

FCC PART 15

EMI TEST REPORT

of

E.U.T. : notebook computer
MODEL : H300
TYPE NO. : H330
FCC ID. : NYYH300

for

APPLICANT : MOVITA TECHNOLOGIES INC.

ADDRESS : No. 26, Wu-Chuan 7th Rd., Wu-Ku Industrial Park,
Taipei County, Taiwan, R.O.C.

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN
NO. 34, LIN 5, DING FU TSUN, LINKOU HSIANG
TAIPEI HSIEN, TAIWAN, R.O.C.

Tel:(02)26023052, 26023054
Fax:(02)26010910

Report Number : ET91R-11-032-01

TEST REPORT VERIFICATION

Applicant : MOVITA TECHNOLOGIES INC.
No. 26, Wu-Chuan 7th Rd., Wu-Ku Industrial Park, Taipei County,
Taiwan, R.O.C.

Manufacturer : MOVITA TECHNOLOGIES INC.
No. 26, Wu-Chuan 7th Rd., Wu-Ku Industrial Park, Taipei County,
Taiwan, R.O.C.

Description of EUT :
a) Type of EUT : notebook computer
b) Trade Name : MOVITA ; MUSTEK
c) Model No. : H300
d) Type No. : H330
e) Power Supply : Adaptor 1 : MHASV08IA
I/P:100~240VAC, 1.5A,50/60Hz; O/P:16VDC, 3.12A
Adaptor 2 : LSE9802A1650
I/P:100~240VAC, 1.5A,50/60Hz; O/P:16VDC, 3.13A

Regulation Applied : FCC Rules and Regulations Part 15 Subpart B (2002)

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4, and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The result of the testing report relate only to the item tested.
2. The testing report shall not be reproduced expect in full, without the written approval of ETC.

Issued Date: Dec. 20, 2002

Test Engineer: Ion Lin
(Ion Lin)

Approve & Authorized Signer: Will Yauo
Will Yauo, Manager
EMC Dept. II of ELECTRONICS
TESTING CENTER, TAIWAN

Table of Contents	Page
1 GENERAL INFORMATION	1
1.1 Product Description.....	1
1.2 Characteristics of Device	1
1.3 Test Methodology	2
1.4 Test Facility	2
2 LIMITATIONS AND LABELING REQUIREMENT	3
2.1 Definition.....	3
2.2 Limitation	4
2.3 Labeling Requirement.....	4
2.4 User Information.....	5
3 SYSTEM TEST CONFIGURATION	6
3.1 Justification.....	6
3.2 Device for Tested System	6
4 RADIATED EMISSION MEASUREMENT.....	7
4.1 Description for Radiated Emission Measured	7
4.2 Radiated Emission Data.....	8
4.3 Field Strength Calculation.....	10
4.4 Equipment for Radiation Measurement	11
4.5 Measuring Instrument Setup.....	11
4.6 Photos of Radiation Measuring Setup.....	12
4.7 Open Field Test Site Setup Diagram.....	14
5 CONDUCTED EMISSION MEASUREMENT.....	15
5.1 Standard Applicable.....	15
5.2 Measurement Procedure	15
5.3 Conducted Emission Data	16
5.4 Result Data Calculation.....	17
5.5 Conducted Measurement Equipment.....	17
5.6 Photos of Conduction Measuring Setup	18
APPENDIX 1 : PLOTTED DATA FOR CONDUCTED EMISSION.....	20

1 GENERAL INFORMATION

1.1 Product Description

- a) Type of EUT : notebook computer
- b) Trade Name : MOVITA ; MUSTEK
- c) Model No. : H300
- d) Type No. : H330
- e) Power Supply : Adaptor 1 : HASV08IA
I/P:100~240VAC, 1.5A,50/60Hz; O/P:16VDC, 3.12A
Adaptor 2 : LSE9802A1650
I/P:100~240VAC, 1.5A,50/60Hz; O/P:16VDC, 3.13A

1.2 Characteristics of Device

1. LAN RJ-45 Jack, Mic Jack, Modem RJ-11 Jac.
2. Standard Internal HDD.
3. DDR Memory SIMM.
4. Three USB connector.
5. D-Sub Connector
6. CPU speed 933MHz

1.3 Test Methodology

For notebook computer, both conducted, radiated, conducted RF output signal and spurious level and transfer switch isolation testing were performed according to the procedures in section 12.2 of ANSI C63.4 (1992).

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the roof top of Building at No.34, Lin 5, Ding Fu Tsun, Linkou Hsiang, Taipei Hsien, Taiwan, R.O.C.

This site has been fully described in a report submitted to your office, and accepted in a letter dated Feb. 10, 2000.

