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2.8 Antenna Conducted Spurious Emission in the Frequency Range 30 - 10000 MHz
(FCC Section 15.247(c))

Antenna conducted spurious emissions in the frequency range 30 — 10000 MHz are
normally measured with a spectrum analyzer by connecting the spectrum analyzer directly
via a short cable to the antenna output terminals or across the antenna leads on the PCB
as specified by the manufacturer. Since the EUT has an integrated non-removable
antenna, this test has been deemed unnecessary.
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2.9 Peak Radiated Spurious Emission in the Frequency Range 30 -10000 MHz (FCC
Section 15.247(c))

A preliminary scan was performed on the EUT to determine frequencies that were caused
by the transmitter portion of the product. Significant emissions that fell within restricted
bands were then measured on an OAT'’s site. Radiated measurements below 1 GHz were
tested with a RBW = 120 kHz. Radiated measurements above 1 GHz were measured
using a RBW = VBW = 1 MHz. The results of peak radiated spurious emissions falling
within restricted bands are given in Table 4a (low), Table 4b, (mid), Table 4c (high) and
Figure 5a-5d (low), Figure 5e-5h (mid) and Figure 5i-5I (high).
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Figure 5a
Peak Radiated Spurious Emission 15.247(c) Low
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Figure 5b
Peak Radiated Spurious Emission 15.247(c) Low
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Figure 5c
Peak Radiated Spurious Emission 15.247(c) Low
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Figure 5d
Peak Radiated Spurious Emission 15.247(c) Low
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Figure 5e
Peak Radiated Spurious Emission 15.247(c) Mid
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Figure 5f
Peak Radiated Spurious Emission 15.247(c) Mid

24:37: 25 DEC ©7, 4998
F . Clheagpe - A%-T17Y

MKA 3.85423 GHz
AEF .d dBm AT 4@ dB ~-57 .68 dBm
PEAR | ' ! ’ 1 ] 1 .
1.06 ' :
I | j ! : e
a8,/ | .

. . | i L

| MARKER

3.85423 GHz
~57 .88 dim

YA 58
ac rC

GDHHWNMWWWM

L S

CENTER 3.85560 Griz gPAN 418.00 MH=-
H#RES W 4.0 MH=z wyvaw 4 MHx SWP 20.0 msac



FCC ID: NYM-PLW-01

Figure 5g
Peak Radiated Spurious Emission 15.247(c) Mid
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Figure 5h
Peak Radiated Spurious Emission 15.247(c) Mid
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Figure 5i
Peak Radiated Spurious Emission 15.247(c) High
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Figure 5j
Peak Radiated Spurious Emission 15.247(c) High
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Figure 5k
Peak Radiated Spurious Emission 15.247(c) High
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Figure 5I
Peak Radiated Spurious Emission 15.247(c) High
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Test Date:

UST Project:

Customer:
Model:

FCC ID: NYM-PLW-01

December 7 & December 8, 1999

99-775
Axlon Electronics Corp.

PLW-01

TABLE 4a PEAK RADIATED SPURIOUS EMISSIONS (Low)

Freq. Test Data* | Amp. Antenna Cable Results FCC
(GHz2) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)

@3m

2.712 -53.1 34.9 31.3 4.2 526.4 5000
3.624 -60.3 34.6 33.9 5.2 362.8 5000
4.529 -64.7 34.2 34.0 7.1 287.1 5000
5.436 -63.6 34.0 35.8 7.9 450.0 5000

* = Data adjusted by + 1 dB for high pass filter

SAMPLE CALCULATION:
RESULTS (uV/m @ 3m) = Antilog ((-53.1 — 34.9 + 31.3 + 4.2 + 107)/20) = 526.4
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By

Signature:

Name:

Tim R. Johnson




Test Date:

UST Project:

Customer:
Model:

FCC ID: NYM-PLW-01

December 7 & December 8, 1999

99-775
Axlon Electronics Corp.

