

EMI -- TEST REPORT

- FCC Part 15.247 FHSS-

Test Report No. :

T33112-00-03HU

19. February 2009

Date of issue

Type / Model Name : RF620R

Product Description : RFID UHF Reader

Applicant : Kathrein Burgstädt GmbH

Address : Lindenstraße 3, Gewerbegebiet
D-09241 Mühlau

Manufacturer : Kathrein Burgstädt GmbH

Address : Lindenstraße 3, Gewerbegebiet
D-09241 Mühlau

Licence holder : Siemens AG

Address : Siemensstrasse 2-4
90766 Fuerth

Test Result according to the
standards listed in clause 1 test
standards:

POSITIVE

DAT-P-207/05-00

The test report merely corresponds to the test sample. It
is not permitted to copy extracts of these test results
without the written permission of the test laboratory.

FCC ID: NXW-RF620R

Contents

1 TEST STANDARDS	3
2 SUMMARY	4
3 EQUIPMENT UNDER TEST	5
3.1 Photo documentation of the EUT – Detailed photos see Attachment A	5
3.2 Test setup	5
3.3 Power supply system utilised	5
3.4 Short description of the EUT	5
4 TEST ENVIRONMENT	7
4.1 Address of the test laboratory	7
4.2 Environmental conditions	7
4.3 Statement of the measurement uncertainty	7
4.4 Measurement Protocol for FCC, VCCI and AUSTEL	8
4.5 Determination of worst case measurement conditions	8
5 TEST CONDITIONS AND RESULTS	9
5.1 Conducted emissions	9
5.2 20 dB bandwidth	15
5.3 Maximum peak conducted output power	20
5.4 Spurious RF conducted emissions	22
5.5 Spurious radiated emissions in restricted bands	27
5.6 Hopping sequence	32
5.7 Equal hopping frequency use	32
5.8 Receiver input bandwidth	32
5.9 Dwell time	33
5.10 Channel separation	36
5.11 Quantity of hopping channels	39
5.12 Antenna application - Detailed photos see Attachment A	42
5.13 Receiver conducted disturbances	43
5.14 Receiver spurious emissions conducted	44
5.15 Maximum permissible exposure (MPE)	45
6 USED TEST EQUIPMENT AND ACCESSORIES	47

FCC ID: NXW-RF620R

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (October 01, 2007)

Part 15, Subpart A, Section 15.31	Measurement standards
Part 15, Subpart A, Section 15.33	Frequency range of radiated measurements
Part 15, Subpart A, Section 15.35	Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart B - Unintentional Radiators (October 01, 2007)

Part 15, Subpart B, Section 15.107	AC Line conducted emissions,	Class B
Part 15, Subpart B, Section 15.109	Radiated emissions, general requirements,	Class B

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (October, 2007)

Part 15, Subpart C, Section 15.203	Antenna requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.205	Restricted bands of operation
Part 15, Subpart C, Section 15.207	Conducted limits
Part 15, Subpart C, Section 15.209	Radiated emission limits, general requirements
Part 15, Subpart C, Section 15.247	Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz

FCC Rules and Regulations Part 1, Subpart I - Procedures Implementing the National Environmental Policy Act of 1969

Part 1, Subpart I, Section 1.1310	Radiofrequency radiation exposure limits
Part 1, Subpart 2, Section 2.1093	Radiofrequency radiation exposure evaluation: portable device

OET Bulletin 65, 65A, 65B, 65C Edition 97-01, August 1997 – Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

ANSI C63.4: 2003	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI C95.1:1992	IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
CISPR 16-4-2: 2003	Uncertainty in EMC measurement
CISPR 22: 2005 EN 55022: 2006	Information technology equipment

FCC ID: NXW-RF620R

2 SUMMARY

GENERAL REMARKS:

The frequency range was scanned from 9 kHz to 10 GHz.

All emissions not reported in this test report were more than 10 dB below the specified limit.

The EuT is a frequency hopping system using 52 channels in the frequency band from 902 to 928 MHz.

All conducted measurements were performed with RF630R sample. Because the RF620R and the RF630R are technically identical expect the following item.

The RF620R has an Integral antenna with 7.3 dBic and the RF630R has an External antenna RF660A with <6.0dBic.

For detailed informations see Attachment A, Detail Pictures of the EuT and technical description of the EuT from manufacturer.

Measurements have been made with power settings (30.0 dBm).

The EuT is declared as Class B digital device.

FINAL ASSESSMENT:

The equipment under test **fulfills** the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample : acc. to storage records

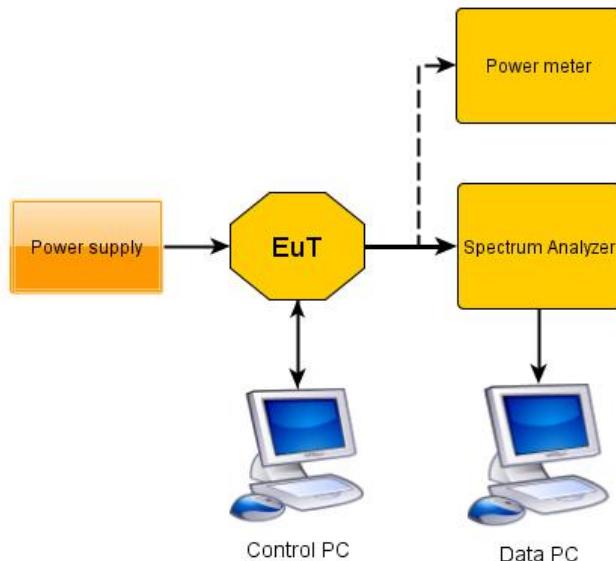
Testing commenced on : 02. February 2009

Testing concluded on : 04. February 2009

Checked by:

Tested by:

Thomas Weise
Dipl.-Ing.(FH)
Laboratory Manager


Markus Huber

FCC ID: NXW-RF620R

3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EUT – Detailed photos see Attachment A

3.2 Test setup

3.3 Power supply system utilised

Power supply voltage: : 100-240 V / 50-60 Hz / 1φ, 24 V DC

3.4 Short description of the EUT

The EuT RF620R is a RFID reader with Integral antenna. It can read active and passive Tags in the frequency range from 902 to 928 MHz. It can read and write Tags using EPC Gen2 standard.

Number of tested samples:

1

Serial number:

see Photo documentation of the EuT / Equipment Under Test

EUT operation mode:

The equipment under test was operated during the measurement under the following conditions:

- TAG reading mode supplying 30 dBm

- Standby mode

-

FCC ID: NXW-RF620R

EUT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

- AC-DC Adapter Model : ETC45-24/2
- Data cable RS232 Model : Standard cable
- _____ Model : _____
- customer specific cables

mikes

FCC ID: NXW-RF620R

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh
Ohmstrasse 2-4
94342 Strasskirchen
Germany

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader may notice that tolerances within the calibration of the equipment and facilities may cause additional uncertainty. The measurement uncertainty is calculated for all measurements listed in this test report acc. to CISPR 16-4-2 „Uncertainties, statistics and limit modelling – Uncertainty in EMC measurement“ and documented in the mikes-testingpartners gmbh quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, mikes-testingpartners gmbh, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component diversity and modifications in production process of devices may result in additional deviation. If necessary, refer to the test lab for the actual measurement uncertainty for the specific test. The manufacturer has the sole responsibility of continued compliance of the EUT.

FCC ID: NXW-RF620R

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.4 and applying the CISPR 22 limits.

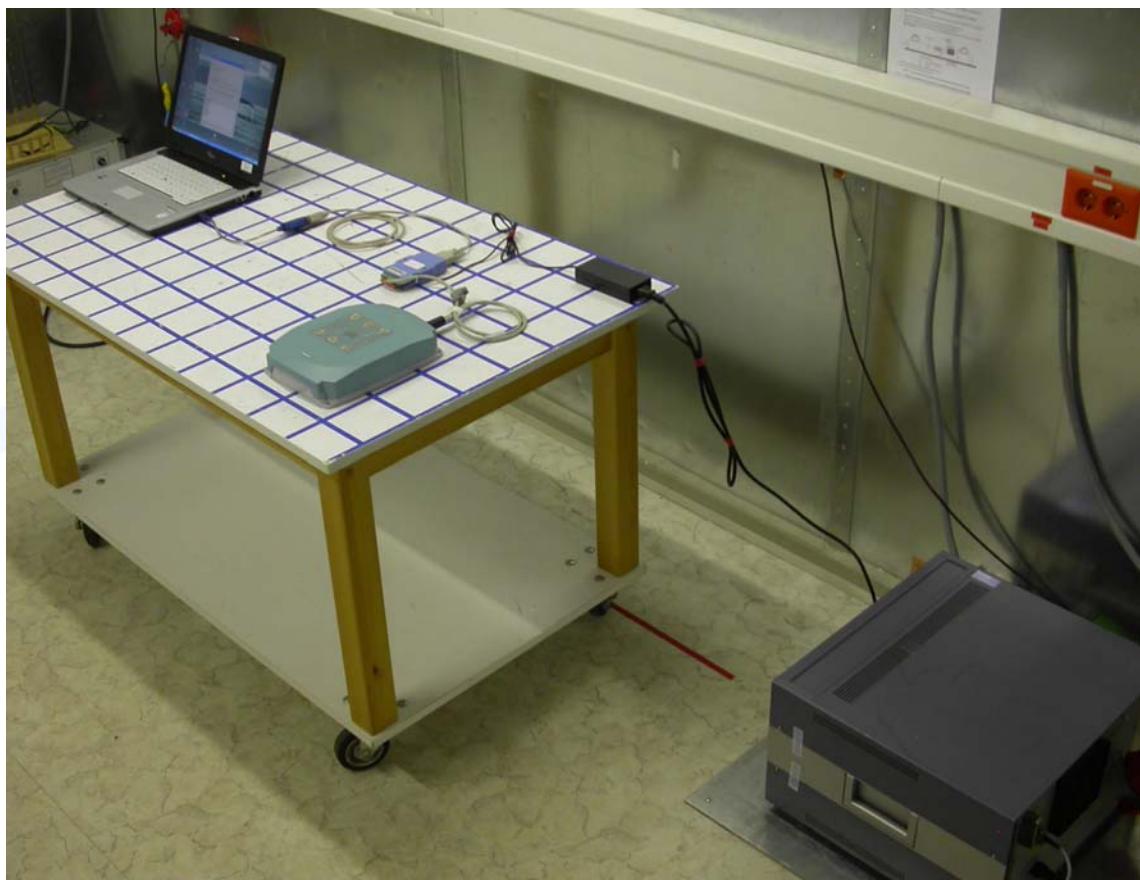
4.4.1.2 Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.5 Determination of worst case measurement conditions

FCC ID: NXW-RF620R

5 TEST CONDITIONS AND RESULTS


5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

FCC ID: NXW-RF620R

5.1.3 Applicable standard

According to FCC Part 15C, Section 15.207(a):

Except as shown in paragraphs (b) and (c) of this Section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

5.1.4 Description of Measurement

The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a line impedance stabilization network (LISN) with 50 Ω /50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded.