2 LIMITATIONS AND LABELING REQUIREMENT

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device :

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business or industrial environment. Example of such devices that are marketed for the general public.

Note : A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

2.2 Limitation

(1) Conducted Emission Limits :

Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 Ω H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

* Decreases with the logarithm of the frequency

(2) Radiated Emission Limits:

According to 15.109, Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Class B Radiated Emission Limits:

Frequency MHz	Distance Meters	Radiated dB μ V/m	Radiated μ V/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
Above 960	3	54.0	500

2.3 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.4 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio / TV technician for help.

3 SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion, as a customer would normally use it.

For radiated emission measuring, the EUT was rotated to obtain the maximum level of radiated emissions. The antenna was varied in height from 1 to 4 meters above ground to obtain the maximum signal strength. Measurement was performed under the condition that a computer program was exercised to simulate data communication of EUT. Three highest emissions were verified with varying placement of the connected cable to maximize the emission from EUT.

3.2 Device for Tested System

Device	Manufacture	Model	Description
Notebook computer*	MOVITA TECHNOLOGIES INC.	H300	1.8m Unshielded AC Adaptor Power Cord 1.2m Unshielded RJ-11 Telephone Line 2.0m Shielded RJ-45 LAN Cable
Monitor	View Sonic	E653	2.0m Shielded Video Cable With 2 Core
USB Mouse	Logitech	M-U48a	1.5m Unshielded USB Cable
USB Mouse	Logitech	M-UB48	1.5m Unshielded USB Cable
Keyboard	Solidtek	ACK-298	1.0m Unshielded Cable
Microphone	----	----	1.2m Unshielded Cable
Earphone	----	----	1.3m Unshielded Cable
Hard Disk Drive	Fujitsu	MHN2300AT	----
RAM	Winbond	PB20	----
CPU	VIA	C3	----
Pannel	LG PHILIPS	LP104S5 (B2AP)	----
Adaptor 1	HJC	HASU08IA	----
Adaptor 2	LS	LSE9802A1650	----

Remark “*” means equipment under test.

4 RADIATED EMISSION MEASUREMENT

4.1 Description for Radiated Emission Measured

According to § 15.33 (b)(3), except for a CB receiver, a receiver employing super-heterodyne techniques shall be investigated from 30 MHz up to at least the second harmonic of the highest local oscillator frequency generated in the device.

The field strength measurements of the receiver under test which was placed on an wooden turntable 0.8 meter in height. The receiving antenna polarized horizontally was varied from 1 to 4 meters and the wooden turntable was rotated through 360 degrees to obtain the highest reading on the field strength meter or on the display of the spectrum analyzer. And also, each emission was to be maximized by changing the orientation of the equipment under test. These measurements were repeated with the receiving antenna polarized vertically.

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, the limit , and margin. Explanation of the Correction Factor is given in paragraph 4.3.

4.2 Radiated Emission Data

4.2.1 Below 1 GHz

A.

Operation Mode : Adaptor 1

Test Date : Nov. 22, 2002 Temperature : 26 Humidity: 65 %

Frequency (MHz)	Ant-Pol	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
178.120	V	37.7	-9.1	28.6	43.5	-14.9	285	1.2
181.845	V	43.3	-9.0	34.3	43.5	-9.2	105	1.1
184.814	V	42.4	-8.8	33.6	43.5	-9.9	95	1.2
198.407	V	37.7	-7.3	30.4	43.5	-13.1	270	1.1
689.810	H	41.9	-1.0	40.9	46.0	-5.1	185	1.3
699.721	H	40.6	-1.0	39.6	46.0	-6.4	60	1.4

Note :

1. Remark “---” means that the emissions level is too low to be measured.
2. The expanded uncertainty of the radiated emission tests is 3.53 dB.

B.

Operation Mode : Adaptor 2Test Date : Nov. 22, 2002 Temperature : 26 Humidity: 65 %

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
43.660	V	37.9	-12.6	25.3	40.0	-14.7	175	1.2
154.630	V	40.5	-9.8	30.7	43.5	-12.8	90	1.1
157.710	V	35.2	-9.6	25.6	43.5	-17.9	195	1.3
178.120	V	34.0	-9.1	24.9	43.5	-18.6	280	1.2
643.380	H	45.4	-3.0	42.4	46.0	-3.6	270	1.1
688.810	H	42.7	-1.0	41.7	46.0	-4.3	180	1.3

Note :

1. Remark “---” means that the emissions level is too low to be measured.
2. The expanded uncertainty of the radiated emission tests is 3.53 dB.

