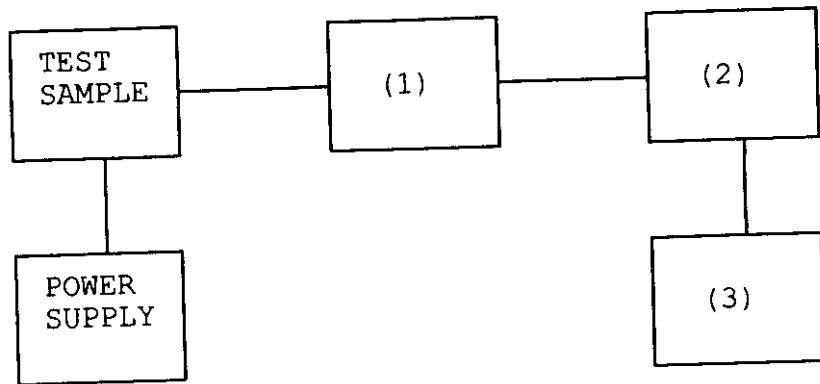
1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
2. Measurement accuracy is $\pm 3\%$.

MEASUREMENT RESULTS
(Worst case)

FREQUENCY OF CARRIER, MHz = 440, 410, 470

<u>POWER SETTING</u>	<u>R. F. POWER, WATTS</u>
High	0.5

SUPERVISED BY:



Morton Flom, P. Eng.

PAGE NO.

7 of 29.

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT
 TEST 2: FREQUENCY STABILITY

Asset	Description	s/n
-------	-------------	-----

(1)	<u>COAXIAL ATTENUATOR</u>	
—	i00122 Narda 766-10	7802
—	i00123 Narda 766-10	7802A
—	i00069 Bird 8329 (30 dB)	1006
x	i00113 Sierra 661A-3D	1059

(2)	<u>POWER METERS</u>	
—	i00014 HP 435A	1733A05836
x	i00039 HP 436A	2709A26776
x	i00020 HP 8901A POWER MODE	2105A01087

(3)	<u>FREQUENCY COUNTER</u>	
—	i00042 HP 5383A	1628A00959
x	i00019 HP 5334B	2704A00347
x	i00020 HP 8901A FREQUENCY MODE	2105A01087

PAGE NO. 8 of 29.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

SPECIFICATION: 47 CFR 2.1051

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

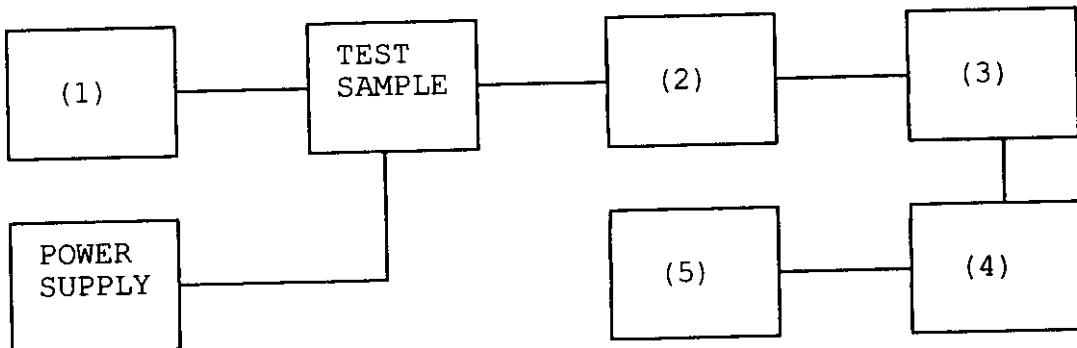
TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

1. The emissions were measured for the worst case as follows:
 - (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
2. The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.
3. MEASUREMENT RESULTS: ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz	= 440, 410, 470
SPECTRUM SEARCHED, GHz	= 0 to $10 \times F_c$
MAXIMUM RESPONSE, Hz	= N/A
ALL OTHER EMISSIONS	= ≥ 20 dB BELOW LIMIT
LIMIT(S), dBc - (50 + 10xLOG P)	= -47 (0.5 Watts)

SUPERVISED BY:


Morton Flom, P. Eng.

PAGE NO.

9 of 29.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)
 TEST B. OUT-OF-BAND SPURIOUS

Asset	Description	s/n
-------	-------------	-----

(1) <u>AUDIO OSCILLATOR/GENERATOR</u>			
i00010	HP 204D	1105A04683	
—	i00017	HP 8903A	2216A01753
<u>x</u>	i00012	HP 3312A	1432A11250

(2) <u>COAXIAL ATTENUATOR</u>			
i00122	Narda 766-10	7802	
—	i00123	Narda 766-10	7802A
<u>x</u>	i00069	Bird 8329 (30 dB)	1006
<u>x</u>	i00113	Sierra 661A-3D	1059

(3) <u>FILTERS; NOTCH, HP, LP, BP</u>			
<u>x</u>	i00126	Eagle TNF-1	100-250
<u>x</u>	i00125	Eagle TNF-1	50-60
<u>x</u>	i00124	Eagle TNF-1	250-850

(4) <u>SPECTRUM ANALYZER</u>			
<u>x</u>	i00048	HP 8566B	2511A01467
—	i00029	HP 8563E	3213A00104

(5) <u>SCOPE</u>			
<u>x</u>	i00058	HP 1741A	2251A09356
—	i00030	HP 54502A	2927A00209
<u>—</u>	i00071	Tektronix 935	1935-B011343

PAGE NO.