To convert between dB μ V and μ V, the following conversions apply:

$$\begin{aligned} \text{dB}\mu\text{V} &= 20 \log \mu\text{V} \\ \mu\text{V} &= 10^{(\text{dB}\mu\text{V}/20)} \end{aligned}$$

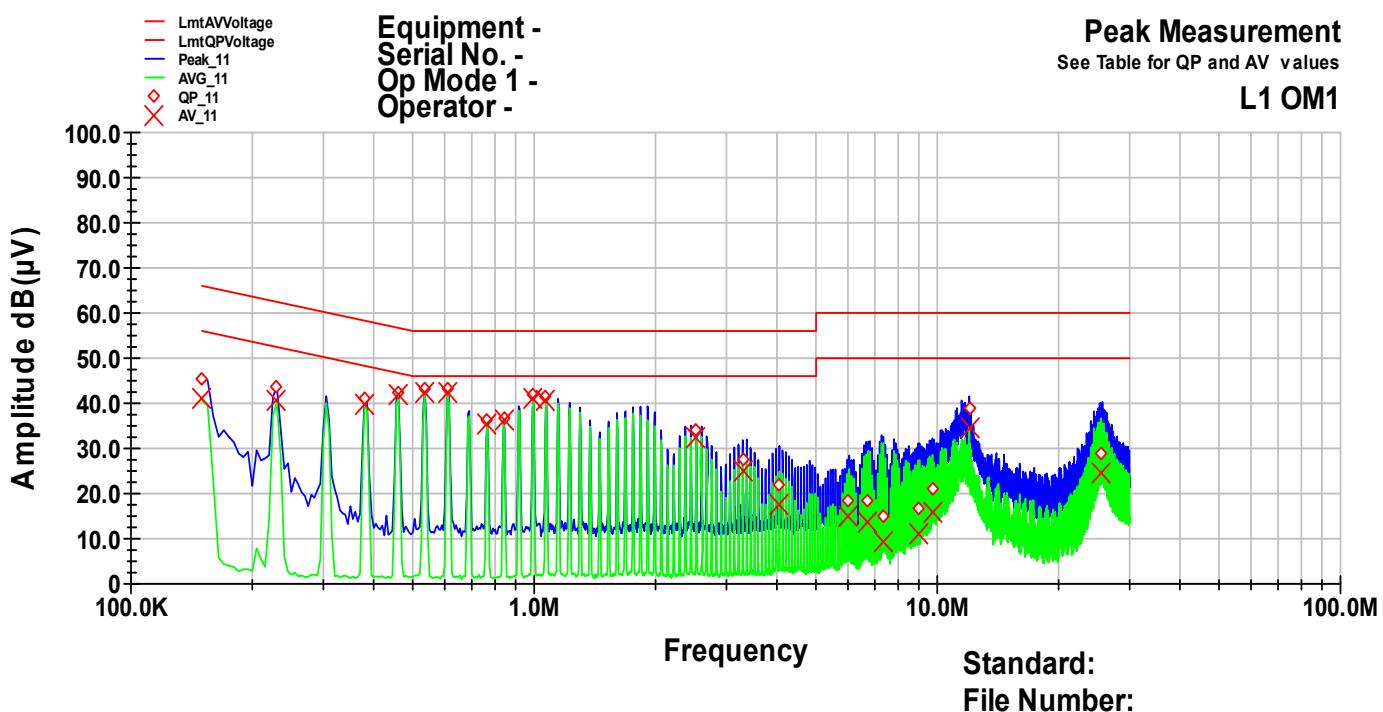
5.1.5 Test result

Frequency range: 0.15 MHz - 30 MHz

Min. limit margin 1.3 dB

The requirements are **FULFILLED**.

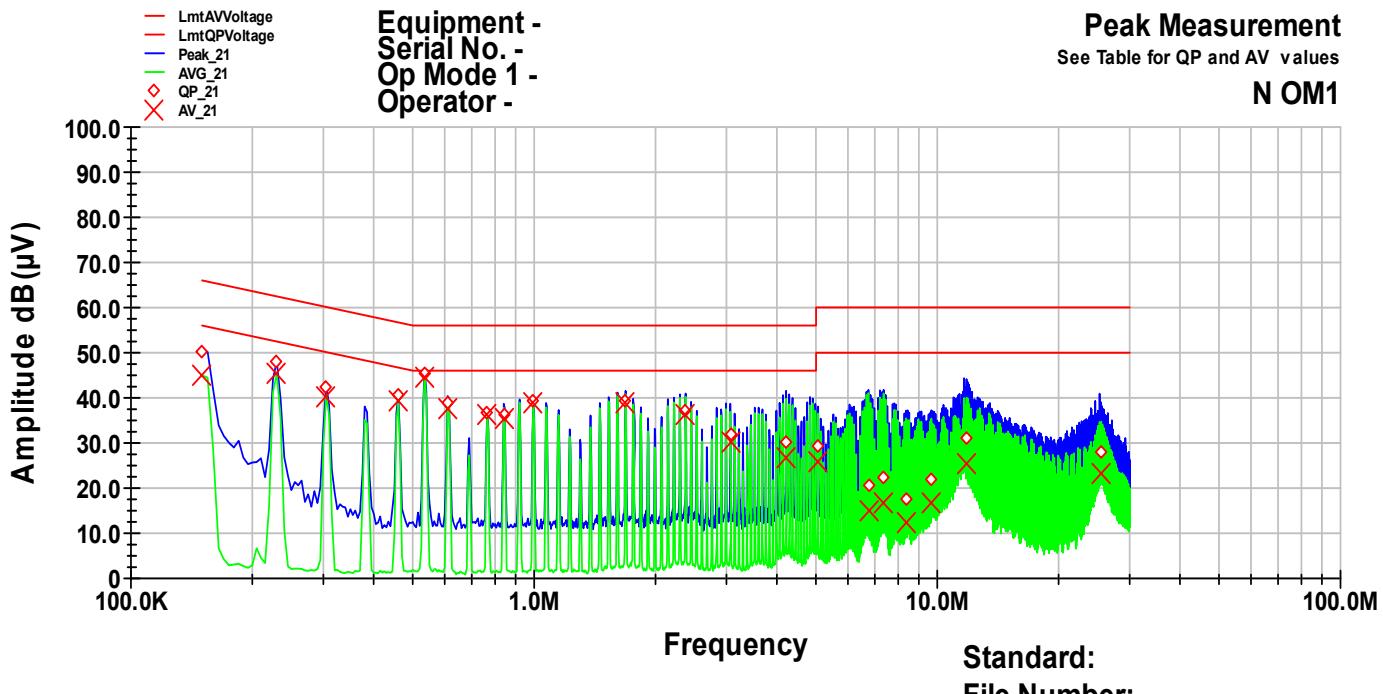
Remarks: For detailed test result please refer to following test protocols.



FCC ID: NXW-RF620R

5.1.6 Test protocol

Test point L1
Operation mode: Tag reading mode supplying 30.0 dBm
Remarks: Maximum transmit power mode
Result: Passed

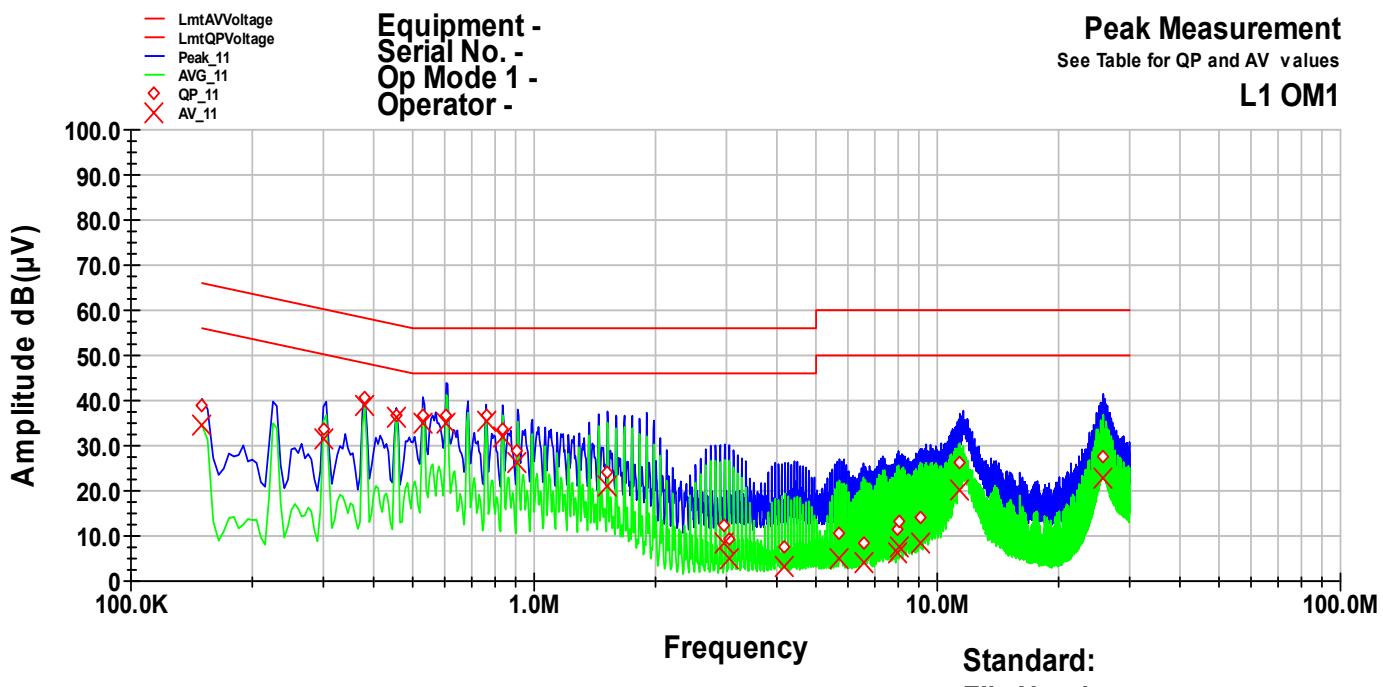


Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(µV)	dB	dB	dB(µV)	dB	dB
0.15	45.2	-20.8	66.0	41.2	-14.8	56.0
0.23	43.9	-18.6	62.4	40.6	-11.8	52.4
0.38	41.2	-17.0	58.3	39.9	-8.4	48.3
0.46	42.5	-14.2	56.7	41.8	-4.9	46.7
0.535	43.1	-12.9	56.0	42.6	-3.4	46.0
0.61	43.4	-12.6	56.0	42.3	-3.7	46.0
0.765	36.1	-19.9	56.0	35.6	-10.4	46.0
0.84	36.5	-19.5	56.0	36.1	-9.9	46.0
0.995	42.0	-14.0	56.0	41.3	-4.7	46.0
1.07	41.6	-14.4	56.0	40.8	-5.2	46.0
2.525	33.9	-22.1	56.0	32.3	-13.7	46.0
3.29	27.8	-28.2	56.0	25.2	-20.8	46.0
4.055	22.0	-34.0	56.0	17.6	-28.4	46.0
5.97	18.6	-41.4	60.0	15.0	-35.0	50.0
6.735	18.6	-41.4	60.0	13.8	-36.2	50.0
7.345	14.8	-45.2	60.0	9.2	-40.8	50.0
8.955	16.7	-43.3	60.0	11.2	-38.8	50.0
9.72	20.9	-39.1	60.0	15.8	-34.2	50.0
12	39.0	-21.0	60.0	34.6	-15.4	50.0
25.455	28.9	-31.1	60.0	24.7	-25.3	50.0

FCC ID: NXW-RF620R

Test point N
Operation mode: Tag reading mode supplying 30.0 dBm
Remarks: Maximum transmit power mode