4.2.2 Above 1 GHz

Operation Mode : Adaptor 1 / Adaptor 2

Test Date : Dec. 04, 2002 Temperature : 27 Humidity: 70 %

Frequency (MHz)	Reading (dBuV)				Factor (dB) Corr.	Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
	H		V			Peak	Ave	Peak	Ave			
1168.670	61.0	36.8	61.3	37.6	-9.0	52.3	28.6	74.0	54.0	-21.7	30	1.0
1224.080	59.6	35.0	64.4	42.3	-8.7	55.7	33.6	74.0	54.0	-18.3	185	1.1
1611.030	53.6	32.1	60.8	35.1	-6.9	53.9	28.2	74.0	54.0	-20.1	275	1.0
1870.630	50.4	31.8	55.7	33.5	-5.4	50.3	28.1	74.0	54.0	-23.7	70	1.0
2021.650	48.8	31.7	54.6	32.6	-4.5	50.1	28.1	74.0	54.0	-23.9	145	1.0
3000.000	---	---	---	---	-1.2	---	---	74.0	54.0	---	---	---
5000.000	---	---	---	---	2.9	---	---	74.0	54.0	---	---	---
7000.000	---	---	---	---	5.4	---	---	74.0	54.0	---	---	---
10000.000	---	---	---	---	7.4	---	---	74.0	54.0	---	---	---

Note :

1. Item of margin shown in above table refer to average limit.
2. Remark “---” means that the emission level is too low to be measured, with a preamplifier of 35 dB.
3. Measuring data showed on above table was derived with peak detector function.
4. It is considered that the results of average comply with average limit when measuring data with a peak function detector meet the average limit. Mark “***” means that Peak result is meet average limit.
5. The expanded uncertainty of the radiated emission tests is 3.53 dB.

4.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\text{RESULT} = \text{READING} + \text{CORR. FACTOR}$$

where CORR. FACTOR = Antenna FACTOR + Cable FACTOR

4.4 Equipment for Radiation Measurement

The following test equipment are used during the radiated test .

Equipment	Manufacturer	Model No.	Next Cal. Date
Spectrum Analyzer	Hewlett-Packard	8568B	01/10/2003
Quasi Peak Adapter	Hewlett-Packard	85650A	01/10/2003
Pre-selector	Hewlett-Packard	85685A	01/10/2003
Pre-Amplifier	Hewlett-Packard	8447D	09/29/2003
Log Periodic Antenna	EMCO	3146	11/05/2003
Horn Antenna	EMCO	3115	08/08/2003
Preamplifier	Hewlett-Packard	8449B	05/29/2003
RF Test Receiver	Rohde & Schwarz	ESVS 30	08/06/2003
Biconical Antenna	EMCO	3110B	11/05/2003
Spectrum Analyzer	Hewlett-Packard	8564E	04/14/2003

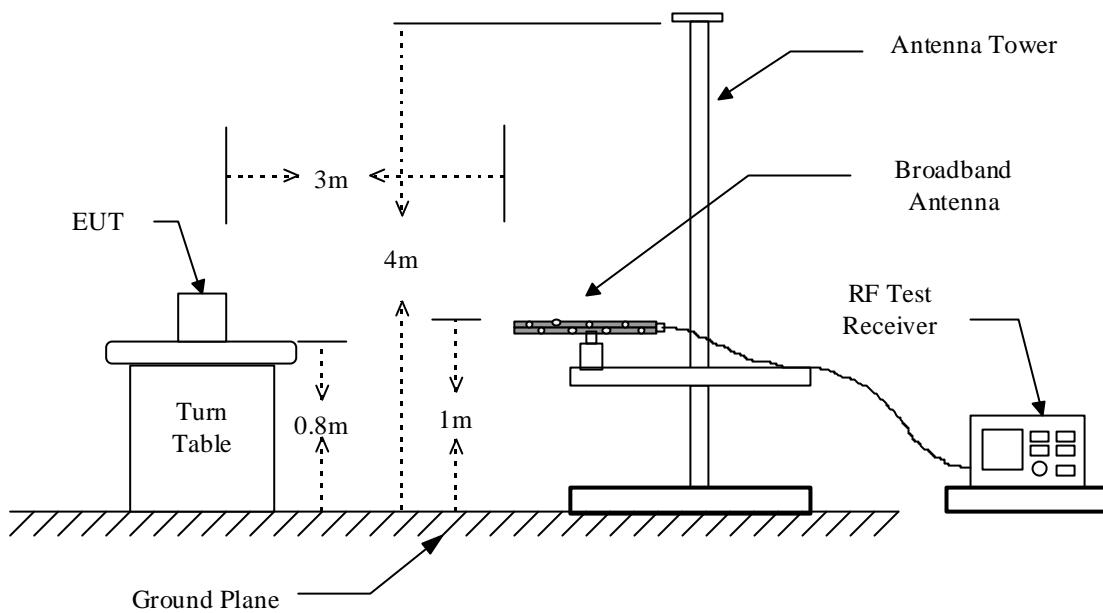
4.5 Measuring Instrument Setup

Explanation of measuring instrument setup when respective function is used in any frequency band is as following :