10 of 29.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
 g9930094: 1999-Mar-19 Fri 09:00:00
 STATE: 2:High Power

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
410.000000	820.224000	-52.7	-79.3	-32.7
458.550000	916.796000	-53.8	-80.4	-33.8
470.000000	939.523000	-55.5	-82.1	-35.5
410.000000	1230.024000	-54.8	-81.4	-34.8
458.550000	1375.727000	-53.1	-79.7	-33.1
470.000000	1409.722000	-54.1	-80.7	-34.1
410.000000	1639.591000	-53.7	-80.3	-33.7
458.550000	1834.146000	-52.8	-79.4	-32.8
470.000000	1880.396000	-53.7	-80.3	-33.7
410.000000	2049.725000	-52.2	-78.8	-32.2
458.550000	2292.825000	-52.1	-78.7	-32.1
470.000000	2349.757000	-52.3	-78.9	-32.3
410.000000	2460.130000	-53.2	-79.8	-33.2
458.550000	2750.907000	-54	-80.6	-34
470.000000	2819.684000	-55.4	-82	-35.4
410.000000	2869.697000	-55.1	-81.7	-35.1
458.550000	3209.960000	-54.1	-80.7	-34.1
410.000000	3279.651000	-55.7	-82.3	-35.7
470.000000	3289.597000	-55.9	-82.5	-35.9
458.550000	3668.173000	-54.4	-81	-34.4
410.000000	3690.338000	-55.4	-82	-35.4
470.000000	3759.931000	-55.8	-82.4	-35.8
410.000000	4100.497000	-55.6	-82.2	-35.6
458.550000	4126.627000	-53.2	-79.8	-33.2
470.000000	4230.393000	-55.1	-81.7	-35.1
410.000000	4510.112000	-55	-81.6	-35
458.550000	4585.894000	-53.7	-80.3	-33.7
470.000000	4700.194000	-56.3	-82.9	-36.3
410.000000	4919.974000	-54.2	-80.8	-34.2
458.550000	5043.995000	-53.9	-80.5	-33.9
470.000000	5170.050000	-53.9	-80.5	-33.9
410.000000	5330.171000	-54.9	-81.5	-34.9
458.550000	5502.911000	-54.5	-81.1	-34.5
470.000000	5640.197000	-56.1	-82.7	-36.1
410.000000	5740.175000	-55.2	-81.8	-35.2
458.550000	5961.141000	-48.3	-74.9	-28.3
470.000000	6109.720000	-49.6	-76.2	-29.6
410.000000	6150.189000	-49.7	-76.3	-29.7
458.550000	6419.596000	-49.1	-75.7	-29.1
470.000000	6580.003000	-49.8	-76.4	-29.8
458.550000	6878.177000	-47.8	-74.4	-27.8
470.000000	7050.258000	-49.4	-76	-29.4

PAGE NO.

11 of 29.

NAME OF TEST:

Field Strength of Spurious Radiation

SPECIFICATION:

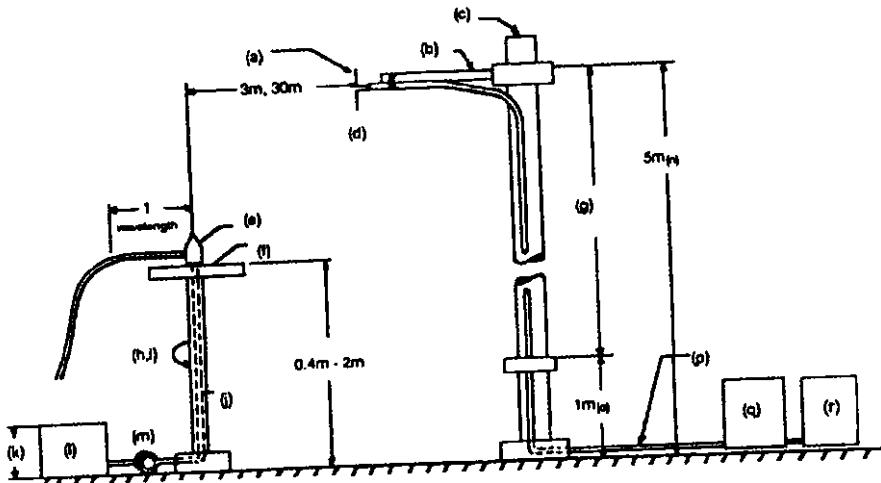
47 CFR 2.1053(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.12

TEST EQUIPMENT:

As per attached page


MEASUREMENT PROCEDURE

1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply. The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
4. The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
6. The field strength of each emission within 20 dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
7. The worst case for all channels is shown.
8. Measurement results:

ATTACHED FOR WORST CASE

PAGE NO.

12 of 29.

RADIATED TEST SETUP

NOTES:

- (a) Search Antenna - Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable

- (j) Cables routed through hollow turntable center
- (k) 30 cm or less
- (l) External power source
- (m) 10 cm diameter coil of excess cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (o) 25 cm from bottom end of 'V', 1m normally
- (p) Calibrated Cable at least 10m in length
- (q) Amplifier (optional)
- (r) Spectrum Analyzer

Asset	Description	s/n	Cycle	Last Cal
-------	-------------	-----	-------	----------

per ANSI C63.4-1992, 10-1.4

<u>TRANSDUCER</u>				
—	i00065	EMCO 3109B 100Hz-50MHz	2336	12 mo.
—	i00033	Singer 94593-1 10kHz-32MHz	0219	12 mo.
x	i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo. Oct-98
x	i00089	Aprel 2001 200MHz-1GHz	001500	12 mo. Oct-98
x	i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo. Oct-98
—	i00085	EMCO 3116 10GHz-40GHz	2076	12 mo.

<u>AMPLIFIER</u>				
—	i00028	HP 8449A	2749A00121	12 mo. Mar-98

<u>SPECTRUM ANALYZER</u>				
—	i00029	HP 8563E	3213A00104	12 mo. Aug-98
x	i00033	HP 85462A	3625A00357	12 mo. Dec-98
—	i00048	HP 8566B	2511AD1467	6 mo. Dec-98

PAGE NO.

13 of 29.

NAME OF TEST: Field Strength of Spurious RadiationALL OTHER EMISSIONS = \geq 20 dB BELOW LIMIT

<u>EMISSION, MHz/HARMONIC</u>	<u>SPURIOUS LEVEL, dBc</u>
2nd to 10th	High <-70

SUPERVISED BY:

Morton Flom, P. Eng.

PAGE NO.

14 of 29.