Result: Passed

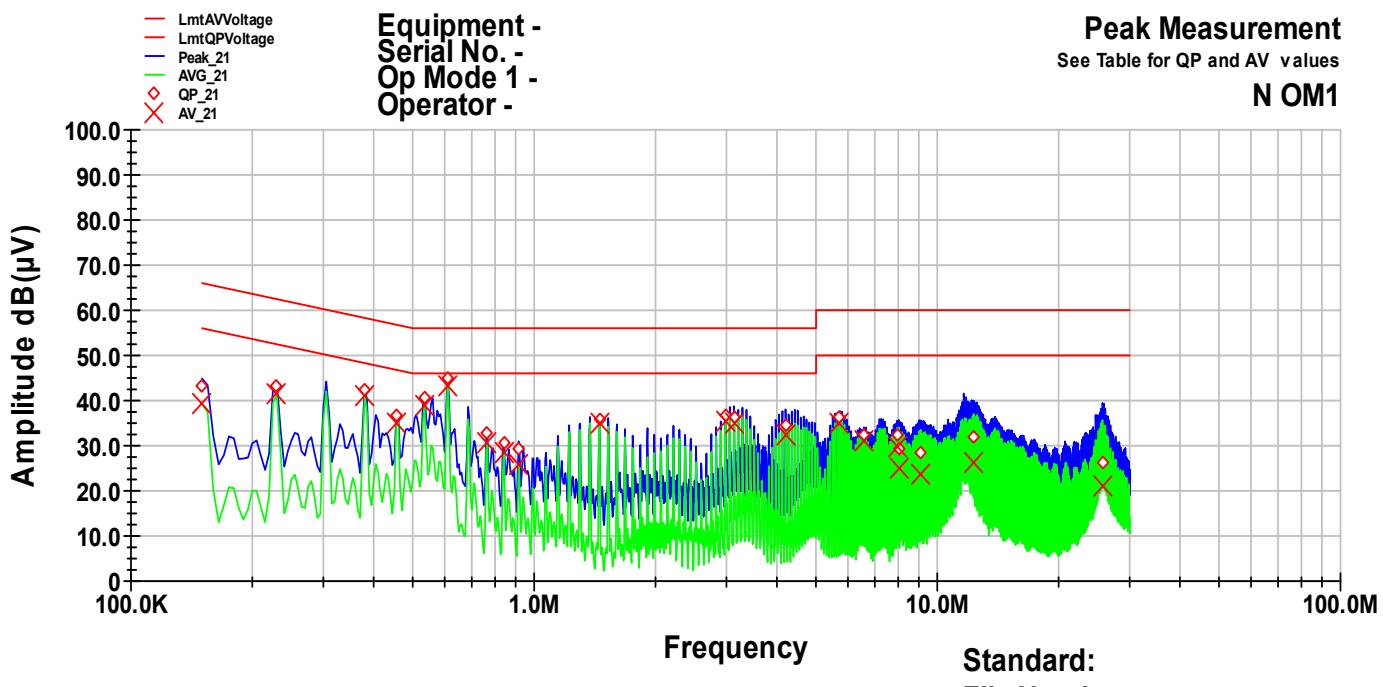


Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.15	50.0	-16.0	66.0	45.0	-11.0	56.0
0.23	47.9	-14.6	62.4	45.6	-6.8	52.4
0.305	42.3	-17.8	60.1	40.3	-9.8	50.1
0.46	40.6	-16.1	56.7	39.3	-7.4	46.7
0.535	45.5	-10.5	56.0	44.7	-1.3	46.0
0.61	38.7	-17.3	56.0	37.5	-8.5	46.0
0.765	36.8	-19.2	56.0	36.3	-9.7	46.0
0.84	36.1	-19.9	56.0	35.6	-10.4	46.0
0.995	39.5	-16.5	56.0	38.9	-7.1	46.0
1.685	39.5	-16.5	56.0	38.9	-7.1	46.0
2.375	37.3	-18.7	56.0	36.4	-9.6	46.0
3.065	32.0	-24.0	56.0	30.2	-15.8	46.0
4.215	30.0	-26.0	56.0	26.8	-19.2	46.0
5.06	29.3	-30.8	60.0	25.9	-24.1	50.0
6.745	20.4	-39.6	60.0	14.9	-35.1	50.0
7.36	22.5	-37.5	60.0	16.8	-33.2	50.0
8.355	17.7	-42.3	60.0	12.2	-37.8	50.0
9.66	22.0	-38.0	60.0	16.7	-33.3	50.0
11.81	31.0	-29.0	60.0	25.5	-24.5	50.0
25.455	27.9	-32.1	60.0	23.2	-26.8	50.0

FCC ID: NXW-RF620R

Test point: L1
Operation mode: Standby mode
Remarks: None

Result: Passed



Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.15	39.0	-27.0	66.0	34.6	-21.4	56.0
0.3	33.8	-26.4	60.2	31.5	-18.8	50.2
0.38	40.8	-17.5	58.3	39.0	-9.3	48.3
0.455	36.8	-19.9	56.8	36.2	-10.5	46.8
0.53	36.5	-19.5	56.0	34.8	-11.2	46.0
0.605	36.7	-19.3	56.0	34.9	-11.1	46.0
0.76	36.7	-19.3	56.0	35.4	-10.6	46.0
0.835	33.8	-22.2	56.0	32.1	-13.9	46.0
0.91	28.9	-27.1	56.0	26.3	-19.7	46.0
1.52	24.2	-31.8	56.0	21.1	-24.9	46.0
2.97	12.4	-43.5	56.0	8.3	-37.7	46.0
3.045	9.4	-46.6	56.0	4.8	-41.2	46.0
4.19	7.4	-48.6	56.0	3.0	-43.0	46.0
5.715	10.4	-49.6	60.0	4.9	-45.0	50.0
6.555	8.5	-51.5	60.0	3.9	-46.1	50.0
7.93	11.5	-48.5	60.0	6.1	-43.9	50.0
8.005	13.3	-46.7	60.0	7.6	-42.4	50.0
9.075	14.3	-45.7	60.0	8.5	-41.5	50.0
11.365	26.3	-33.7	60.0	20.3	-29.7	50.0
25.795	27.7	-32.3	60.0	22.8	-27.2	50.0

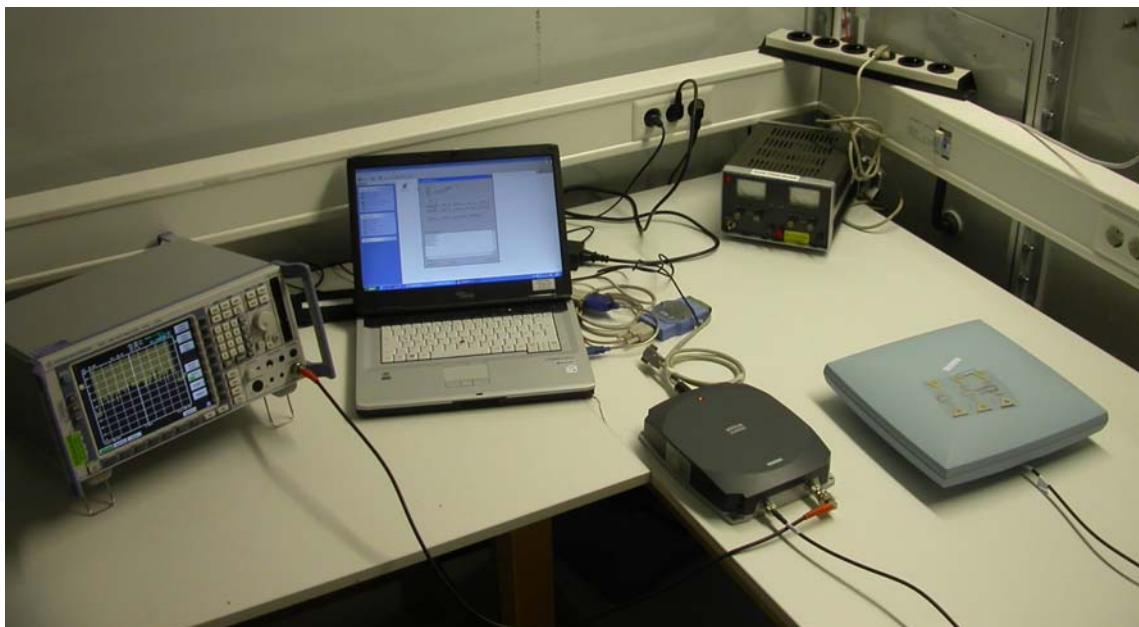
FCC ID: NXW-RF620R

Test point: N
Operation mode: Standby mode
Remarks: None

Result: Passed

Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.15	43.4	-22.6	66.0	39.1	-16.9	56.0
0.23	43.1	-19.4	62.4	41.4	-11.0	52.4
0.38	42.3	-16.0	58.3	40.9	-7.3	48.3
0.455	36.6	-20.2	56.8	35.2	-11.6	46.8
0.535	40.5	-15.5	56.0	38.9	-7.1	46.0
0.61	45.1	-10.9	56.0	43.4	-2.6	46.0
0.765	32.9	-23.1	56.0	30.5	-15.5	46.0
0.84	30.6	-25.4	56.0	28.5	-17.5	46.0
0.915	29.1	-26.9	56.0	25.7	-20.3	46.0
1.45	35.7	-20.3	56.0	34.8	-11.2	46.0
2.98	36.8	-19.2	56.0	35.6	-10.4	46.0
3.13	36.2	-19.8	56.0	34.9	-11.1	46.0
4.2	34.7	-21.3	56.0	32.5	-13.5	46.0
5.73	36.4	-23.6	60.0	35.0	-15.0	50.0
6.57	32.5	-27.5	60.0	31.1	-18.9	50.0
7.945	32.2	-27.8	60.0	29.8	-20.3	50.0
8.02	29.1	-30.9	60.0	25.2	-24.8	50.0
9.09	28.5	-31.5	60.0	23.8	-26.2	50.0
12.3	31.9	-28.1	60.0	26.1	-23.9	50.0
25.675	26.4	-33.6	60.0	21.1	-28.9	50.0

FCC ID: NXW-RF620R


5.2 20 dB bandwidth

For test instruments and accessories used see section 6 Part **MB**.

5.2.1 Description of the test location

Test location: AREA4

5.2.2 Photo documentation of the test set-up

5.2.1 Applicable standard

According to FCC Part 15C, Section 15.247(a):

Frequency hopping systems shall have hopping carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

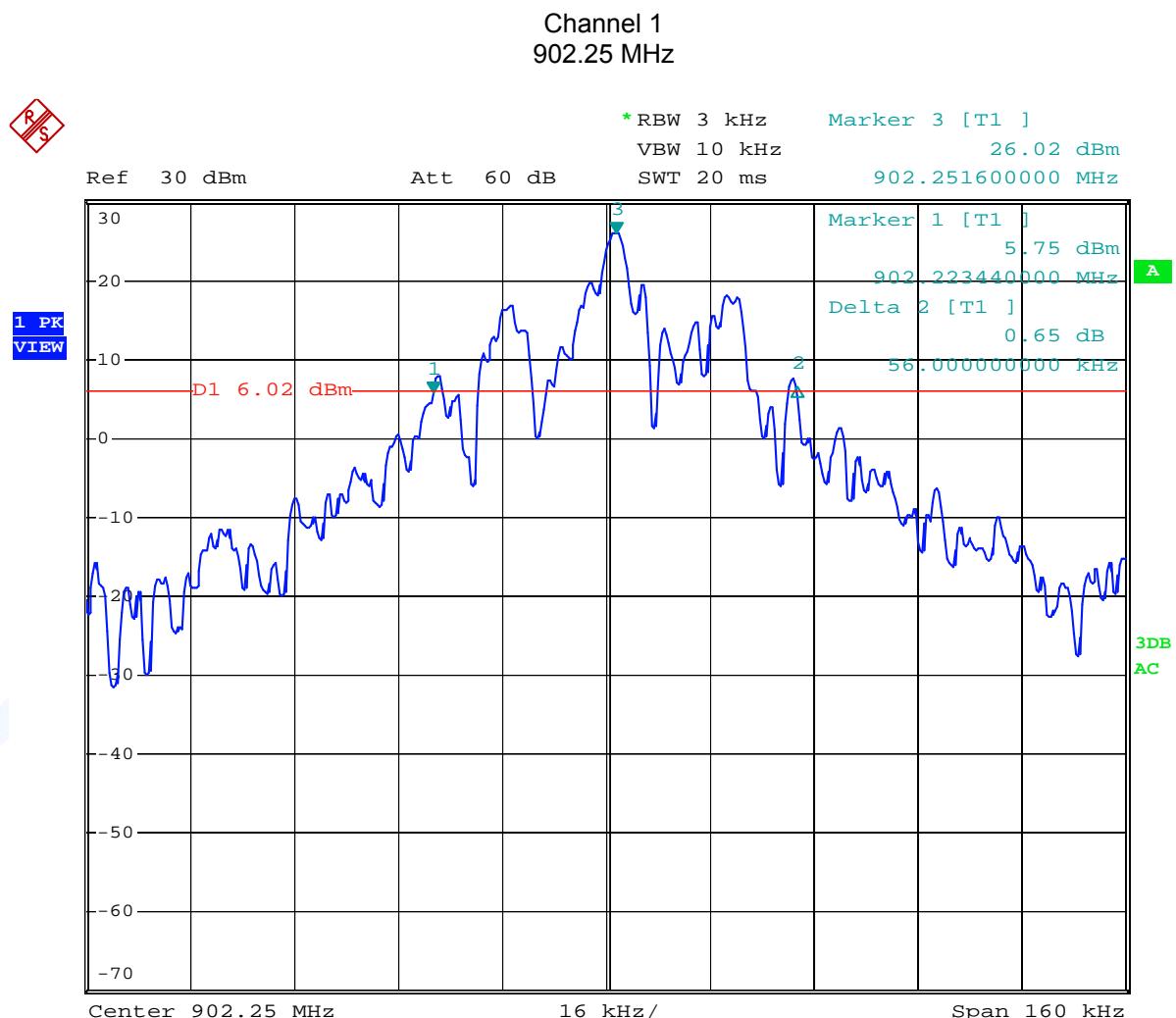
5.2.2 Description of Measurement

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio of -20 dB. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or the first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