PLW-01

TABLE 4b PEAK RADIATED SPURIOUS EMISSIONS (Mid)

Freq. Test Data* [ Amp. Antenna Cable Results FCC
(GHz) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)

@3m

2.740 -48.5 34.9 31.3 4.2 901.8 5000
3.654 -56.7 34.6 34.0 5.2 557.2 5000
5.482 -57.0 34.0 35.9 7.8 961.4 5000
6.395 -58.1 33.9 36.4 7.4 876.1 5000

* = Data adjusted by + 1 dB for high pass filter

SAMPLE CALCULATION:
RESULTS (uV/m @ 3m) = Antilog ((-48.5-34.9 + 31.3 + 4.2 + 107)/20) = 901.8
CONVERSION FROM dBm TO dBuV =107 dB

Test Results
Reviewed By

Signature:

Name:

Tim R. Johnson




FCC ID: NYM-PLW-01

Test Date: December 7 & December 8, 1999
UST Project: 99-775

Customer: Axlon Electronics Corp.

Model: PLW-01

TABLE 4c PEAK RADIATED SPURIOUS EMISSIONS (High)

Freq. Test Data* [ Amp. Antenna Cable Results FCC
(GHz) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)

@3m

2.773 -51.9 34.9 31.3 4.2 617.4 5000
3.698 -63.8 34.6 34.1 5.3 252.9 5000
4.621 -65.1 34.2 34.2 7.4 290.0 5000
5.543 -60.8 34.0 36.0 7.8 626.0 5000

* = Data adjusted by + 1 dB for high pass filter

SAMPLE CALCULATION:
RESULTS (uV/m @ 3m) = Antilog ((-51.9 - 34.9 + 31.3 + 4.2 + 107)/20) = 617.4
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By
Signature: Name: _Tim R. Johnson
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2.10 Average Spurious Emission in the Frequency Range 30 - 10000 MHz (FCC
Section 15.247(c))

The results of average radiated spurious emissions falling within restricted bands are given
in Table 5a (low), Table 5b, (mid), Table 5c (high) and Figure 6.

Since the EUT was not capable of continuous mode of transmit, average measurements
were not possible. Therefore only duty cycle corrections were applied to the peak
measurements. Duty cycle corrections were based upon the following information as
supplied by Axlon Electronics Corp.

Voice mode : duty-cycle :50%

4 5ms

T‘Fx‘. T‘H‘

4.5ms

Worse Case duty cycle per 100 msec = 4.5ms/9.0 ms = 50%

Duty Cycle Correction = 20 log (0.50) =-6.0 dB
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Figure 6
Average Radiated Spurious Emission 15.247(c)

Since the EUT was not capable of continuous mode of transmit, average
measurements were not possible. Therefore only duty cycle corrections were
applied to the peak measurements.
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Test Date: December 7 & December 8, 1999
UST Project: 99-775

Customer: Axlon Electronics Corp.

Model: PLW-01

TABLE 5a AVERAGE RADIATED SPURIOUS EMISSIONS (Low)

Freq. Test Data* [ Amp. Antenna Cable Results FCC
(GHz) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)
@3m
2.712 -59.1 34.9 31.3 4.2 264.2 500
3.624 -66.3 34.6 33.9 5.2 181.9 500
4.529 -70.7 34.2 34.0 7.1 143.8 500
5.436 -69.6 34.0 35.8 7.9 225.5 500

* = Data adjusted by + 1dB for high pass filter and 6.0 dB for duty cycle.

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) =
Antilog ((-59.1 — 34.9 + 31.3 + 4.2 + 107)/20) = 264.2
CONVERSION FROM dBm TO dBuV =107 dB

Test Results
Reviewed By

Signature:

Name: Tim R.Johnson




Test Date:

Project:

Customer:

Model:

FCC ID: NYM-PLW-01

December 7 & December 8, 1999
99-775

Axlon Electronics Corp.

PLW-01

TABLE 5b AVERAGE RADIATED SPURIOUS EMISSIONS (Mid)

Freq. Test Data* | Amp. Antenna Cable Results FCC
(GHz2) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)
@3m
2.740 -54.5 34.9 31.3 4.2 452.0 500
3.654 -62.7 34.6 34.0 5.2 279.9 500
5.482 -63.0 34.0 35.9 7.8 483.6 500
6.395 -64.1 33.9 36.4 7.4 440.6 500

* = Data adjusted by + 1dB for high pass filter and 6.0 dB for duty cycle.