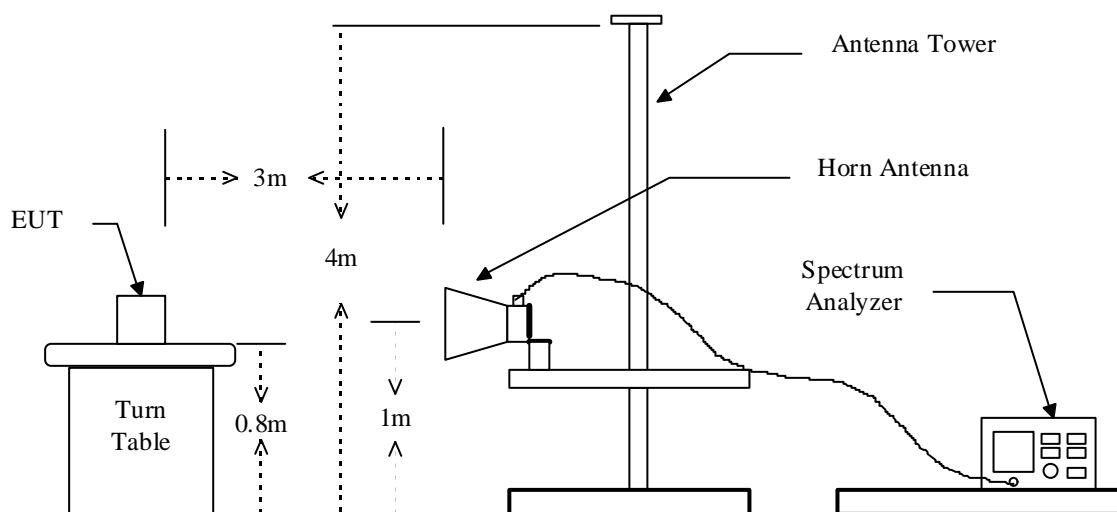
Frequency Band (MHz)	Instrument	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	RF Test Receiver	Quasi Peak	120 kHz	N/A
	Spectrum Analyzer	Peak	100 kHz	100 kHz
Above 1000	Spectrum Analyzer	Peak	1 MHz	1 MHz
	Spectrum Analyzer	Average	1 MHz	300Hz

4.6 Photos of Radiation Measuring Setup

A. Adaptor 1


Please see setup photos in Exhibit F

B. Adaptor 2

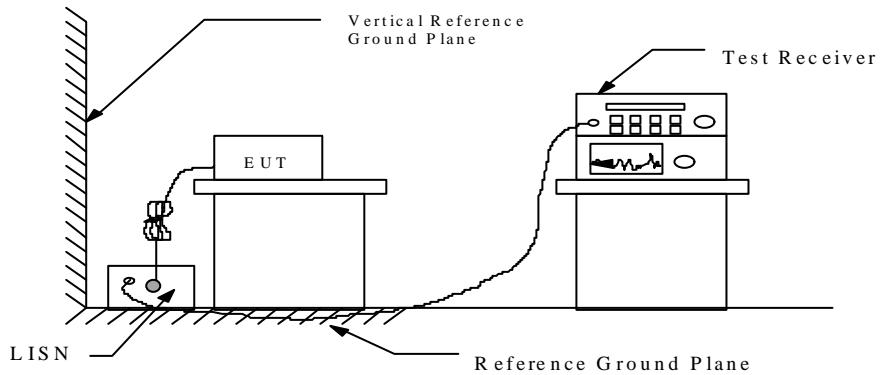

Please see setup photos in Exhibit F

4.7 Open Field Test Site Setup Diagram

Radiated Emission's Frequency Below 1 GHz

Radiated Emission's Frequency Above 1 GHz

5 CONDUCTED EMISSION MEASUREMENT


5.1 Standard Applicable

For unintentional and intentional device, Line Conducted Emission Limits are in accordance to § 15.107(a) and § 15.207(a) respectively

5.2 Measurement Procedure

1. Setup the configuration per figure 3.
2. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
3. Record the 6 or 8 highest emissions relative to the limit.
4. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then record the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
5. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
6. Repeat all above procedures on measuring each operation mode of EUT.

Figure 3 : Conducted emissions measurement configuration

5.3 Conducted Emission Data

A.