FCC ID: NXW-RF620R**5.2.3 Test result**

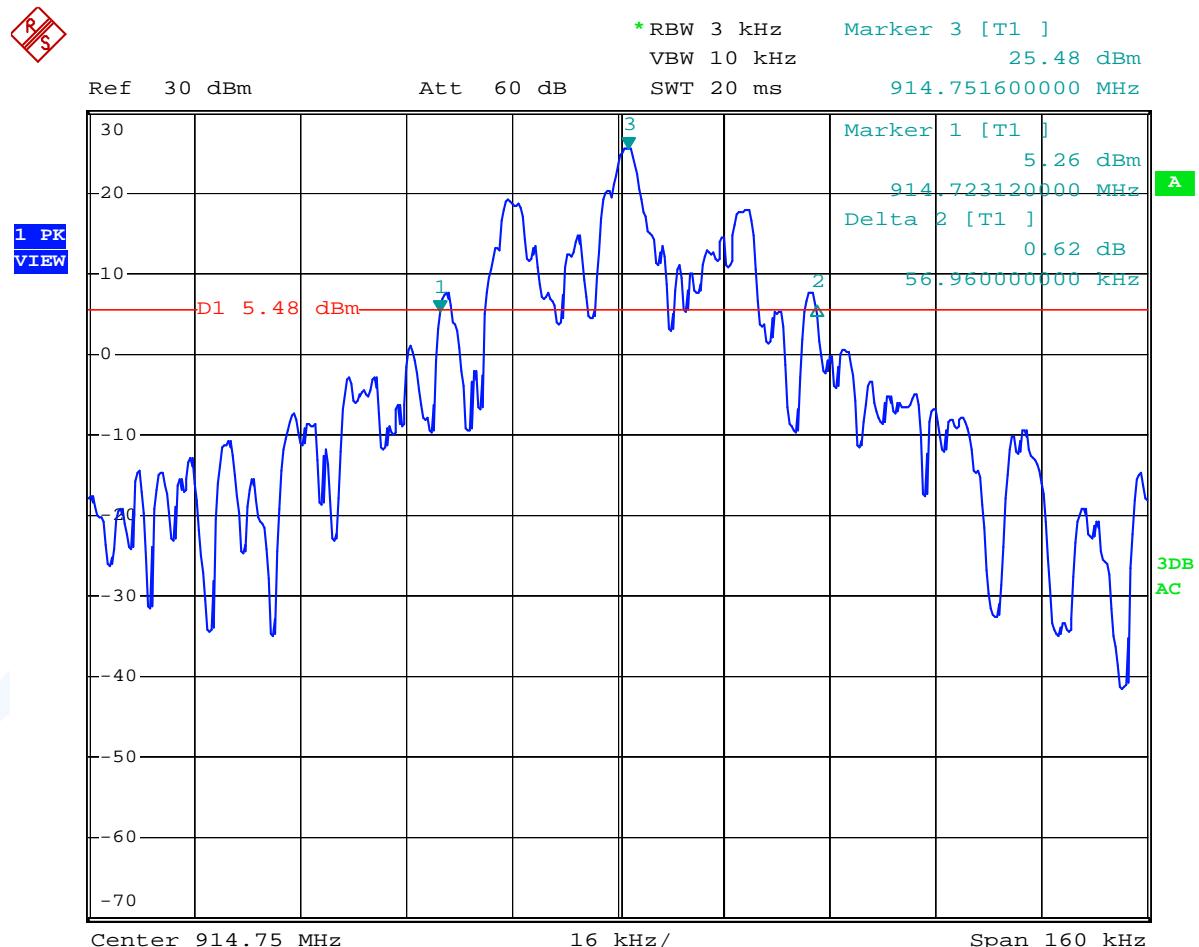
Power setting 30.0 dBm:

Channel No.	-20 dB Bandwidth below peak (kHz)
CH 1 (902.25 MHz)	56.0
CH 26 (914.75 MHz)	56.9
CH 52 (927.75 MHz)	56.0


Bandwidth limit according to FCC Part15C, Section 15.247(a):

Frequency (MHz)	Hopping channels	Limit -20 db bandwidth (kHz)
902-928	≥ 50	< 250

The requirements are **FULFILLED**.**Remarks:** For detailed test result please refer to following test protocol.


FCC ID: NXW-RF620R

5.2.4 Test protocol

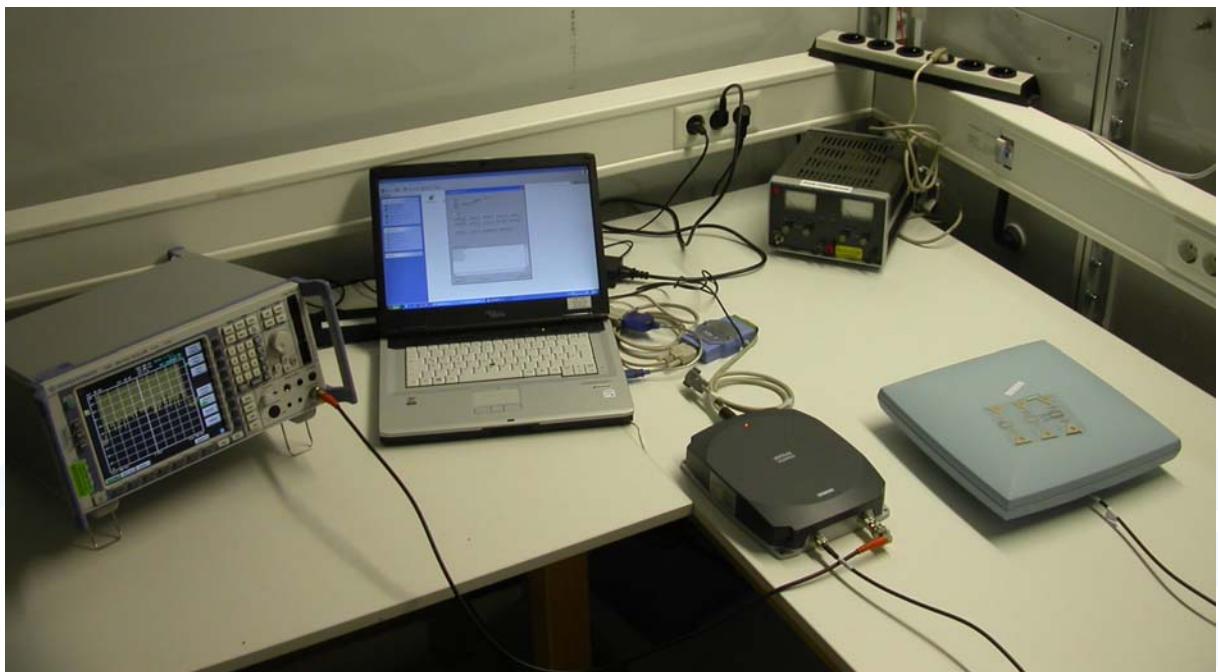
FCC ID: NXW-RF620R

Channel 26
914.75 MHz

FCC ID: NXW-RF620R

Channel 52
927.75 MHz

FCC ID: NXW-RF620R


5.3 Maximum peak conducted output power

For test instruments and accessories used see section 6 Part CPC 2.

5.3.1 Description of the test location

Test location: AREA4

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15C, Section 15.247(b)(2):

For frequency hopping systems operating in the 902-928 MHz band the maximum peak conducted output power shall not exceed the limit of 1 watt for systems employing at least 50 hopping channels.

5.3.4 Description of Measurement

A spectrum analyzer is connected to the output of the transmitter via a suitable attenuator while EUT was operating in transmit mode using the assigned frequency.

Analyzer settings:

Trace:	Max. hold
Detector:	Max. peak
RBW:	greater than 20 dB bandwidth
VBW:	\geq RBW
Sweep Time:	Coupled

FCC ID: NXW-RF620R

5.3.5 Test result

Power setting 30.0 dBm
Antenna gain: 7.3 dBiC (4.3 dBi)

Channel	Frequency (MHz)	Peak Power (dBm)	Correction (dB)	Corr. Peak power (dBm)	Limit (dBm)	Delta (dB)
1	902.25	19.0	10	29.0	30.0	1.0
26	914.75	19.0	10	29.0	30.0	1.0
52	927.75	18.9	10	28.9	30.0	1.1

Note: Correction means fixed attenuation of 10 dB.
Test cable loss is included in the analyzer reading (Transducer factor).

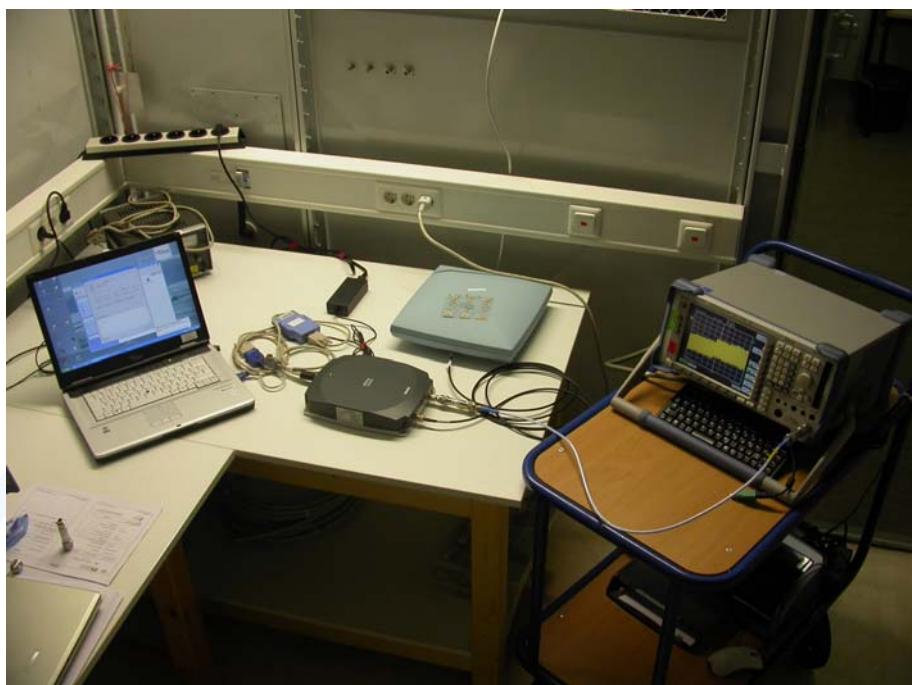
Peak Power Limit according to FCC Part 15C, Section 15.247(b)(1, 2):

Frequency (MHz)	Hopping channels	Hop. CH carrier frequ. separation	Peak Power Limit	
			(dBm)	(W)
902-928	≥ 50		30	1.0

The requirements are **FULFILLED**.