NAME OF TEST: Field Strength of Spurious Radiation
 g9930098: 1999-Mar-19 Fri 11:14:00
 STATE: 2:High Power

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	METER, dBuV	CF, dB	uV/m @ 3m	ERP, dBm	MARGIN, dB
458.550000	917.103066	11.5 P	32.51	158.67	-53.35	-40.4
458.550000	1375.654599	18.5 P	-0.35	8.08	-79.25	-66.3
458.550000	1834.206099	14.67 P	2.31	7.06	-80.35	-67.4
458.550000	2292.757632	5.33 P	4.62	3.14	-87.45	-74.5
458.550000	2751.309165	20.33 P	6.64	22.31	-70.45	-57.4
458.550000	3209.860664	14.83 P	8.19	14.16	-74.35	-61.4
458.550000	3668.411864	25.83 P	9.35	57.41	-62.15	-49.2
458.550000	4126.963397	25.5 P	10.49	63.02	-61.35	-48.4
458.550000	4585.514930	12.67 P	11.82	16.77	-72.85	-59.9

(P: Peak reading, A: Average reading)

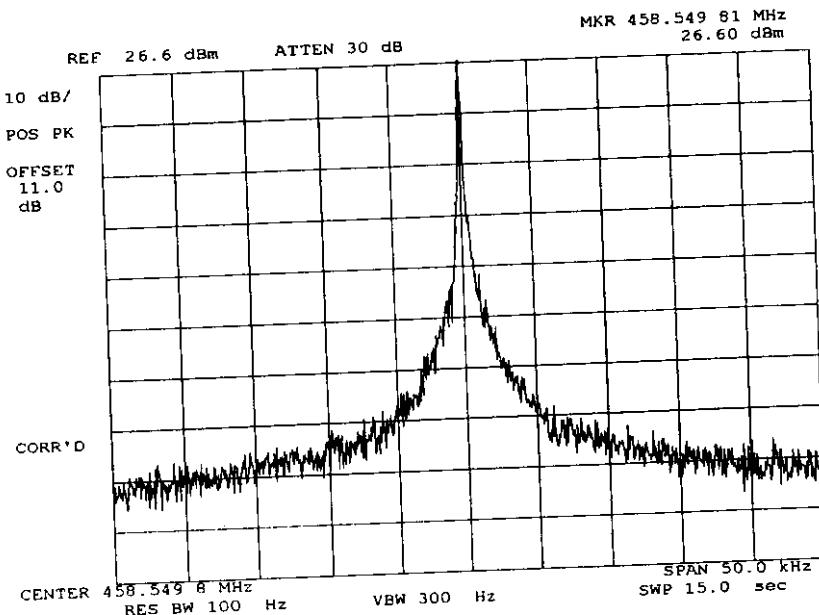
PAGE NO. 15 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECIFICATION: 47 CFR 2.1049(c) (1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page


MEASUREMENT PROCEDURE

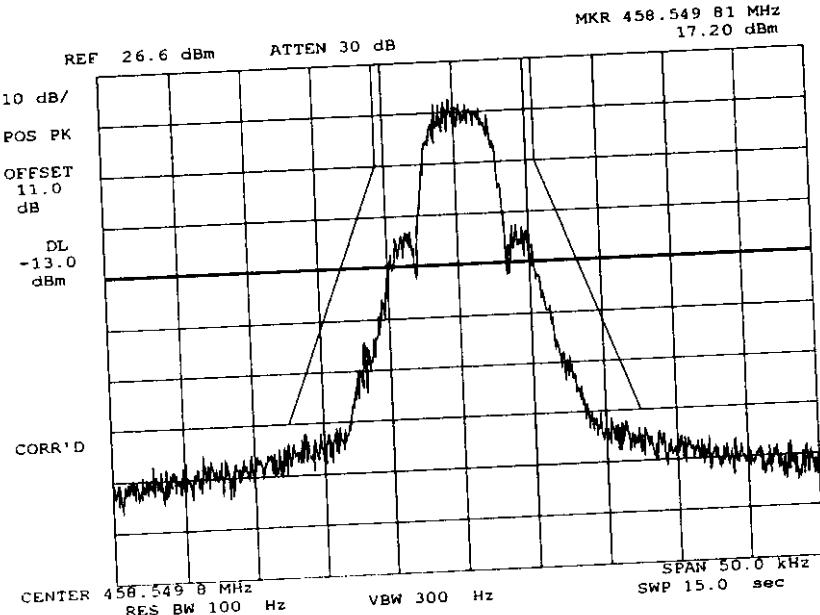
1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
5. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

16 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
g9930091: 1999-Mar-19 Fri 08:47:00
STATE: 2:High Power

POWER: HIGH
 MODULATION: NONE


SUPERVISED BY:

M. Flom, P. Eng.
 Morton Flom, P. Eng.

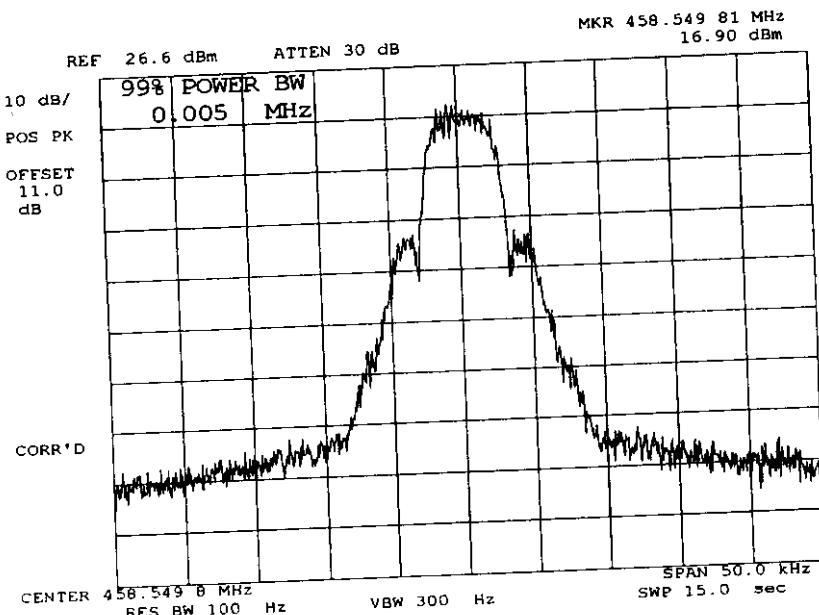
PAGE NO.