Operation Mode : Adaptor 1Test Date : Dec. 04, 2002Temperature: 27Humidity: 70 %

Freq. (MHz)	Meter Reading (dB μ V)				Factor (dB)	Limit (dB μ V)		Result (dB μ V)				
	Q.P Value		AVG. Value			Q.P Value	AVG. Value	Q.P Value		AVG. Value		
	N	L1	N	L1				N	L1	N	L1	
2.090	25.9	26.3	----	----	0.5	56.0	46.0	26.4	26.8	----	----	
2.145	25.2	26.3	----	----	0.5	56.0	46.0	25.7	26.8	----	----	
3.406	24.7	25.5	----	----	0.6	56.0	46.0	25.3	26.1	----	----	
3.734	30.0	29.9	----	----	0.6	56.0	46.0	30.6	30.5	----	----	
3.898	22.6	23.7	----	----	0.6	56.0	46.0	23.2	24.3	----	----	
4.230	23.2	24.4	----	----	0.6	56.0	46.0	23.8	25.0	----	----	

B.

Operation Mode : Adaptor 2Test Date : Dec. 04, 2002Temperature: 27Humidity: 70 %

Freq. (MHz)	Meter Reading (dB μ V)				Factor (dB)	Limit (dB μ V)		Result (dB μ V)				
	Q.P Value		AVG. Value			Q.P Value	AVG. Value	Q.P Value		AVG. Value		
	N	L1	N	L1				N	L1	N	L1	
0.166	50.8	46.1	----	----	0.2	65.2	55.2	51.0	46.3	----	----	
0.224	43.9	41.2	----	----	0.2	62.7	52.7	44.1	41.4	----	----	
0.283	38.3	31.4	----	----	0.2	60.7	50.7	38.5	31.6	----	----	
0.314	24.3	24.3	----	----	0.3	59.8	49.8	24.6	24.6	----	----	
3.207	27.7	28.9	----	----	0.6	56.0	46.0	28.3	29.5	----	----	
3.266	24.0	26.3	----	----	0.6	56.0	46.0	24.6	26.9	----	----	

Note : 1. Please see appendix 1 for Plotted Data

2. The expanded uncertainty of the conducted emission tests is 2.45 dB.

5.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

$$\text{RESULT} = \text{READING} + \text{LISN FACTOR}$$

Assume a receiver reading of 22.5 dB μ V is obtained, and LISN Factor is 0.1 dB, then the total of disturbance voltage is 22.6 dB μ V.

$$\text{RESULT} = 22.5 + 0.1 = 22.6 \text{ dB } \mu \text{ V}$$

$$\begin{aligned} \text{Level in } \mu \text{ V} &= \text{Common Antilogarithm}[(22.6 \text{ dB } \mu \text{ V})/20] \\ &= 13.48 \text{ } \mu \text{ V} \end{aligned}$$

5.5 Conducted Measurement Equipment

The following test equipment are used during the conducted test.

Equipment	Manufacturer	Model No.	Next Cal. Date
EMI Test Receiver	Rohde and Schwarz	ESCS 30	11/15/2003
Line Impedance Stabilization network	Rohde and Schwarz	ESH2-Z5	09/03/2003
Line Impedance Stabilization network	Kyoritsu	KNW-407	12/02/2003
Plotter	Hewlett-Packard	7440A	N/A
Shielded Room	Riken	N/A	N.C.R.