Remarks:

FCC ID: NXW-RF620R


5.4 Spurious RF conducted emissions

For test instruments and accessories used see section 6 Part **SEC1, SEC2 and SEC3**.

5.4.1 Description of the test location

Test location: AREA4

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15C, Section 15.247(d):

In any 100 kHz bandwidth outside the frequency band 902 to 928 MHz, the digitally modulated radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or an radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limit specified in Section 15.209(a).

5.4.4 Description of Measurement

A spectrum analyzer is connected to the output of the transmitter via a suitable attenuator while EUT was operating in transmit mode at the assigned frequency.

Spectrum analyzer settings:

RBW 100 kHz

VBW 300 kHz

Detector Max. peak

Trace: Max. hold

Sweep time auto

FCC ID: NXW-RF620R

5.4.5 Test result

Power setting 30.0 dBm

Hopping frequency from 902.25 to 927.75 MHz, max. level 17.76 dBm			
Frequency (MHz)	Peak power * (dBm)	Limit (-20 dB) (dBm)	Delta (dB)
901.30	-26.4	-2.2	-24.2
929.10	-35.5	-2.2	-33.3
1828	-24.9	-2.2	-22.7

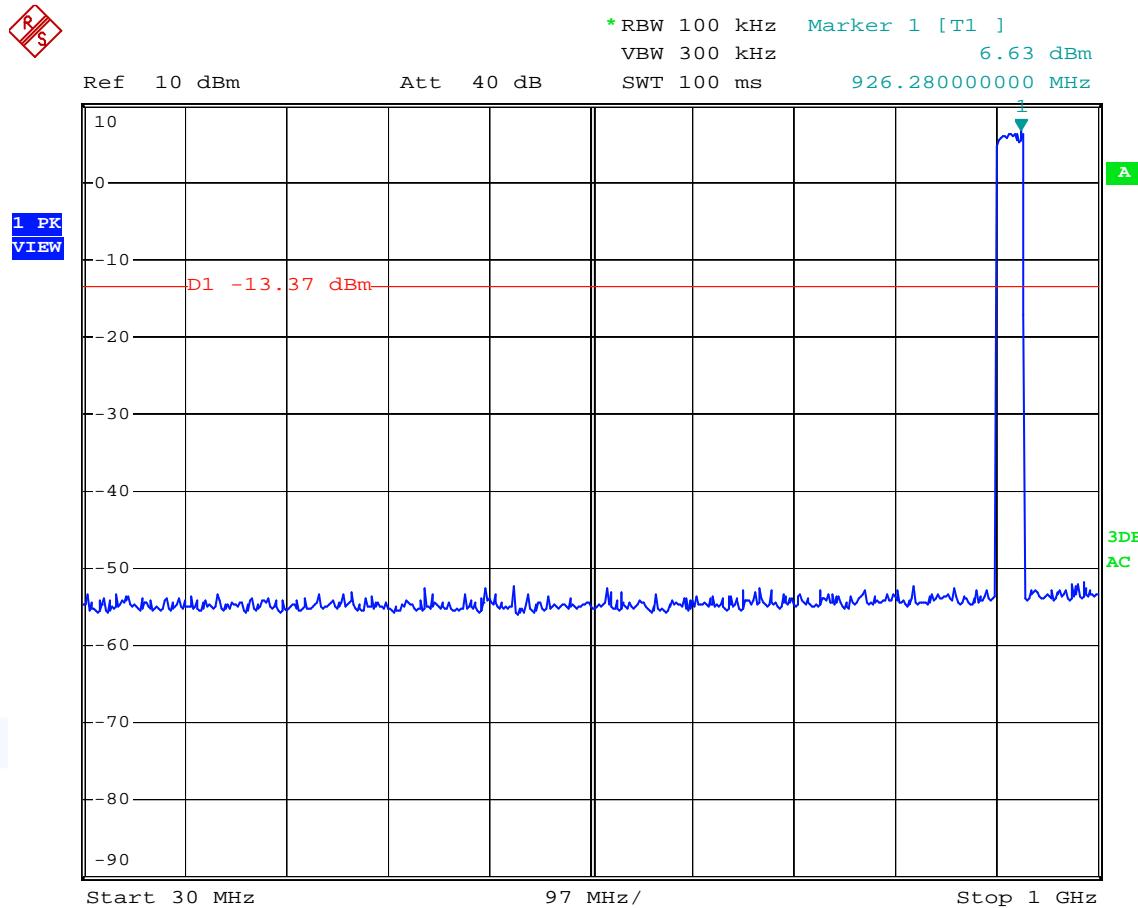
* Fixed attenuation of 10 dB is included in the Peak power.

The requirements are **FULFILLED**.

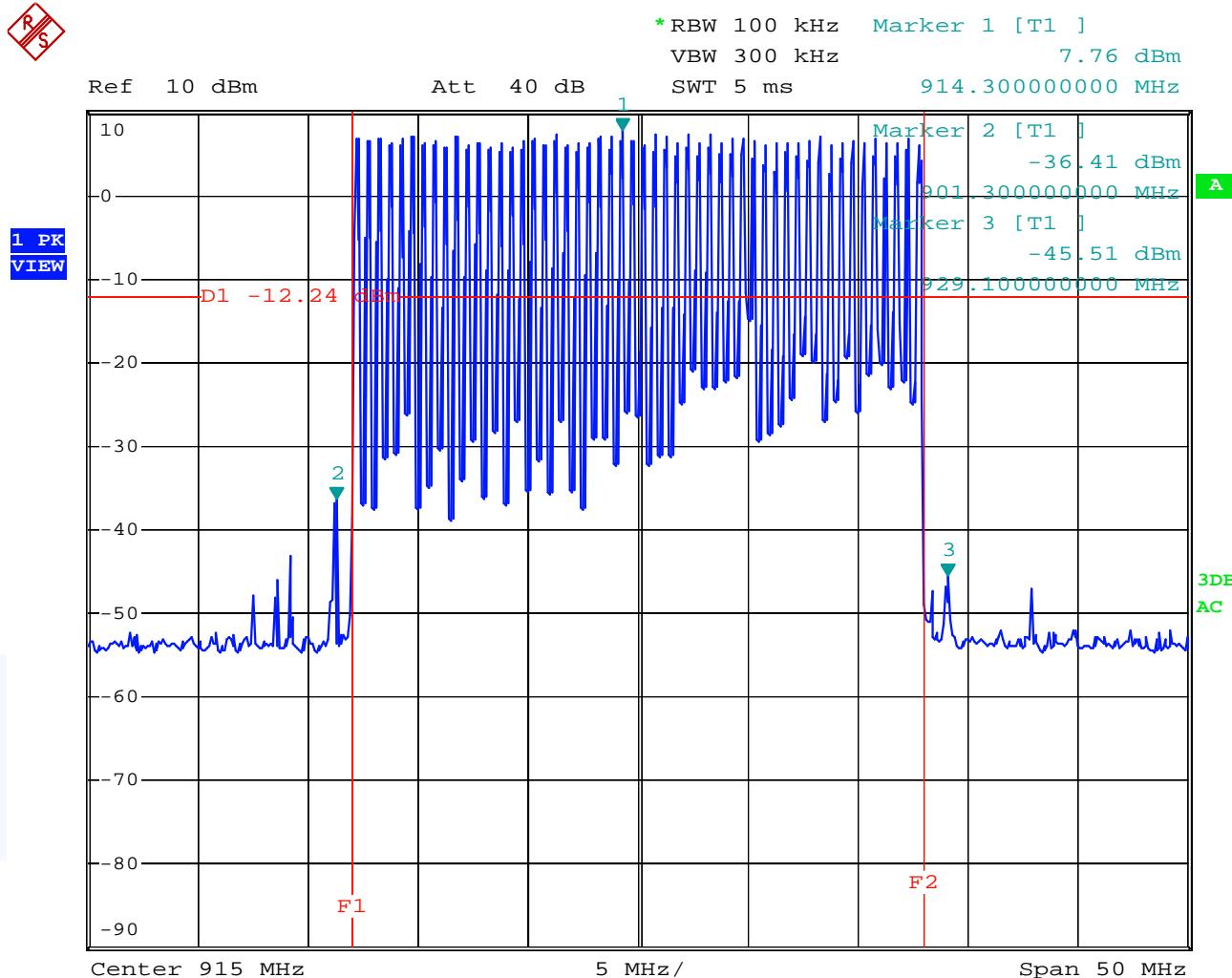
Remarks:

All spurious emissions falling in restricted bands have been measured radiated.

For detailed results please refer to following test protocol.

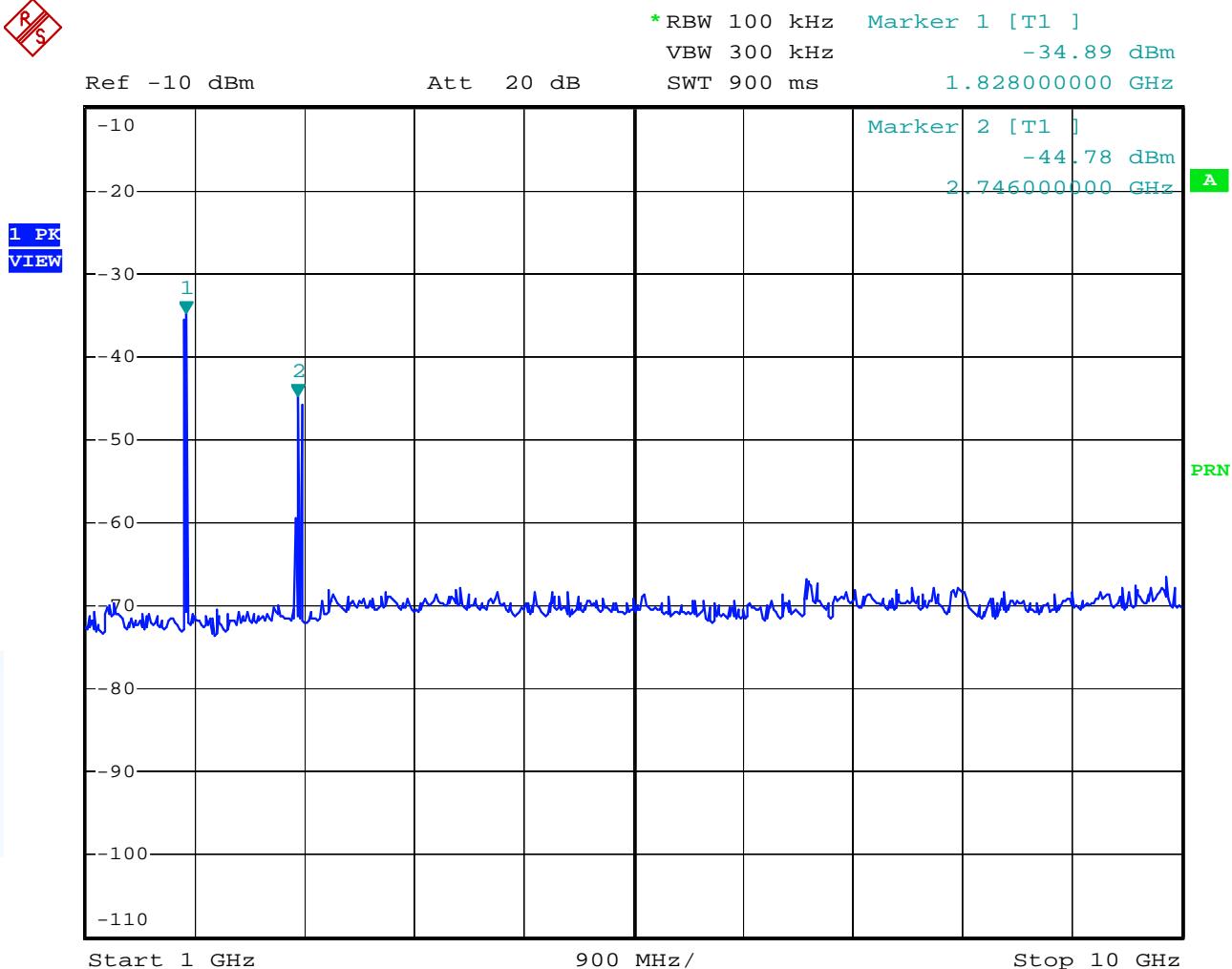

In the frequency range from 9 kHz to 30 MHz no emissions could be measured.