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) =
Antilog ((-54.5-34.9 + 31.3 + 4.2 +107)/20) = 452.0
CONVERSION FROM dBm TO dBuV =107 dB

Test Results
Reviewed By

Signature:

Name: Tim R.Johnson
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Test Date: December 7 & December 8, 1999
UST Project: 99-775

Customer: Axlon Electronics Corp.

Model: PLW-01

TABLE 5¢c AVERAGE RADIATED SPURIOUS EMISSIONS (High)

Freq. Test Data* | Amp. Antenna Cable Results FCC
(GHz2) (dBm) Gain Factor Loss (uv/m) Limits
@3m (dB) (dB) (dB) @3m (uv/m)
@3m
2.773 -57.9 34.9 31.3 4.2 308.2 500
3.698 -69.8 34.6 34.1 5.3 126.6 500
4.621 -71.1 34.2 34.2 7.4 145.4 500
5.543 -66.8 34.0 36.0 7.8 313.8 500

* = Data adjusted by + 1dB for high pass filter and 6.0 dB for duty cycle.

SAMPLE CALCULATION:

RESULTS (UV/m @ 3m) =
Antilog ((-57.9 — 34.9 + 31.3 + 4.2 + 107)/20) = 308.2
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By

Signature:

Name: Tim R.Johnson
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2.11 Minimum 6 dB Bandwidth per FCC Section 15.247(a)(2)

The minimum requirement is given in Figure 7a through 7c. If the EUT incorporates
different spreading codes or data rates these were each investigated and the one which
produced the smallest 6 dB bandwidth was selected for test. Since the EUT contained a
non-detachable antenna, an antenna was placed near the EUT in order to couple the
emission to a spectrum analyzer.
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Figure 7a.
6 dB Bandwidth per FCC Section 15.247(a)(2) (Low)
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Figure 7b.
6 dB Bandwidth per FCC Section 15.247(a)(2) (Mid)
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Figure 7c.
6 dB Bandwidth per FCC Section 15.247(a)(2) (High)
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2.12 Power Spectral Density FCC Section 15.247(b) and 15.247(d)

The transmitter power spectral density averaged over any 1 second interval is given in
Table 6 and Figure 8a through Figure 8c. If the EUT incorporates different spreading codes
or data rates these were each investigated and the one which produced the smallest 6 dB
bandwidth was selected for test.

Since the EUT incorporated an integrated antenna, this measurement was made on a
OAT’s by tuning a spectrum analyzer to the highest point of the maximized fundamental
emission and zooming in on this portion of the emission utilizing the following spectrum
analyzer settings: RBW = 3 kHz, VBW > RBW, span = 300 kHz, sweep = 100 seconds.
The maximized point obtained by this method was then used to calculate the power
spectral density as shown in Table 6.
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TABLE 6
POWER SPECTRAL DENSITY

Test Date: January 2, 2000
UST Project: 99-775
Customer: Axlon Electronics Corp.
Model: PLW-01
Receiver | Correction | Corrected Measured FCC
Frequency | Reading Factor Reading Power Limit
(MH2z) (dBm) (dB) (V/m) (Watt) (Watt)
@3m @3m
905.728 -51.6 30.7 0.020107 0.0001 0.0063
913.920 -51.6 30.8 0.020513 0.0001 0.0063
924.160 -56.3 31.0 0.012094 <0.0001 0.0063

NOTE: Limit = Antilog(+8dBm/10) * 10 = 0.0063 Watts

Transmitters peak power calculated using:

P (W) = (E*d)®
30*G

where d = 3 meters, E = corrected measured field strength in V/m, and G = numeric gain
of transmitting antenna (1.0 for O dBi).