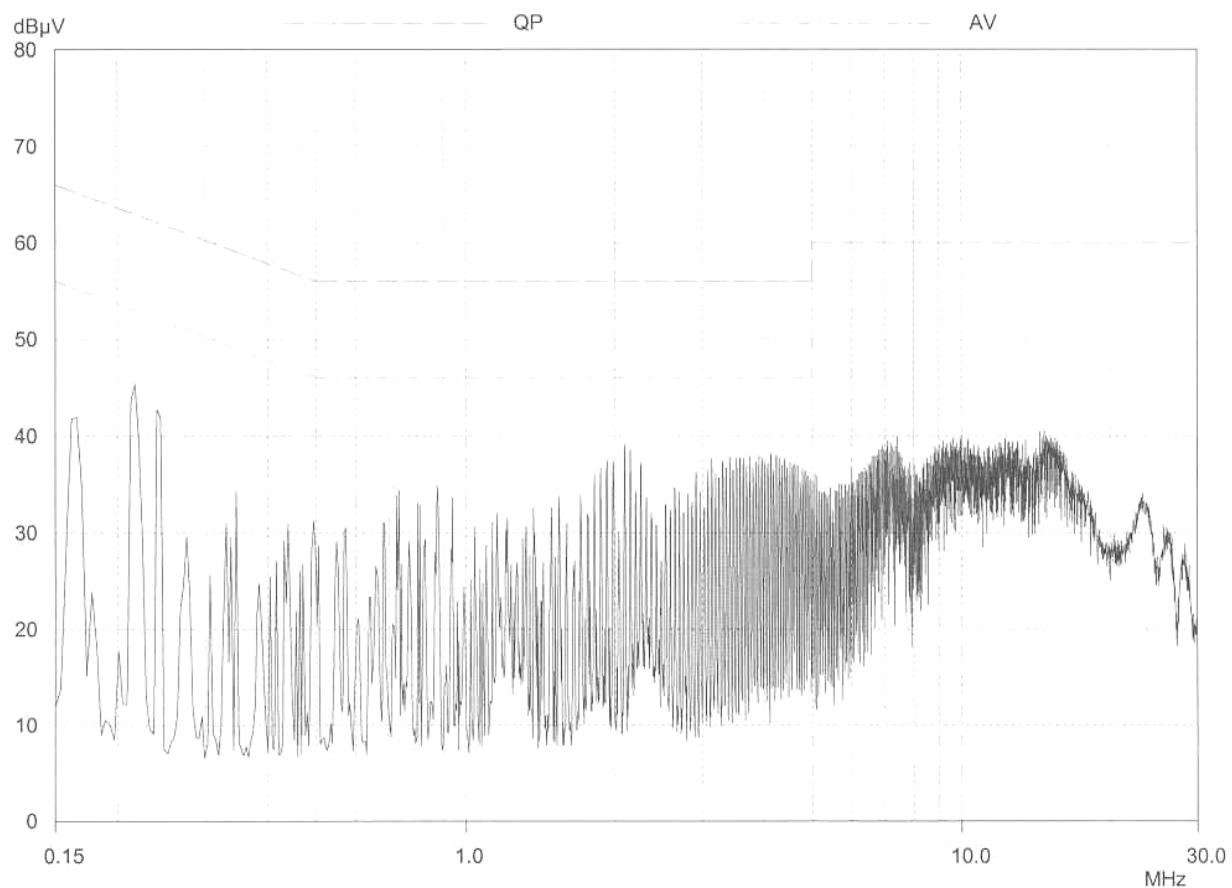
5.6 Photos of Conduction Measuring Setup