FCC ID: NXW-RF620R


Conducted RF emission from 30 to 1000 MHz

FCC ID: NXW-RF620R

Conducted RF emission from 30 to 1000 MHz
(Band edge)


RS

FCC ID: NXW-RF620R

Conducted RF emission from 1 to 10 GHz

RS

Note: Signal level no. 2 is located in restricted band.

FCC ID: NXW-RF620R

5.5 Spurious radiated emissions in restricted bands

For test instruments and accessories used see section 6 Part **SER 1, SER 2, SER 3**.

5.5.1 Description of the test location

Test location: OATS1
Test distance: 3 metres

Test location: Anechoic Chamber A2
Test distance: 3 metres

5.5.2 Photo documentation of the test set-up

Open area test site

FCC ID: NXW-RF620R

Anechoic chamber

mikes

FCC ID: NXW-RF620R

5.5.3 Applicable standard

According to FCC Part 15, Section 15.247(d):

In any 100 kHz bandwidth outside the frequency bands 902 to 928 MHz, the digitally modulated radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or an radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limit specified in Section 15.209(a) (see Section 15.205(c)).

5.5.4 Description of Measurement

Radiated spurious emissions from the EUT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linear polarized antennas. The measurements are made with 120 kHz bandwidth and quasi-peak detection (200 Hz, 9 kHz up to 30 MHz). The EUT was placed on a 1.0 X 1.5 metres non-conducting table 80 centimetres above the ground plane. The set up of the equipment under test will be in accordance to ANSI C63.4. The antenna was positioned 3 metres horizontally from the EUT. To locate maximum emissions from the EUT the antenna is shifted in height from 1 to 4 metres, after the EUT is rotated 360 degrees. The measurement scan is made in horizontal and vertical polarization of the antenna. The correction factors for antenna gain and cable loss are stored in the EMI receiver and automatically added to a measurement data to display the final level in dB μ V/m.

For the radiated measurement up from 1 GHz to maximum frequency as specified in Section 15.33, a spectrum analyzer and appropriate linear polarized antennas are used. The EUT is placed on a 1.0 X 1.5 metres non-conducting table 80 centimetres above the ground plane. The set up of the EUT will be in accordance to ANSI C63.4. The antenna was positioned 3 m horizontally from the EUT. To locate maximum emissions the EUT was rotated 360 degrees in the fully anechoic chamber. The measurement scan is made in horizontal and vertical polarization of the antenna. For testing above 1 GHz, if the emission level of the EUT in peak mode complies with the average limit is 20 dB lower, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.

Average values were measured with spectrum analyzer settings:

RBW: 1 MHz
VBW: 10 Hz
Detector: Max. peak
Trace: Max. hold
Sweep: Auto

FCC ID: NXW-RF620R

5.5.5 Test result

5.5.5.1 Radiated emission test $f < 1$ GHz

Since the nearest restricted band-edge is at 960 MHz (32 MHz above the 902-928 MHz band), the requirements of part 15.205 does not apply.

In the frequency range from 9 kHz to 30 MHz no radiated emissions could be measured.

5.5.5.2 Radiated emission test $f > 1$ GHz

Power setting 30.0 dBm

Antenna gain 7.3 dBi (4.3 dB)

Frequency (GHz)	L: PK (dB μ V)	Duty Cycle (dB)	L: AV (dB μ V)	Bandwidth (kHz)	Correct. (dB)	L: PK dB(μ V/m)	L: AV dB(μ V/m)	Limit AV dB(μ V/m)	Delta (dB)
2.746	57.3	0	35.8	1000	-8.3	49.0	27.5	54.0	-26.5

*) Average values were measured with spectrum analyzer by the following settings

RBW: 1 MHz

VBW: 10 Hz

Sweep: Auto

Radiated limits according to FCC Part 15C, Section 15.209(a) for spurious emissions which fall in restricted bands:

Frequency (MHz)	Field strength of spurious emissions (μ V/m)		Measurement distance (metres)
	(μ V/m)	dB(μ V/m)	
0.009 - 0.490	2400/F(kHz)		300
0.490 - 1.705	24000/F(kHz)		30
1.705 - 30	30	29,5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

FCC ID: NXW-RF620R

Restricted bands of operation:

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	608 – 614	5.35 – 5.46
2.1735 – 2.1905	16.80425 – 16.80475	960 – 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2
4.20725 – 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.26775 – 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.31175 – 6.31225	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.362 – 8.366	156.52475 – 156.52525	2483.5 – 2500	17.7 – 21.4
8.37625 – 8.38675	156.7 – 156.9	2690 – 2900	22.01 – 23.12
8.41425 – 8.41475	162.0125 – 167.17	3260 – 3267	23.6 – 24.0
12.29 – 12.293	167.72 – 173.2	3332 – 3339	31.2 – 31.8
12.51975 – 12.52025	240 – 285	3345.8 – 3358	36.43 – 36.5
12.57675 – 12.57725	322 – 335.4	3600 – 4400	Above 38.6

The requirements are **FULFILLED**.

Remarks: During the test the EUT was set into TX continuous mode with normal modulation.

The measurement was performed up to the 10th harmonic (10000 MHz).

FCC ID: NXW-RF620R

5.6 Hopping sequence

Requirement according to FCC Part 15C, Section 15.247(a):

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

Remarks: The channel is represented by a pseudo-random hopping sequence hopping through the 52 RF-channels.

5.7 Equal hopping frequency use

Requirement according to FCC Part 15C, Section 15.247(a):

Each frequency must be used equally on the average by each transmitter.

Remarks: The device fulfills the requirement according to FCC Part 15C, Section 15.247(a).
The manufacturer declares in the system manual that this function is controlled via software.

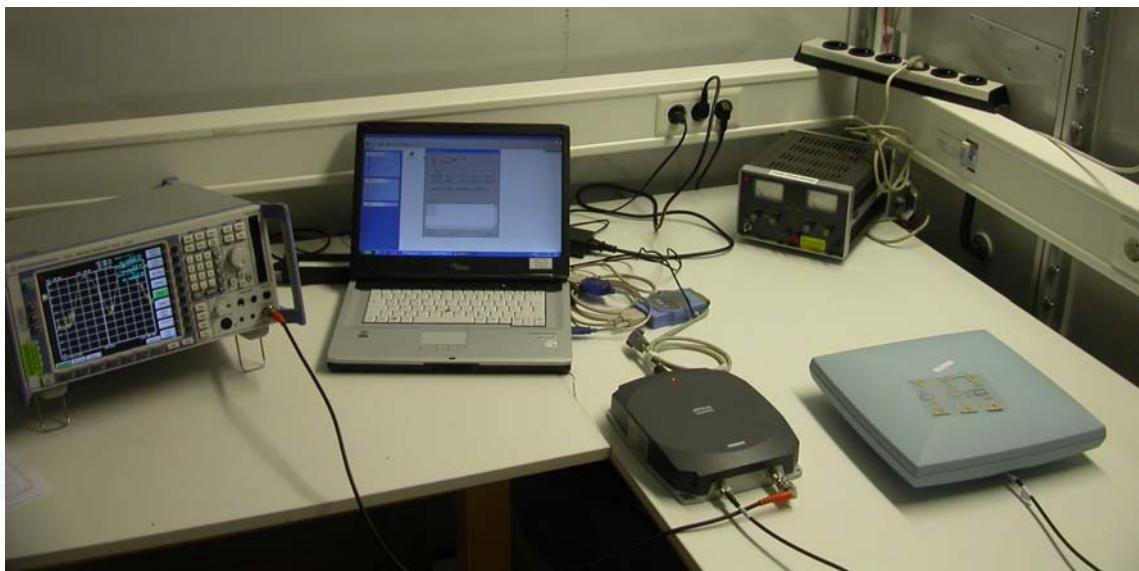
5.8 Receiver input bandwidth

Requirement according to FCC Part 15C, Section 15.247(a):

The system receivers shall have input bandwidth that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signal.

Remarks: The receiver bandwidth is equal to the transmitter bandwidth in the 52 hopping channel mode.
(Declared by the manufacturer.)

FCC ID: NXW-RF620R


5.9 Dwell time

For test instruments and accessories used see section 6 Part **DC**.

5.9.1 Description of the test location

Test location: AREA4

5.9.2 Photo documentation of the test set-up

5.9.3 Applicable standard

According to FCC Part 15, Section 15.247(a)(i):

Frequency hopping systems operating in the 902-928 MHz band: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

5.9.4 Description of Measurement

The measurement was done using a spectrum analyser in time domain function and able to store the maximum time of a period. This time period has been stored and added up the appropriate time intervals the hopping system has applied this channel.

FCC ID: NXW-RF620R

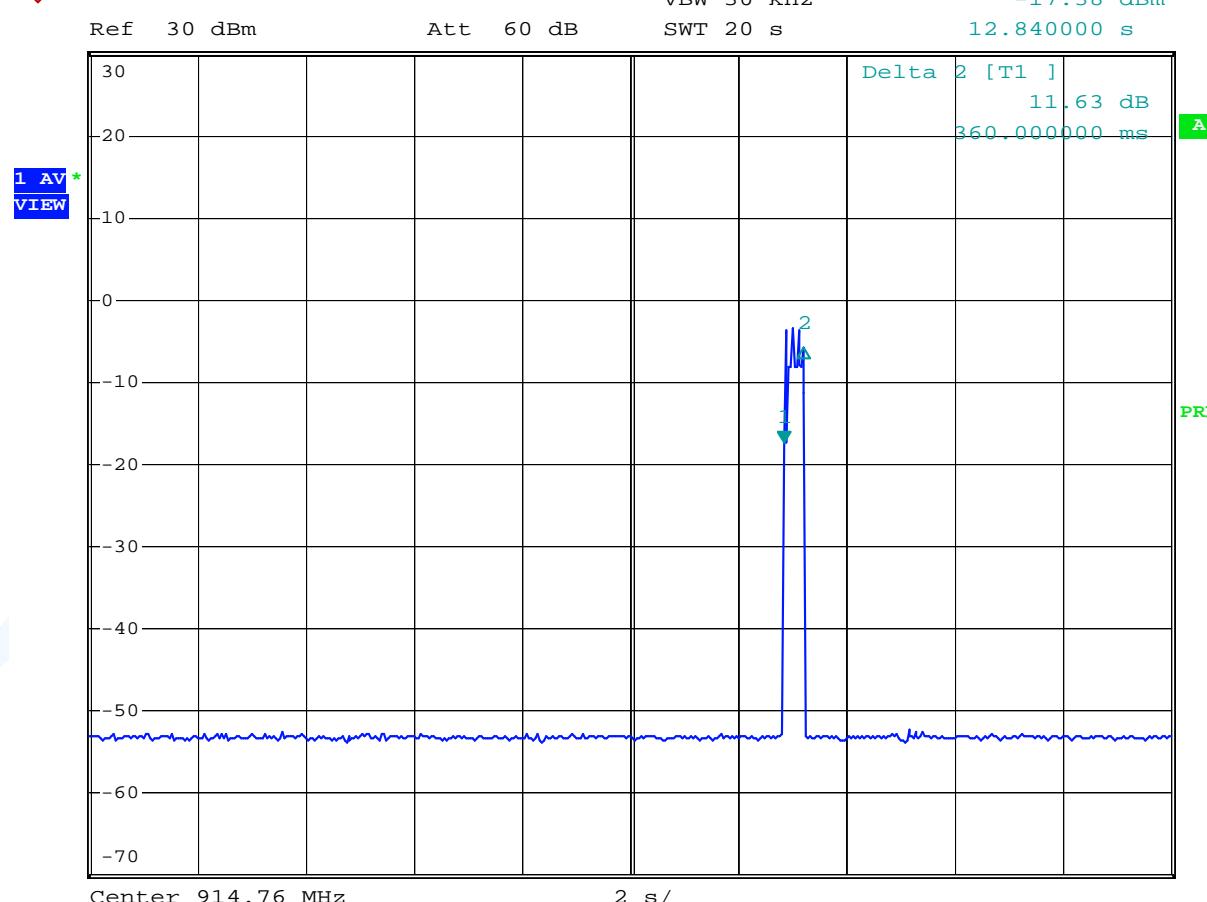
5.9.5 Test result

Channel frequency (MHz)	Pulse Time (ms)	Number of Bursts (in 1 time period)	Dwell time (ms)
914.75	360	1	360

Requirement according to FCC Part15C, Section 15.247(a):

Frequency (MHz)	Hopping channels	time of one period (s)	Limit dwell time, AV (ms)
902-928	≥ 50	20	< 400

The requirements are **FULFILLED**.**Remarks:** For detailed test result please refer to following test protocol.