17 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g9930092: 1999-Mar-19 Fri 08:51:00
 STATE: 2:High Power

POWER:
 MODULATION:

HIGH
 DATA F1D
 MASK: D, VHF/UHF 12.5kHz BW
 4800 bps


SUPERVISED BY:

M. Flom, P. Eng.
 Morton Flom, P. Eng.

PAGE NO.

18 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
g9930093: 1999-Mar-19 Fri 08:55:00
STATE: 2:High Power

POWER:
 MODULATION:

HIGH
 DATA F1D
 99 % POWER BANDWIDTH

SUPERVISED BY:

M. Flom, P. Eng.
 Morton Flom, P. Eng.

PAGE NO.

19 of 29.

NAME OF TEST:

Transient Frequency Behavior

SPECIFICATION:

47 CFR 90.214

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

1. The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.

2. The transmitter was turned on.

3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.

4. The transmitter was turned off.

5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.

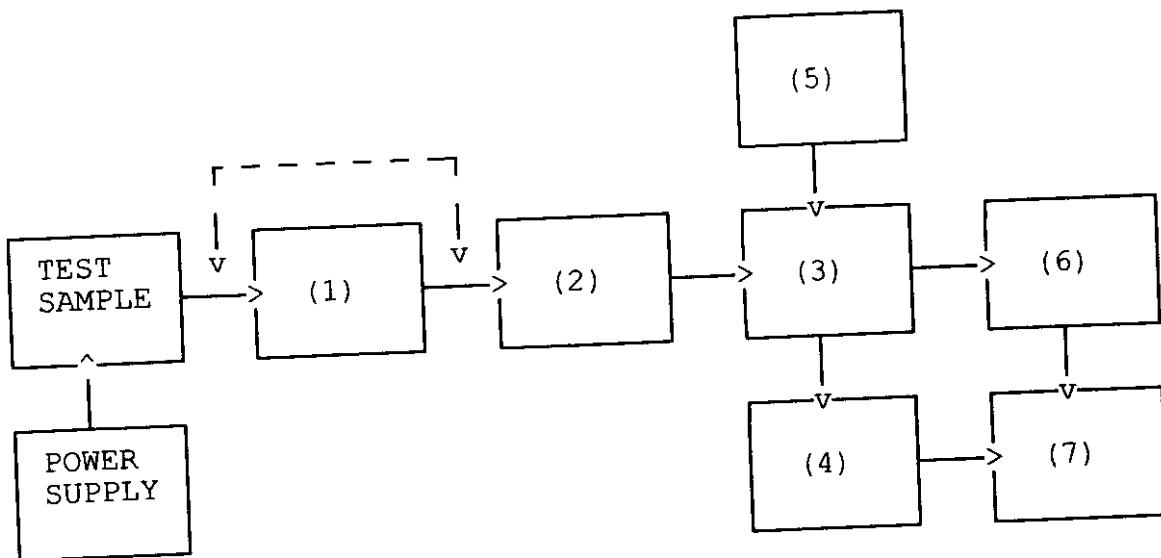
6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).

7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step l.

8. The carrier on-time as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

step f, dBm	= -13.9
step h, dBm	= -34.8
step l, dBm	= 14.9



Morton Flom, P. Eng.

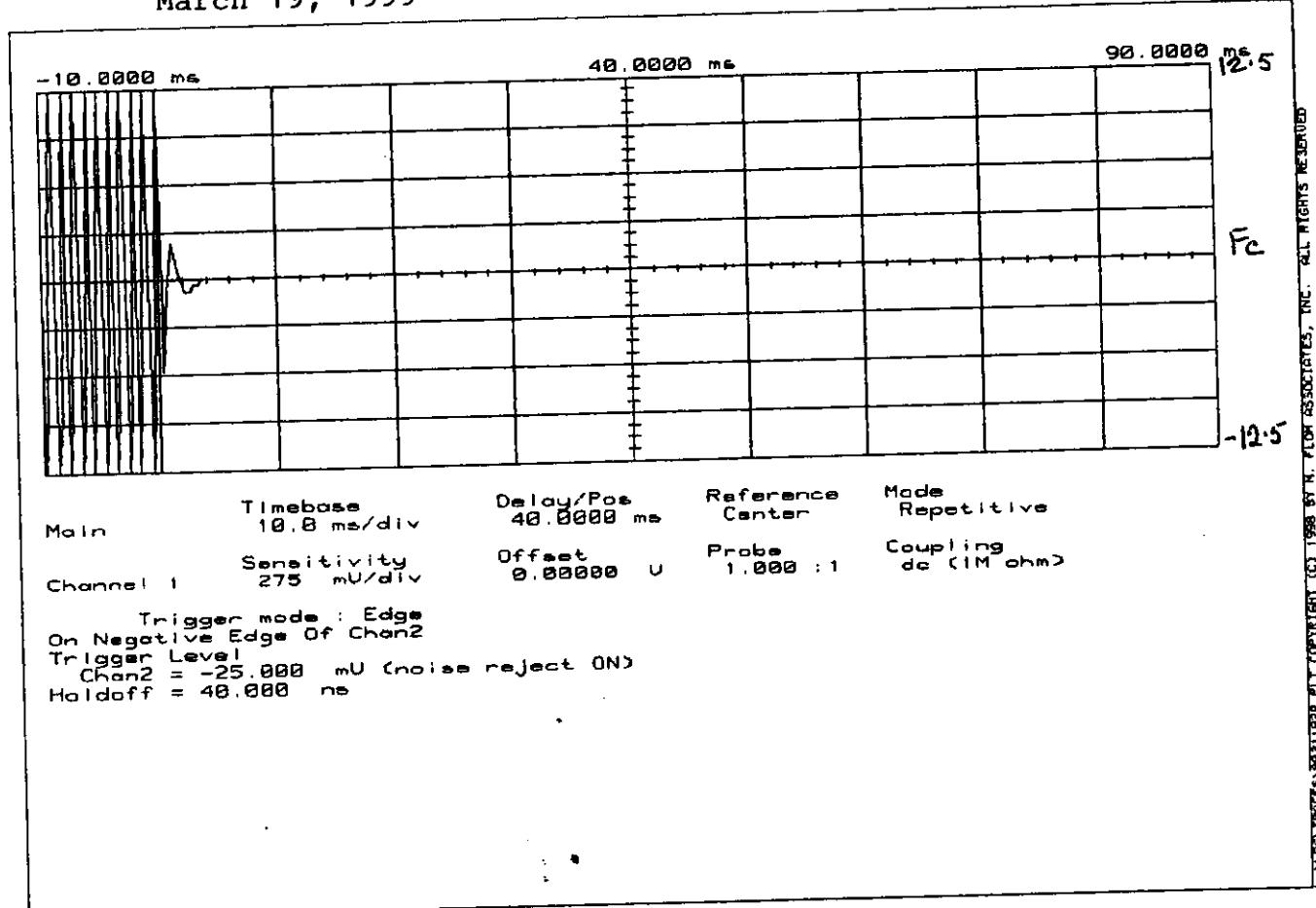
SUPERVISED BY:

PAGE NO.

20 of 29.

TRANSIENT FREQUENCY BEHAVIOR

Asset	Description	s/n
-------	-------------	-----

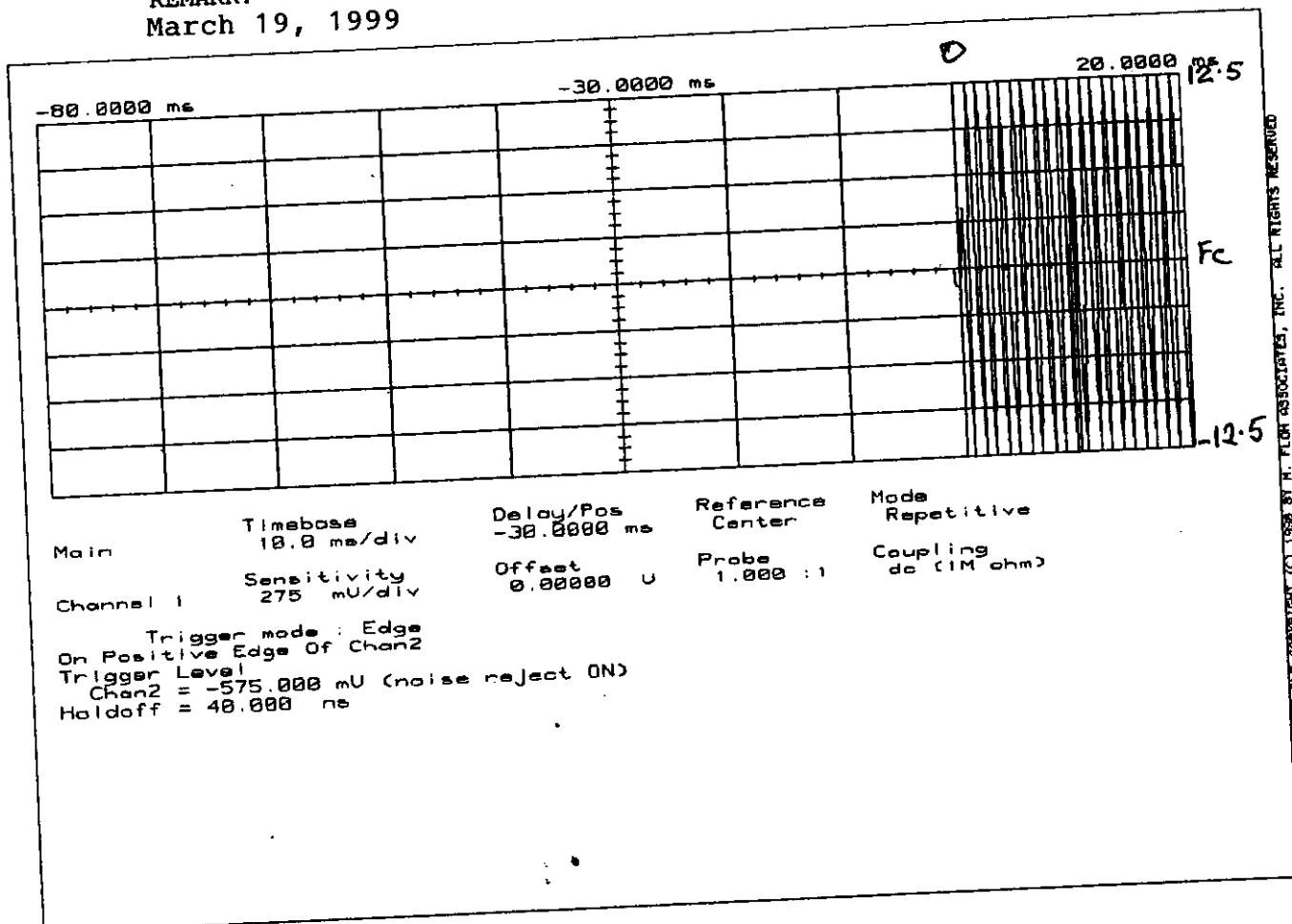

(1) ATTENUATOR	(Removed after 1st step)	
x i00112	Philco 30 dB	989
(2) ATTENUATOR		
— i00112	Philco 30 dB	989
— i00172	Bird 30 dB	989
x i00122	Narda 10 dB	7802
— i00123	Narda 10 dB	7802A
— i00110	Kay Variable	145-387
(3) COMBINER		
x i00154	4 x 25 Ω COMBINER	154
(4) CRYSTAL DETECTOR		
x i00159	HP 8470B	1822A10054
(5) RF SIGNAL GENERATOR		
— i00018	HP 8656A	2228A03472
— i00031	HP 8656A	2402A06180
x i00067	HP 8920A	3345U01242
(6) MODULATION ANALYZER		
x i00020	HP 8901A	2105A01087
(7) SCOPE		
x i00030	HP 54502A	2927A00209

PAGE 21 of 29.