A. Adaptor 1

Please see setup photos in Exhibit F

B. Adaptor 2

Please see setup photos in Exhibit F

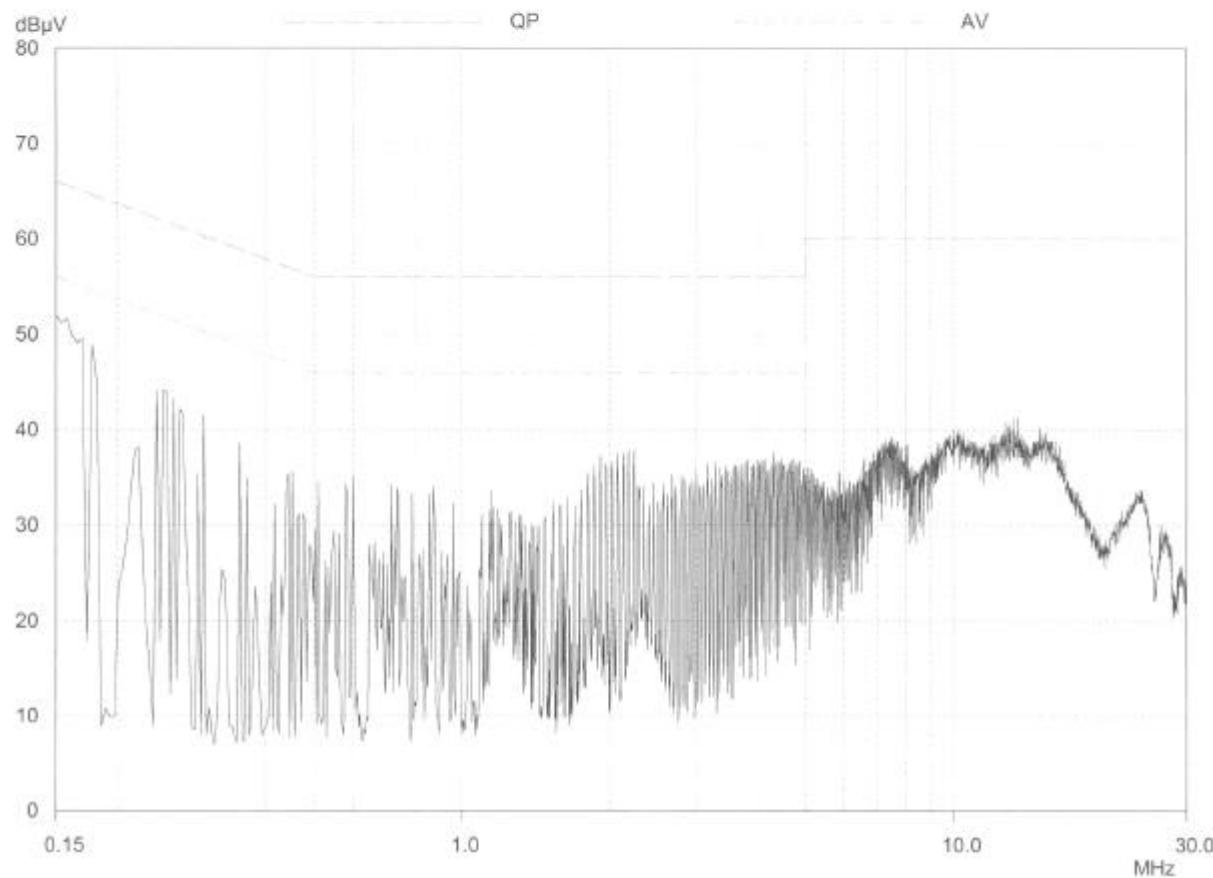

APPENDIX 1 : PLOTTED DATA FOR CONDUCTED EMISSION

Conduction Emission Test

Peak Value

EUT: H300
Manuf: MOVITA
Op Cond: AD2
Operator: ION LIN
Test Spec: EN 55022 Class B
Comment:
Result File: 9.dat : New Measurement

Final Measurement: Detector: X QP
 Meas Time: 1sec
 Peaks: 8
 Acc Margin: 30 dB

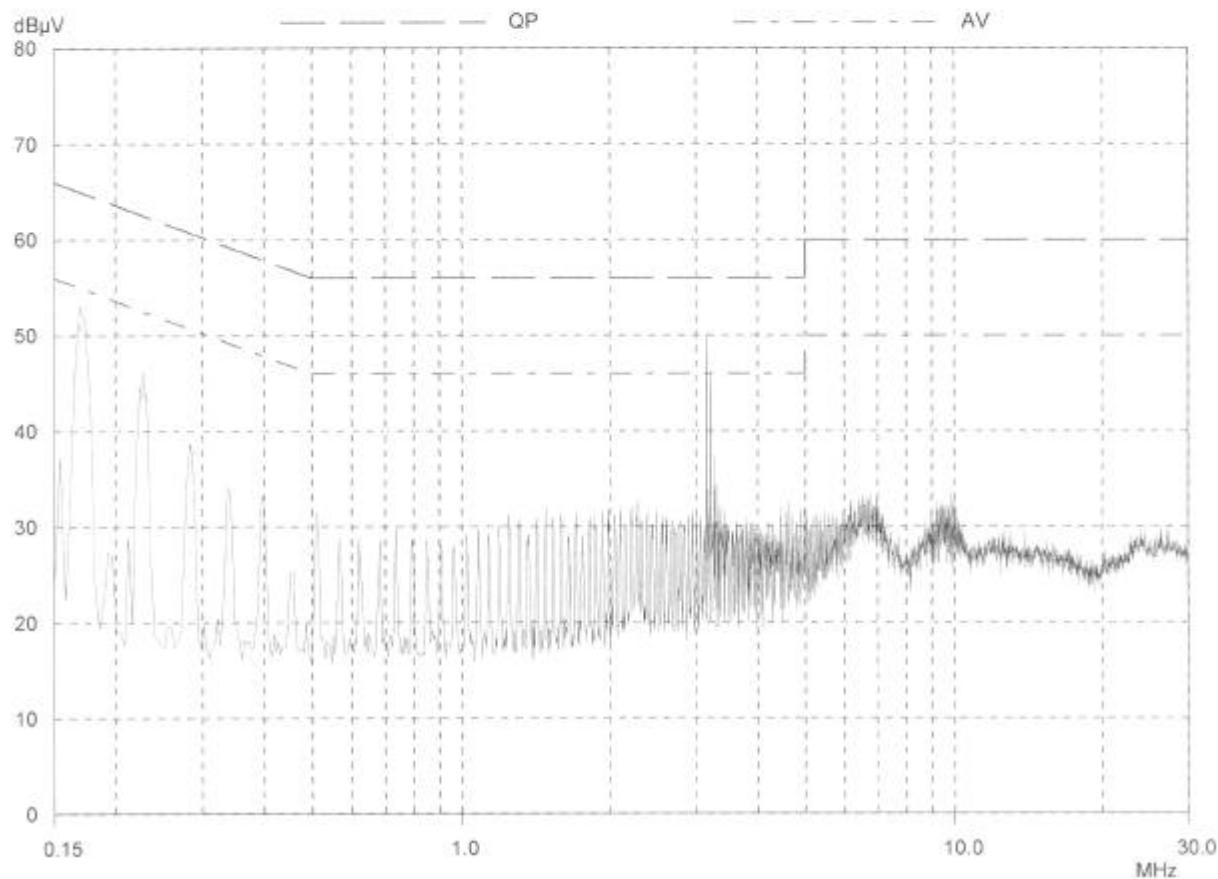

Conduction Emission Test

Peak Value

EUT: H300
Manuf: MOVITA
Op Cond: AD2
Operator: ION LIN
Test Spec: EN 55022 Class B
Comment:

Result File: L1
7.dat : New Measurement

Final Measurement: Detector: X QP
Meas Time: 1sec
Peaks: 8
Acc Margin: 30 dB



CONDUCTION EMISSION TEST

Peak Value

EUT: H300
Manuf: MOVITA
Op Cond: AD3
Operator: ION LIN
Test Spec:
Comment: N
Result File: DVD-RW7.dat : New Measurement

Final Measurement: Detector: X QP
Meas Time: 1sec
Peaks: 8
Acc Margin: 25 dB

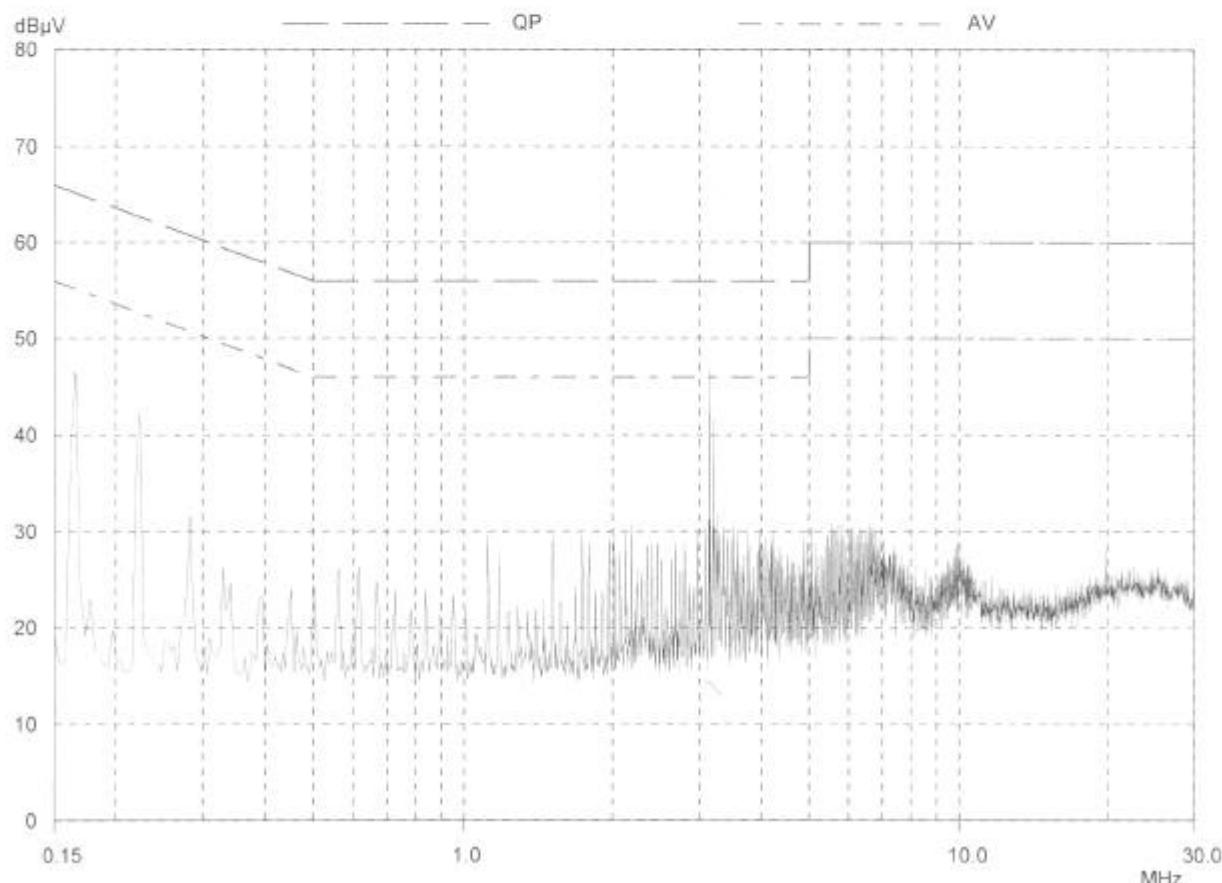
CONDUCTION EMISSION TEST

Peak Value

EUT: H300

Manuf: MOVITA

Op Cond: AD3


Operator: ION LIN

Test Spec:

Comment:

L1

Final Measurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