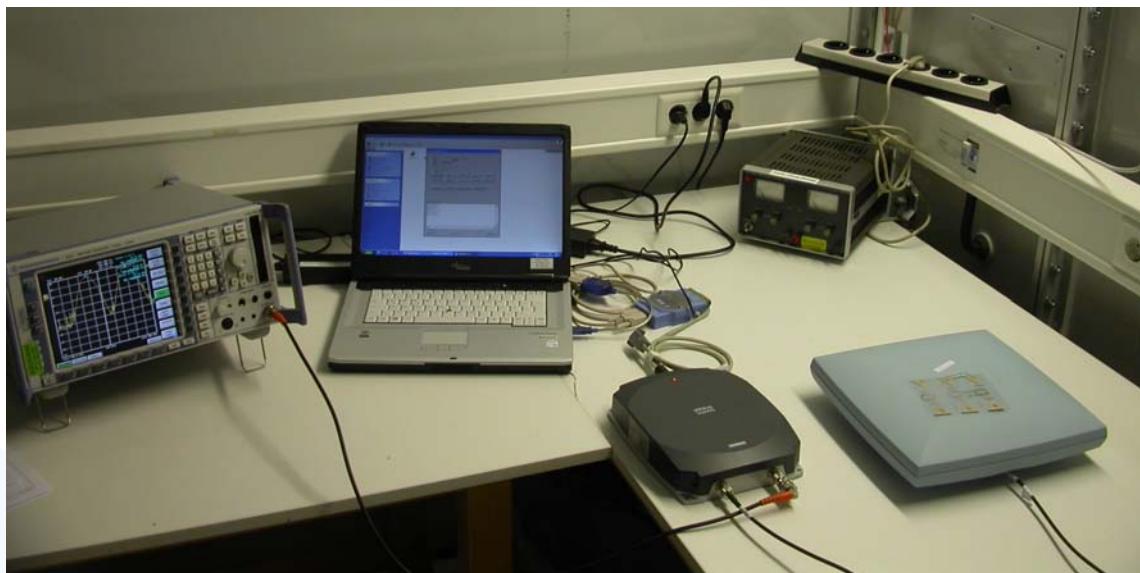


FCC ID: NXW-RF620R

5.9.6 Test protocol

RS

FCC ID: NXW-RF620R


5.10 Channel separation

For test instruments and accessories used see section 6 Part **MB**.

5.10.1 Description of the test location

Test location: AREA4

5.10.2 Photo documentation of the test set-up

FCC ID: NXW-RF620R

5.10.3 Applicable standard

According to FCC Part 15, Section 15.247(a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.10.4 Description of Measurement

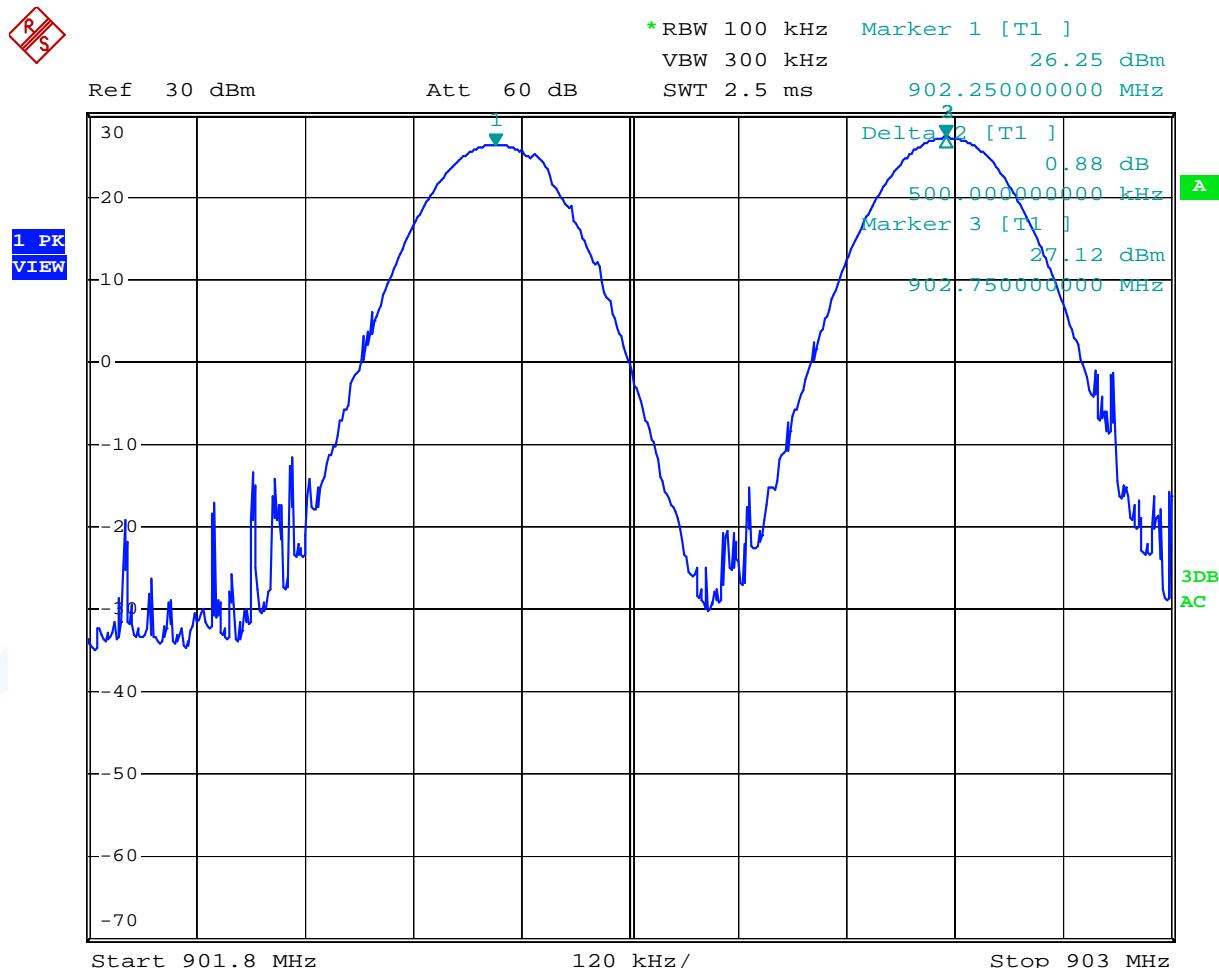
This measurement was done by using a spectrum analyser. The Span of the analyzer was set wide enough to capture 2 frequencies. The result of the channel separation was compared with the 20 dB bandwidth and recorded.

5.10.5 Test result

Channel 1 (MHz)	Channel 2 (MHz)	Channel separation (kHz)
902.25	902.75	500

Limit according to FCC Part 15C, Section 15.247(a):

Frequency (MHz)	Hopping channels	Limit channel separation (kHz)
All systems		> 25 kHz or 20 dB bandwidth, whichever is greater
2400-2483.5	≥ 15	


The requirements are **FULFILLED**.

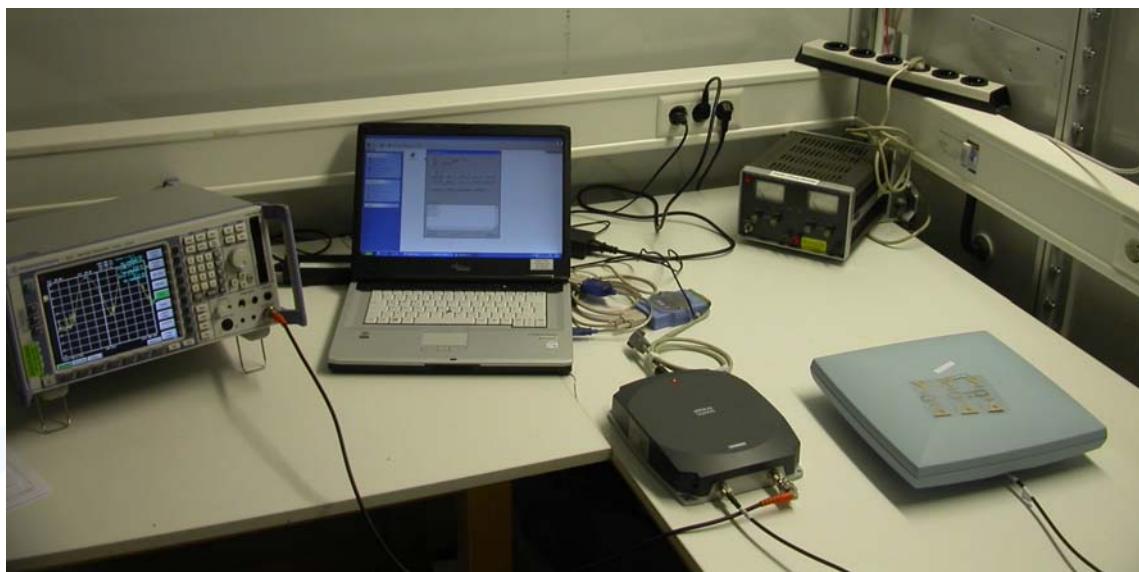
Remarks: For detailed test result please refer to following test protocol.

FCC ID: NXW-RF620R

5.10.6 Test protocol

Channel separation

FCC ID: NXW-RF620R


5.11 Quantity of hopping channels

For test instruments and accessories used see section 6 Part **MB**.

5.11.1 Description of the test location

Test location: AREA4

5.11.2 Photo documentation of the test set-up

5.11.3 Applicable standard

According to FCC Part 15, Section 15.247(a)(1)(i):

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

5.11.4 Description of Measurement

This measurement was done by using a spectrum analyser. The EuT was transmitting at its maximum data rate. The Span of the analyzer was set wide enough to capture the frequency band from 902-928 MHz.