MODULATION: Ref Gen=12.5 kHz Deviation

REMARK: CARRIER ON TIME

March 19, 1999

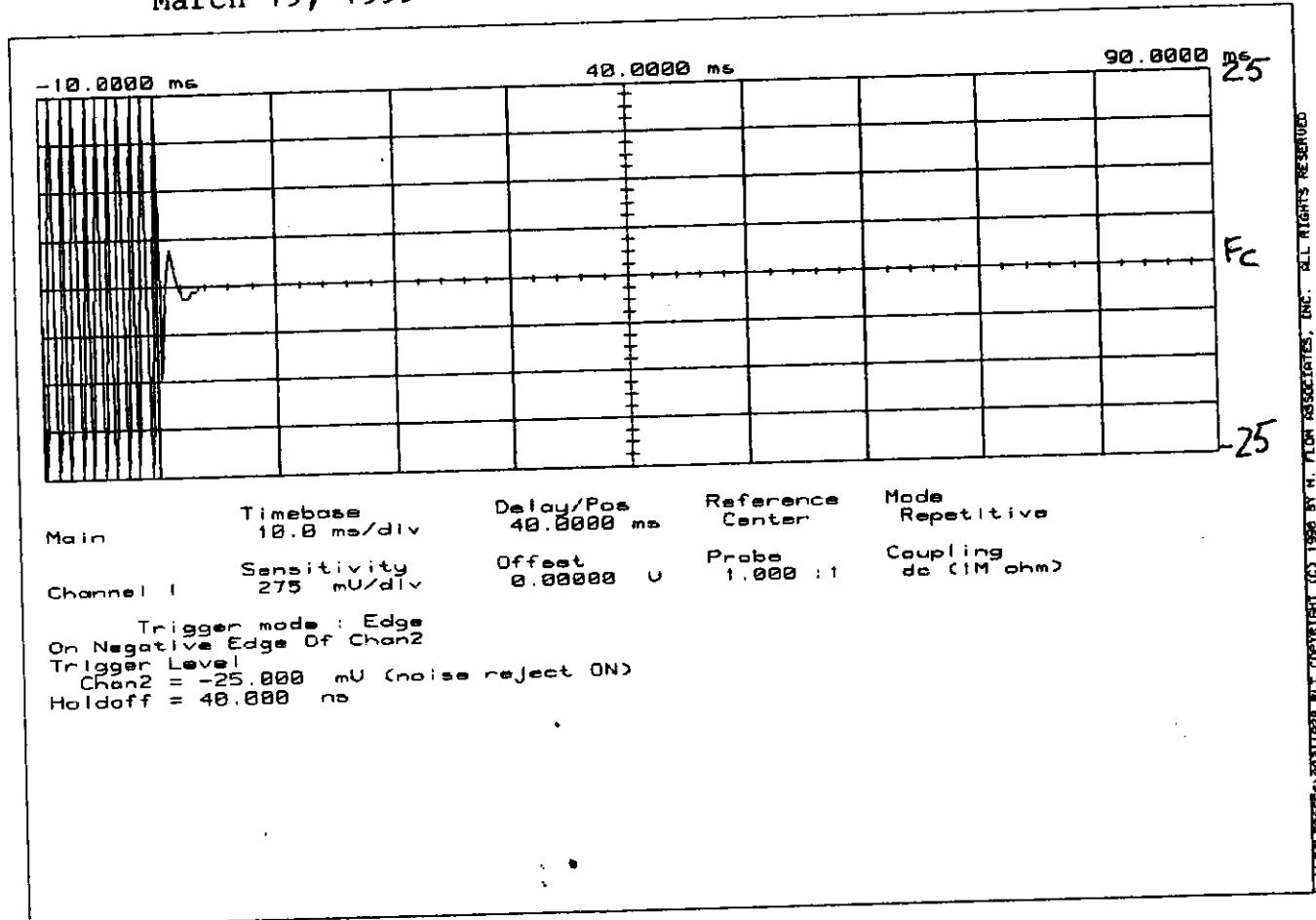


PAGE 22 of 29.