Test Results
Reviewed By
Signature:

Name: Tim R.Johnson
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Figure 8a
Power Spectral Density 15.247(b) and 15.247(d) Low
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Figure 8b

Power Spectral Density 15.247(b) and 15.247(d) Mid
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Figure 8c
Power Spectral Density 15.247(b) and 15.247(d) High
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2.13 Processing Gain

Data regarding processing gain has been provided on the following page from Axlon
Electronics Corp.
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PPLFCCS
PPLFCC3.doc

Axlon PalmPal Lite Processing Gain Measurement and Calculation

The processing gain of this spread spectrum system was measured using the CW jamming
method. Figure | illustrates the measurement setup. The cutput power of the spread spectrum
transmitter is fixed and the output power of jammer is adjustable. The frequency of jammer
was stopped through the pass band of nominal channel in 50KHz step. In each frequency step
of the jammer, the output power of jammer is adjusted to cause the Bit Error Rate (BER) to be
1.0%107°. The power levels are recorded to calculate the I/S as shown in Table 1.

The processing gain Gp was calculated using the formula :
Gp=(5N)o+Mj+Lsys

Where (S/N)o is the signal to noise ratio, Mj is the Jammer to signal ratio {1/5), and |
the system loss.

For the BER=1,0%10", the Eb/No of the GMSK discriminator (BT=0.5) 15 about 13 5dH (*
Ref 1), Due to using the hard-decision receiver, the Eb/™No will be 16.5dB and then sigeul 1o
noise ratio {$M)o should be 14.74 dB. According to Table 1, the minimun J/5 ratio is -0 5db
And assume the system loss is 2dB. Therefore, the processing gain is calculated below

Gp=(5/MN)ortMj+Lsys=14. T4+4(-6.5)+2.0=10.24

Spread At Spread
& pactrm — 5048 _— : | Epecium
Tranamittar Raopuer
Fovear | P
Combirer Dikvidar
JEMrST
HERTESD 1 I:'l:I.'.lT_r':.HEr
Hebwark ERM-4414

{Sat on CAY FREQ)

Figure 1.Processing Gain Measurement Setup



FCC ID: NYM-PLW-01

PPLFCC) doc
FrequencyiMHz)| Jammer{dBm)| Signal{dBm) J/S(dB)|
1 915.268] .57.1 526 4.5
J 915.318 -57.6 -52.6 -5
3 915.368] 58,6 -52.6 -6
4 015.418 -59.1 516 6.5
5 915.468 -58.6 -52.6 -6
f 915.518 59,1 5268 6.5
7 915,568 50,7 5268 7.1
8 915.618 58, -52.6 -4
[ 415,668 -58. -52.6 -6
10 915.718 -57.6 -52.6 3
1] 915.768 -54.6 526 -2
12 915,818 -54.6 -52.6 -2
13 915,868 -54.6 -52.6 -2
14 915,918 -55.1 5260 25
15 015,968 -55.1 526 -25
16 916.018 -55.6 -52.6 -3
17 916,068 -55.1 52.6] 25
18 916,118 549 526  -2.3
19 916,168 -54.6 -52.6 2
20 916.218 54,1 526 -LS
2] 916.268 -54.1 5268 -1.9
22 916318 -54.1 526 -9
23 916.368 -54.1 5260 -1
24 916,418 -54.6 .52.6 2
25 916,468 -54.6 -52.5 7
26 916,518 -54.8 526 -2
27 516,568 -54.8 .52, 23]
2 016,617 -54.6 -52.6 -2
19 016,668 -54.3 528 -17
30 916,718 -54.1 -52.6]  -L5

Table 1. J/S Ratio Measurement Result for BER=1.0*10"
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Optimization end Comparisons of Differential and Diseriminator
DECT Receivers

CHﬂ'—iiﬂﬂ,ﬁ | BT

Computer and Communication Research Laboratories
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Twa noncoherent DECT receivert, namely the differential demodu-
lator and the discriminator demodulator, in an AWGN (addidve white
Gaussizn noisc) channecl are compared, We assume that the receiver
band-pass filter (BFF) is 2 Gaussiagn BFF. The bandwidth of the BFF is
optimized for each receiver. We found that the diffcrcndal demodulator.