5.11.5 Test result

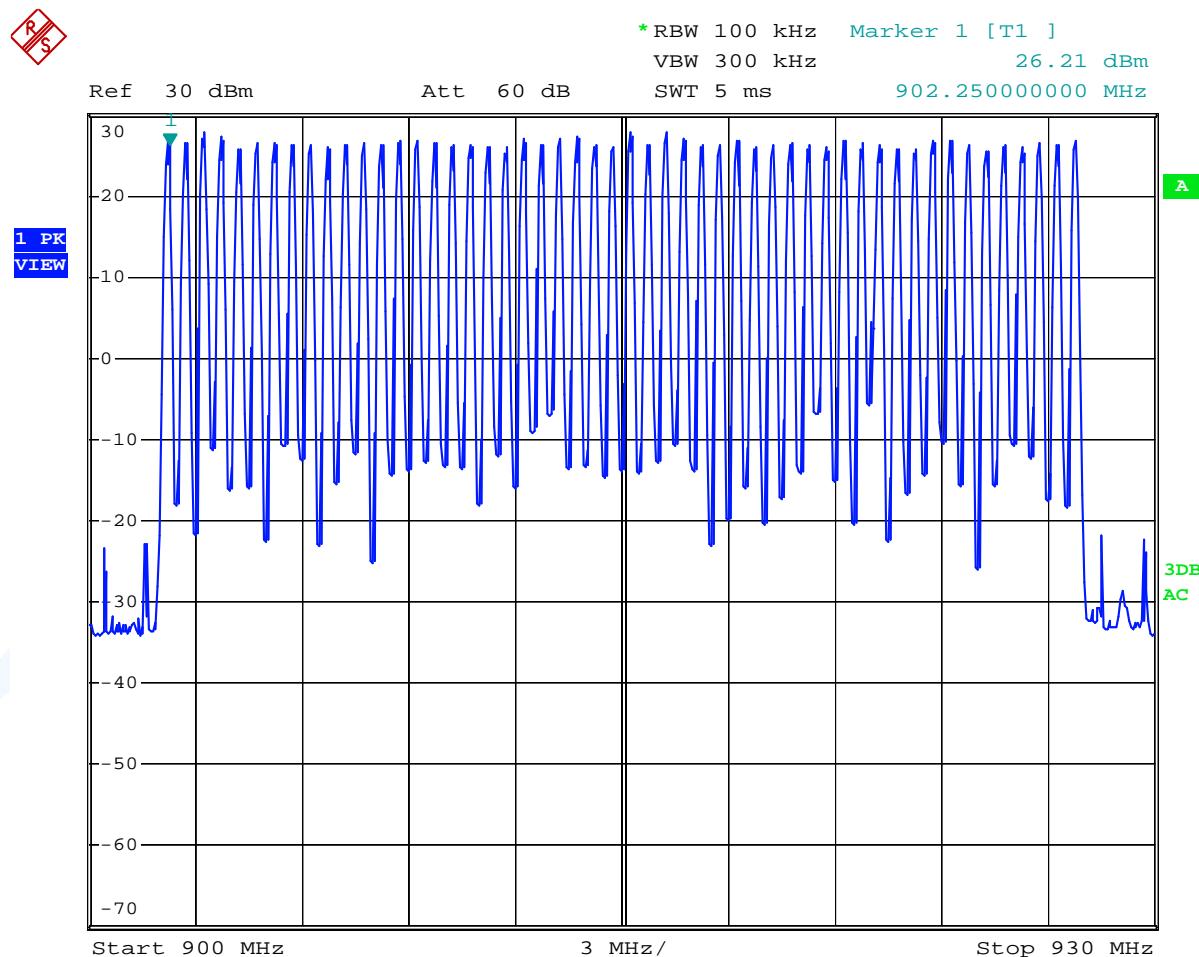
Hopping channel frequency range	Quantity of hopping channels value	Quantity of hopping channels minimum limit
902-928 MHz	52	50

FCC ID: NXW-RF620R

Limit according to FCC Part 15C, Section 15.247(1):

Frequency range (MHz)	LIMIT (Quantity of Hopping Channels)			
	20dB Bandwidth < 250kHz	20dB Bandwidth > 250kHz	20dB Bandwidth < 1 MHz	20dB Bandwidth > 1MHz
902 - 928	50	25	---	---

The requirements are **FULFILLED**.**Remarks:** For detailed test result please refer to following test protocol.



mikes

FCC ID: NXW-RF620R

5.11.6 Test protocol

Quantity of hopping channel

FCC ID: NXW-RF620R

5.12 Antenna application - Detailed photos see Attachment A

5.12.1 Applicable standard

According to FCC Part 15C, Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit that broken antennas can be replaced by the user, but the use of a standard antenna jack is prohibited.

The EUT has reverse TNC plugs to connect the defined antennas supplied by the manufacturer.
All supplied antennas meet the requirements of part 15.203 and 15.204.

5.12.2 Antenna requirements

According to FCC Part 15C, Section 15.247 (b)(4):

The conducted output power limit specified in paragraph (b) of 15.247 is based on the use of antennas with directional gains that do not exceed 6.0 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6.0 dBi are used, the conducted output power from intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2) and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6.0 dBi.

FCC ID: NXW-RF620R

5.13 Receiver conducted disturbances

5.13.1 Description of the test location

Test location: None

5.13.2 Photo documentation of the test set-up

5.13.3 Applicable standard

According to FCC Part 15C, Section 15.107(a):

Except as shown in paragraphs (b) and (c) of this Section, for an unintentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Remarks: The measurement is not applicable, because the EuT don't have a receive mode.

FCC ID: NXW-RF620R

5.14 Receiver spurious emissions conducted

For test instruments and accessories used see section 6 Part **SEC 2** and **SEC 3**.

5.14.1 Description of the test location

Test location: None

5.14.2 Applicable standard

According to EN 300 328, clause 4.3.7:

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

Limit according to EN 300 328, clause 4.3.7.2

Narrowband spurious emission limits for receivers:

30 MHz to 1000 MHz	1000 MHz to 12750 MHz
2.0nW (-57dBm)	20.0nW (-47dBm)

Wideband spurious emission limits for receivers:

30 MHz to 1000 MHz	1000 MHz to 12750 MHz
-107 dBm/Hz	-97 dBm/Hz

Remarks: The measurement is not applicable, because the EuT don't have a receive mode.

FCC ID: NXW-RF620R

5.15 Maximum permissible exposure (MPE)

For test instruments and accessories used see section 6 Part **CPC 2**.

5.15.1 Description of the test location

Test location: AREA4

5.15.2 Applicable standard

According to FCC Part 15, Section 15.247(i):

Systems operating under the provisions of this section shall be operated in a manner that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

The test methods used comply with ANSI/IEEE C95.1, "IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz".

This test report shows the compliance with the limits for Maximum Permissible Exposure (MPE) specified in FCC Part 1, Section 1.1310 and the criteria to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in FCC Part 1, Section 1.1307(b).

5.15.3 Description of Measurement

The maximum total power input to the antenna has been measured conducted as described in clause 5.3 of this document. Through the Friis transmission formula, the known maximum gain of the antenna and the maximum power, the MPE can be calculated in a defined distance away from the product.

$$\text{Friis transmission formula: } P_d = \frac{P_{out} * G}{4 * \Pi * r^2}$$

where

P_d = power density (mW/cm²)

P_{out} = output power to antenna (mW)

G = gain of antenna (linear scale)

r = distance between antenna and observation point (cm)

FCC ID: NXW-RF620R

5.15.4 Test result

Power setting 30.0 dBm
Antenna gain 7.3 dBi (4.3 dBi)

Channel No.	Frequency (MHz)	Max power output to antenna (dBm)	Antenna gain (dBi)	Cable loss (dB)	Power density (mW/cm ²)	Limit of power density (mW/cm ²)
1	902.25	29.0	794.3	4.3	1.0	0.338
26	914.75	29.0	794.3	4.3	1.0	0.338
52	927.75	28.9	776.2	4.3	1.0	0.330

Limits for maximum permissible exposure (MPE):

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
(B) Limits for General Population / Uncontrolled Exposure				
0.3 – 3.0	614	1.63	100	30
3.0 – 30	824/f	2.19/f	180/ f ²	30
30 - 300	27.5	0.073	0.2	30
300-1500	---	---	f/1500	30
1500-100000	---	---	1.0	30

f = Frequency (MHz)

According to FCC Rules 47CFR 2.1093(b) the EUT is not a portable device. The EUT is designed to be used that radiating structures are more than 20 cm outside of the body of the user. (r = 20 cm).

Note: The manufacturer shall state in the manual the minimum cable length for each antenna. Aditinally this shall be stated on the label of the EuT.

The requirements are **FULFILLED**.

Remarks:

FCC ID: NXW-RF620R

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID	Model Type	Kind of Equipment	Manufacturer	Equipment No.
A 4	ESHS 30 NNLK 8129 ESH 2 - Z 5 N-4000-BNC N-1500-N ESH 3 - Z 2 SP 103 /3.5-60	EMI Test Receiver LISN LISN RF Cable RF Cable Pulse Limiter Convertor 220 V / 110 V	Rohde & Schwarz München Schwarzbeck Mess-Elektron Rohde & Schwarz München mikes-testingpartners gmbh mikes-testingpartners gmbh Rohde & Schwarz München mikes-testingpartners gmbh	02-02/03-05-002 02-02/20-05-001 02-02/20-05-004 02-02/50-05-138 02-02/50-05-140 02-02/50-05-155 02-02/50-05-182
CPC 2	ESCI	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-005
DC	ESCI	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-005
MB	ESCI	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-005
SEC 1-3	FSP 30 WHJS 1000-10EE 10 dB / 50 Ohm / 18 GHz	Spectrum Analyzer High Pass Filter Attenuator	Rohde & Schwarz München Wainwright Instruments Gm Huber + Suhner	02-02/11-05-001 02-02/50-05-070 02-02/50-07-067
SER 1	ESCI FMZB1516 S10162-B KK-EF393-21N-16 NW-2000-NB	EMI Test Receiver Magnetic Field Antenna RF Cable 33 m RF Cable 20 m RF Cable	Rohde & Schwarz München Schwarzbeck Mess-Elektron Huber + Suhner Huber + Suhner Huber + Suhner	02-02/03-05-005 01-02/24-01-018 02-02/50-05-031 02-02/50-05-033 02-02/50-05-113
SER 2	ESVS 30 VULB 9168 S10162-B KK-EF393-21N-16 NW-2000-NB	EMI Test Receiver Trilog Broad Band Anten RF Cable 33 m RF Cable 20 m RF Cable	Rohde & Schwarz München Schwarzbeck Mess-Elektron Huber + Suhner Huber + Suhner Huber + Suhner	02-02/03-05-006 02-02/24-05-005 02-02/50-05-031 02-02/50-05-033 02-02/50-05-113
SER 3	FSP 30 AFS4-01000400-10-10P-4 AMF-4F-04001200-15-10P AFS5-12001800-18-10P-6 3115 Sucoflex N-1600-SMA Sucoflex N-2000-SMA	Spectrum Analyzer RF Amplifier 1-4 GHz RF Amplifier 4-12 GHz RF Amplifier 12-18 GHz Horn Antenna 1-18 GHz RF Cable RF Cable	Rohde & Schwarz München PARZICH GMBH PARZICH GMBH PARZICH GMBH EMCO Elektronik GmbH novotronik Signalverarbeit novotronik Signalverarbeit	02-02/11-05-001 02-02/17-05-003 02-02/17-05-004 02-02/17-06-002 01-02/24-01-011 02-02/50-05-073 02-02/50-05-075

FCC ID: NXW-RF620R

Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
A 4				
02-02/03-05-002	04/30/2009	04/30/2008		
02-02/20-05-001	06/18/2009	12/18/2008		
02-02/20-05-004	03/13/2011	03/13/2008	04/08/2009	10/08/2008
02-02/50-05-138				
02-02/50-05-140				
02-02/50-05-155	04/06/2009	10/06/2008		
02-02/50-05-182				
CPC 2				
02-02/03-05-005	01/26/2010	01/26/2009		
DC				
02-02/03-05-005	01/26/2010	01/26/2009		
MB				
02-02/03-05-005	01/26/2010	01/26/2009		
SEC 1-3				
02-02/11-05-001	04/08/2009	04/08/2008		
02-02/50-05-070				
02-02/50-07-067				
SER 1				
02-02/03-05-005	01/26/2010	01/26/2009		
02-02/03-05-004	01/08/2009	01/08/2008		
02-02/50-05-031				
02-02/50-05-033				
02-02/50-05-113				
SER 2				
02-02/03-05-006	07/30/2009	07/30/2008		
02-02/24-05-005	05/06/2011	05/06/2008	02/28/2009	08/29/2008
02-02/50-05-031				
02-02/50-05-033				
02-02/50-05-113				
SER 3				
02-02/11-05-001	04/08/2009	04/08/2008		
02-02/17-05-003				
02-02/17-05-004				
02-02/17-06-002				
01-02/24-01-011	05/08/2009	05/08/2008		
02-02/50-05-073				
02-02/50-05-075				