MODULATION: Ref Gen=12.5 kHz Deviation

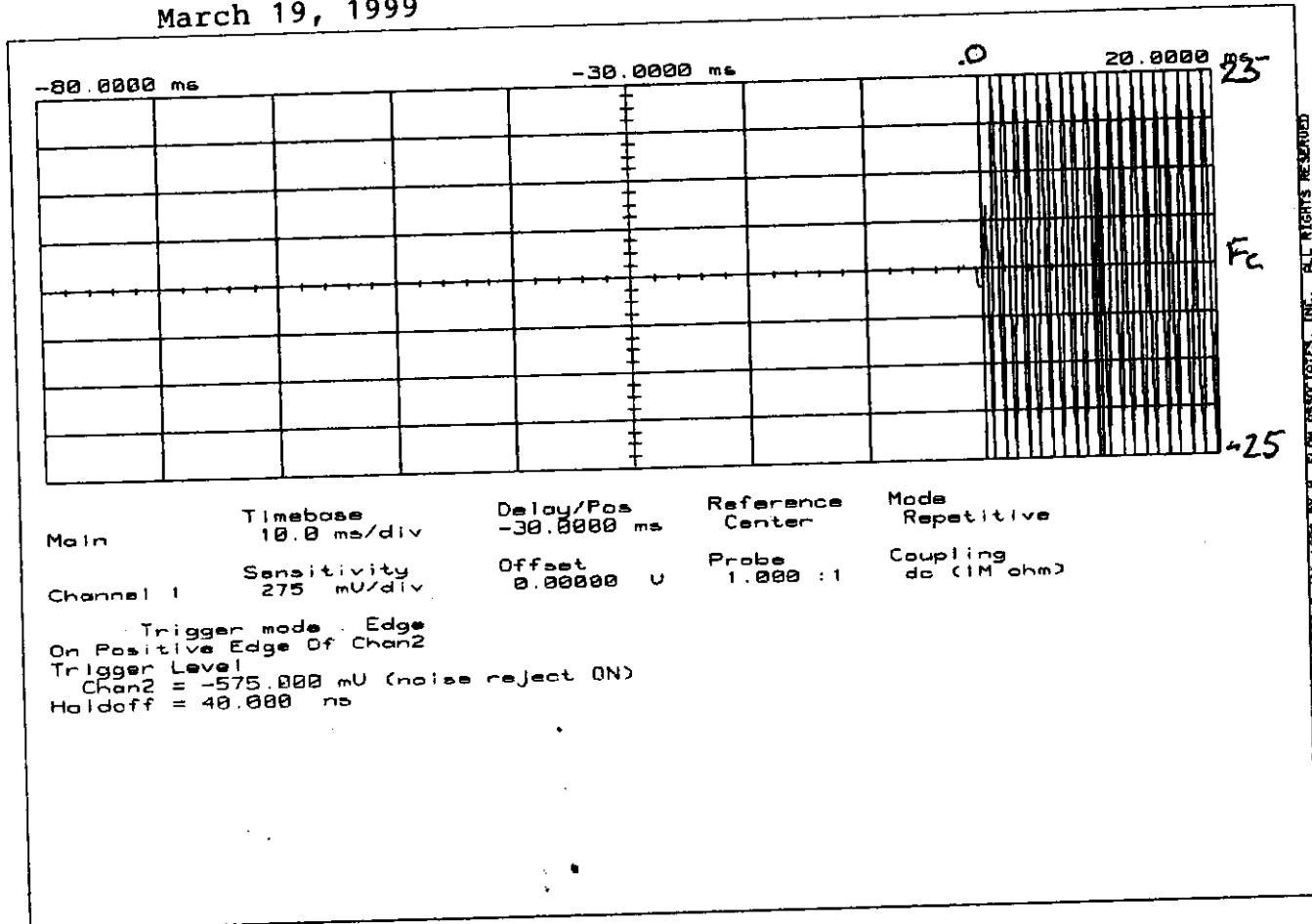
REMARK: CARRIER OFF TIME

March 19, 1999



PAGE 23 of 29.

MODULATION: WORST CASE


REMARK: CARRIER ON TIME

March 19, 1999

PAGE 24 of 29.
 MODULATION: WORST CASE
 REMARK: CARRIER OFF TIME

March 19, 1999

PAGE NO.

25 of 29.

NAME OF TEST:

Frequency Stability (Temperature Variation)

SPECIFICATION:

47 CFR 2.1055(a)(1)

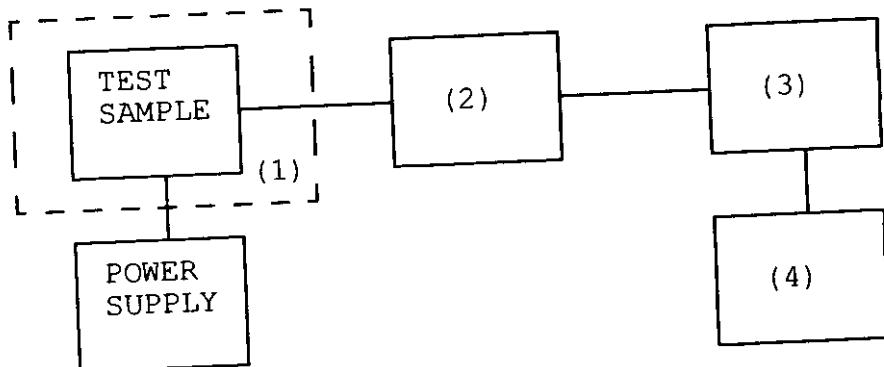
GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS: As Indicated

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


1. The EUT and test equipment were set up as shown on the following page.
2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
4. The temperature tests were performed for the worst case.
5. MEASUREMENT RESULTS: ATTACHED

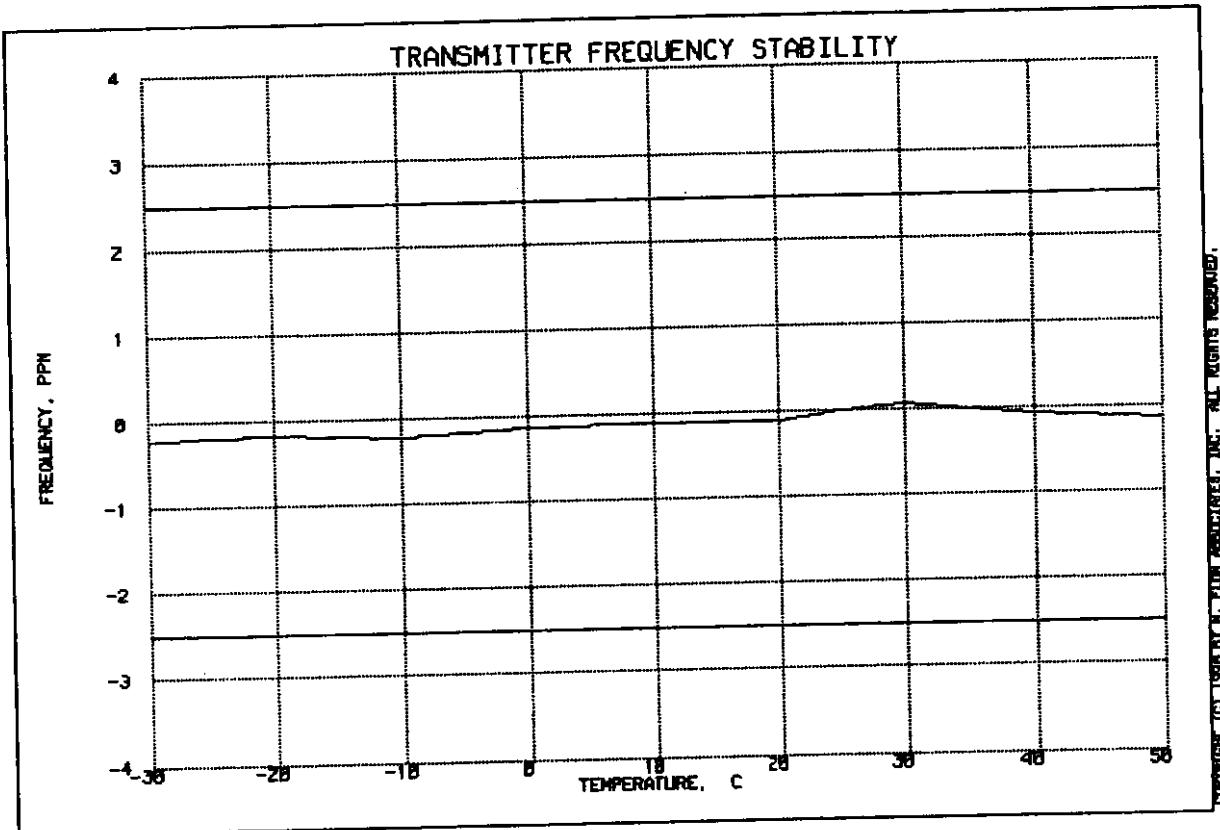
PAGE NO.