_requires p wider bandwidth. However, its_performanca is slightly bener
than that of the discriminaior demodulatar, The assumprons being made
in this inidal swody arc ideal frequency wacking and clock recovery.
Mereover, adjacent channel L‘I'Lthﬂﬂm.ﬂ-ﬁ (ACD is not considersd. A
mare l.l;-:n'ﬂug.h companison widng into 'n':.tl:.mnl'. ACI, frequency-offset
compensation, and clock synchronizadon is under investigation in our

wireless communications labaratery.,

1. Introduction

Cost and power-efficiency are among the most impernant issues concemed when

designing & porabls hand set, such =25 = DECT {1) phons, for wireless comununica-

TAnE.

Caoherent demodulatdon is thus excluded for 2 DECT hand set. Although it cen
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achicve better performance, coherent demodalation requires carier phase synchroniza-
tion which increases the camplexicy, cost, size, and power mnsump:inn' af the receiver.
Two demodulztors which do not need carmier phase synchronizaton are considered in
this paper. One is the differcndzl demodulatar [2] which compares the phasas berween
two adjacent symbols to make decizion. The other is the discriminator demedulator [3)
which discriminates the ingmsnraneons frequency of the RF signal and make decision
based on the demodolated baseband signals, The differental dermoduolator has the
advantage that the signal can be sampled at IF and the datector can be implemented in
an gll-digieal form thereafier. However, the complexity of the digital receiver for a
high-speed application, such as the TDECT system, could become undesirable consider-
fng the size, weight, cost, and power consumpton of the receiver. On the ather hand, a
discriminator demodulator could provide a light, small, low-cos:, and low power-
consumption solutfion. However, a discriminator demodulator is more sensirive to the
frequency offset. A therough comparison of these two receiver architectures is reguired
before we can decide which demodulator 1o adopr

In this initial smdy, AWGN is considered as the only interference. Besides,
multi-path Rayleigh fading is not censidered. Ideal frequency and bit clock synchroni-
zation are also assumed. However, since noncohsrent demodulation iz assumed, no
carrier phase synchronizadon is necessary.

In Sect. 2, we smdy the optimum receiver bandwidth for & differential demodala-
tor assoming that the receiver band-pass filter (BPF) is & Gauss{un BPF. The perfor-
mance of the differential demodulator is then studied ussllming this optimum
bandwidth. In Sect. 3, the optimurn bandwidth and BER perdformance for the discrimi-
nalor demodulator is swdied, In Seer 4, we discuss the numerical results obtained In

Sect. 2 and 3. Conclusions are drawn in Secr 5.
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2. Differential Demodulator
M

A simplified block diagram of a DECT receiver employing the 1-bit differsntial
derector {2] is depicted in Fig. 1. The phase differsndial berween two’ adjacent symbols
iz w2 or -2 for an MSK signal For GMSK signals, intersymbaol interference (ISI)
will cause the phase differendsl to wander from the nominal = /2 values. However, in

general, this phase differential can be used to decide the mansmited symbals.

For the simplicity of the receiver designs, we essume that the noise and other
interferences are band-limited by the BPF at IF. The post-demoduletion low-pass filter
(LLFF) is only used to remove the high-frequency component generated by the mixing
of signals. Moreover, in this inidal swdy, we assome an ideal (ie. infinite-pole) Gaus-
sizn filpsr ag the DFF; The optimam receiver bandwidth for BER=10" jz found tu be
B Ty= 1.0 (see Fig. 2} where Ty is the bit duration. The bandwidth B,I};.dcﬁnn-l o be
the 3-dB bandwidth of the receiver Gaussian BPF. e

Using this opdmum filter, the BER performance of the 1-bit differential GMSK is
simulated. The results are depicted in Fig. 3. We note thar for BER= 1079,
Ey/N,=13 dB is required.

h Fany Ghmusfurl”

wol O
3, Ijseriminator Demoadulator --r-'-u""':"l'

A simplified block disgram of the OMSK receiver employing & frequency
discriminator is depicted in Fig. 4. The insmnumeuus frequency deviatien of the
modulated RE earrier corresponds to 'r.'ne.'l.:lrise.mm Gaus.sc'tan-ﬁ‘nered signal at the
mansminer. Withouot the BEE, and assoming that noise and interferences are absent,
the demodulsted signal will be identical to the baseband signel at the wansmitter side.
Although the BPF will affect the demedulated signal in a complex manner, the demo-
dulated signal can be used to make decision directly. We will consider only symbol-

by-symbal decision in this paper.
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As in the differental dee=ctor, we assume that the LPF is used only to remove the
high-frequancy component. The opdmom bandwidth for this discriminator demodulator
is found to be B,T,=0.7. (See Fig. Z). The BER performance is depicted in Fig. 3 for
B.T,=0.7. The E/N, required to achieve BER=10" is 13.5 dB.

4. Discussions

From the results presented in last bwo sections, we note that for oplimum perfer-
mances, the differential detector requires wider bandwidth. This can be explained as
follows. A narrower. filter will cause more IST yet reject more ‘high-frequency” noise.
In the discriminator demodulator, the decision is based on one s;.-:rnbnl only. However,
in the differential dﬂ'n-'lﬂdu_intur, ISI is appraximately doubled in the decision process
becatse the decision s based on companng the phases of rwo smbnls; 'On the other
hand, the baseband noisc in the disciminator demadulator is proportonal to the cobic
of the receiver bandwirdth: limitng the high-frequency noisc is thus highly desirable in
the discriminator demodulator. We &lso note that the discriminator demodulator is
more sensitive to the receiver bandwidth. Increasing the bandwidth will increase the
baseband noise power dramatdcally. Decraasing the receiver bandwidth will lzad to the
distortion of the signal, ['LEI!.:I:E'. increment of ISL The di[fferenﬁal detector, on the other
hand, is lzss sengitive to the receiver bandwidth. Ones the bandwidth is wide cnnf:nugh
to pass the signal withoue inroducing toomuch IST, the performance degrades slowly
as the bandwidth increases. Preliminary srudics assuming 2 Budterworth or Chebyshev

&F

BPF alsc reveal similar resulis.

Although it appears that the differential dermodularor h:a:lbv;mr performance, the.
narrower bandwidth requirement for the discriminator may suggest thar the discrimina-
rar i5 morc robust against the adjacent channel interference (ACI.

Freguency offset compensation and clock synchronization have not been con-

sidered in this paper. A thorovgh comparison is needed to take these rwo factors into
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Accounkt

5. Conclusions

The receiver bandwidth assuming a Gaussian band-pass filter is opdmized for
both differential and disciminator demodulators of a DECT gystem. Tt is found that
the discriminator requires a narrower receiver BPE. However, the E/N, reguirement
for the 1-bit differential detcctor is about 0.5 dB lower than that for the discriminator
demodulator if ACT is not considered. For a fair comparison, ACI must be taken into
account Frequency offsct has not been considered in this paper. A simple yet effecive
frequency-offset compensation method can be found in [4). This method can be incor-
porated intg the DECT receiver to improve the performance. A DECT receiver which
includes frequency-offset compensaton and clock synchronization is uun'.l:.nﬁjr under
development in our Computer and Communication Eesearch Laboratories.
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Fig. 2 BER of GMSK as functions of receiver bandwidth.



Ple)

FCC ID: NYM-PLW-01

10
# ——» 1-bit differential detection (BrTt=1.0)
X » =——— « TDiscriminator detection (BrTb=0.T)
102
10 .
|
|
|
100t - { ! - - .r !
9 10 11 12 13 14 15 16
Eb/Ma (dB)
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Fig. 4 Simplified block diagram of a diseriminator ~ .

"d{;muduratc-r. The BPF is assumed to be Gaussian.

The LPF is used only {o remove the high-frequency
component.
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2.14 Power Line Conducted Emissions for Transmitter FCC Section 15.207

The conducted voltage measurements have been carried out in accordance with FCC
Section 15.207, with a spectrum analyzer connected to a LISN and the EUT placed into
a continuous mode of transmit. The results are given in Table 8.
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TABLE 7. CONDUCTED EMISSIONS DATA - TRANSMITTER

CLASS B

Test Date: December 16, 1999

UST Project: 99-775

Customer: Axlon Electronics Corp.