26 of 29.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY
 TEST B. CARRIER FREQUENCY STABILITY
 TEST C. OPERATIONAL PERFORMANCE STABILITY
 TEST D. HUMIDITY
 TEST E. VIBRATION
 TEST F. ENVIRONMENTAL TEMPERATURE
 TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION
 TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Asset	Description	s/n
-------	-------------	-----


(1)	TEMPERATURE, HUMIDITY, VIBRATION	
x	i00027 Tenny Temp. Chamber	9083-765-234
—	i00 Weber Humidity Chamber	
—	i00 L.A.B. RVH 18-100	

(2)	COAXIAL ATTENUATOR	
—	i00122 NARDA 766-10	7802
—	i00123 NARDA 766-10	7802A
x	i00113 SIERRA 661A-3D	1059
—	i00069 BIRD 8329 (30 dB)	10066

(3)	R.F. POWER	
—	i00014 HP 435A POWER METER	1733A05839
—	i00039 HP 436A POWER METER	2709A26776
x	i00020 HP 8901A POWER MODE	2105A01087

(4)	FREQUENCY COUNTER	
—	i00042 HP 5383A	1628A00959
x	i00019 HP 5334B	2704A00347
x	i00020 HP 8901A	2105A01087

TRANSMITTER FREQUENCY STABILITY

FREQUENCY OF CARRIER, MHz = 439.99992

LIMIT, ppm = 2.5

LIMIT, Hz = 1100

SUPERVISED BY:

MORTON FLOM, P. Eng.

PAGE NO.

28 of 29.

NZI26E1075203

NAME OF TEST:

Frequency Stability (Voltage Variation)

SPECIFICATION:

FCC: 47 CFR 2.995 (b)(1)
IC: RSS-119, Section 7.0

GUIDE:

TIA/EIA-602, Section 2.2.2

TEST CONDITIONS:

As indicated

TEST EQUIPMENT:

As per attached page

MEASUREMENT PROCEDURE

1. The EUT was placed in a temperature chamber at $25 \pm 5^{\circ}\text{C}$ and connected as for "Frequency Stability - Temperature Variation" test.
2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
3. The variation in frequency was measured for the worst case.

MEASUREMENT RESULTS

LIMIT, ppm = 2.5
LIMIT, Hz = 1100

STV, %	vdc	CHANGE IN FREQUENCY, Hz	
85	13.6	439999990	-10
100	16.0	440000000	0
115	18.4	439999980	-20
BATTERY END POINT:	9.6	439999990	-10

SUPERVISED BY:

MORTON FLOM, P. Eng.

PAGE NO.

29 of 29.

NAME OF TEST:

Necessary Bandwidth and Emission Bandwidth

SPECIFICATION:

47 CFR 2.202(g)

MODULATION = 14K6G1D

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz

= 4.8 BS

MAXIMUM DEVIATION (D), kHz

= 2.2

CONSTANT FACTOR (K)

= 1

NECESSARY BANDWIDTH (B_N), kHz

= (2 x M) + (2 x D x K)

= 14

SUPERVISED BY:

Morton Flom, P. Eng.

TESTIMONIAL
AND
STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
2. THAT the technical data supplied with the application was taken under my direction and supervision.
3. THAT the data was obtained on representative units, randomly selected.
4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

Morton Flom, P. Eng.

STATEMENT OF QUALIFICATIONS

EDUCATION:

1. B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
2. Post Graduate Studies, McGill University & Sir Goerge Williams University, Montreal.

PROFESSIONAL AFFILIATIONS:

1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
2. ORDER OF ENGINEERS (QUEBEC) 1949. #45 34.
3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERIA #5916.
4. REGISTERED ENGINEERING CONSULTANT - GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment approvals.
5. IEEE, Lifetime member no. 041/204 (Member since 1947).

EXPERIENCE:

1. Research/Development/Senior Project Engineer. R.C.A. LIMITED (4 years).
2. Owner/Chief Engineer of Electronics. Design/Manufacturing & Cable TV Companies (10 years)
3. CONSULTING ENGINEER (over 25 years).

MORTON FLOM, P. Eng.

PAGE NO.

1 of 29.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

TEST REPORT

a)

b) Laboratory: M. Flom Associates, Inc.
(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107
(Canada: IC 2044) Chandler, AZ 85224

c) Report Number: d9930076

d) Client: Dassault Sercel Navigation-Positionnement
16 rue de Bel Air
B.P. 433, 44474 Carquefou Cedex
Nantes, France

e) Identification: 26E1075203C
FCC ID: NZI26E1075203C
Description: UHF FM Transceiver

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: March 23, 1999
EUT Received: March 19, 1999

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

l) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission from this laboratory.