Product: PLW-01

Frequency Test Data FCC Limits
(MHz) (dBm) RESULTS (uV) (uv)
Phase Neutral Phase Neutral

0.47 -68.0 -72.0 89.1 56.2 250
15.1 -73.0 -73.0 50.1 50.1 250
15.4 -74.0 -75.0 44.7 39.8 250
16.4 -71.0 -72.0 63.1 56.2 250
27.1 -70.0 -61.5 70.8 188.4 250
27.3 -72.0 -72.0 56.2 56.2 250

SAMPLE CALCULATIONS:

RESULTS uV = ANTILOG ((-68.0 + 107)/20) = 89.1
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By
Signature:

Name:

Tim R. Johnson
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2.15 Radiated Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 5000 MHz. Measurements were made with
the analyzer's bandwidth set to 120 kHz measurements made less than 1 GHz and 1 MHz
are shown in Table 8a. Measurements made over 1 GHz results are shown in Table 8b.
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TABLE 8a. RADIATED EMISSIONS DATA

CLASS B
Test Date: January 2, 2000
UST Project: 99-775
Customer: Axlon Electronics Corp.
Product: PLW-01
Measurements 30-1000 MHz
Frequency Receiver Correction Corrected FCC Limit
(MHz) Reading Factor Reading (uVv/m)
(dBm) (dB) (uVv/m) @3m
@3m @3m
122.8 -83.0 13.9 78.1 150.0
128.3 -82.0* 14.3 92.8 150.0
131.0 -85.0 14.6 67.3 150.0
133.1 -84.0 14.7 76.8 150.0
166.6 -84.0* 15.4 82.9 150.0
169.3 -85.0* 15.4 74.1 150.0

*= Quasi Peak

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-33.0 + 13.9 + 107)/20) = 78.1
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By
Signature: Name: __Tim R. Johnson
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TABLE 8b RADIATED EMISSIONS

CLASS B
Test Date: December 28, 1999
UST Project: 99-775
Customer: Axlon Electronics Corp.
Model: PLW-01

Measurements >1GHz

FREQ. | TEST DATA AMP ANT. CABLE | RESULTS FCC
(GHz2) (dBm) GAIN FACTOR LOSS (uVv/m) LIMITS
@ 3m (dB) (dB) (dB) @ 3m (uVvim)
@ 3m
1.164 -57.8 35.7 25.8 2.5 122.3 500
1.175 -58.4 35.7 25.8 2.5 115.0 500
1.197 -57.7 35.7 25.9 2.6 126.5 500

SAMPLE CALCULATIONS:
Results uV/im @3m = Antilog ((-57.8 - 35.7 + 25.8 + 2.5 + 107)/20 = 122.3
Conversion from dB to dBuV = 107 dB

Test Results
Reviewed By
Signature: Name: Tim R. Johnson
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2.16 Power Line Conducted Emissions for Digital Device FCC Section 15.107

The conducted voltage measurements have been carried out in accordance with FCC
Section 15.107, with a spectrum analyzer connected to a LISN and the EUT placed into
a continuous mode of transmit. The results are given in Table 9.
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TABLE 9. CONDUCTED EMISSIONS DATA — DIGITAL DEVICE

CLASS B

Test Date: December 16, 1999

UST Project: 99-775

Customer: Axlon Electronics Corp.

Product: PLW-01

Frequency Test Data FCC Limits
(MHz) (dBm) RESULTS (uV) (uv)
Phase Neutral Phase Neutral

0.47 -68.0 -72.0 89.1 56.2 250
15.1 -73.0 -73.0 50.1 50.1 250
15.4 -74.0 -75.0 44.7 39.8 250
16.4 -71.0 -72.0 63.1 56.2 250
27.1 -70.0 -61.5 70.8 188.4 250
27.3 -72.0 -72.0 56.2 56.2 250

SAMPLE CALCULATIONS:

RESULTS uV = ANTILOG ((-68.0 + 107)/20) = 89.1
CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By
Signature:

Name:

Tim R. Johnson




