

**NOTIFICATION TEST REPORT
FOR THE
RECEIVER, CRT-CM03R
FCC PART 15, SUBPART B
CLASS B COMPLIANCE**

DATE OF ISSUE: APRIL 13, 1998

PREPARED FOR:

ComRight Technology
21 Bartlett Ave.
Lexington, MA 02173

PREPARED BY:

Monika Lopez
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338

W.O. No: 68,361

Report No: FB98-058

Date of test: April 1, 1998

APPROVED BY:

DOCUMENTATION CONTROL:

Tracy Phillips
Tracy Phillips

Dennis Ward
Dennis Ward
Director of Laboratories
CKC Laboratories

This report contains a total of 29 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 29
Report No: FB98-058

ADMINISTRATIVE INFORMATION

DATE OF TEST:

April 1, 1998

PURPOSE OF TEST:

To demonstrate the compliance of the Receiver, CRT-CM03R, with the FCC Part 15, Subpart B requirements for Class B devices.

MANUFACTURER:

ComRight Technology
21 Bartlett Ave.
Lexington, MA 02173

REPRESENTATIVE:

Jamie Li

TEST LOCATION:

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92621

TEST PERSONNEL:

Stu Yamamoto

TEST METHOD:

ANSI C63.4 1992

FREQUENCY RANGE TESTED:

450 kHz - 1000 MHz

EQUIPMENT UNDER TEST:**Receiver**

Manuf: ComRight Technology
Model: CRT-CM03R
Serial: 000001
FCC ID: XXX-CRT03A

Power Adapter

Manuf: Woods Industries
Model: DPX351322
Serial:
FCC ID:

Page 3 of 29
Report No: FB98-058

TABLE OF CONTENTS

Administrative Information	3
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
Peripheral Devices	5
Report Of Measurements	5
Table 1: Six Highest Radiated Emission Levels.....	5
Table 2: Six Highest Conducted Emission Levels.....	6
Table A : List Of Test Equipment.....	7
EUT Setup.....	8
Test Instrumentation And Analyzer Settings	9
Table B : Analyzer Bandwidth Settings Per Frequency Range	9
Spectrum Analyzer Detector Functions	10
Peak.....	10
Quasi-Peak	10
Average	10
Test Methods.....	11
Radiated Emissions Testing	11
Conducted Emissions Testing	12
Sample Calculations.....	12
Appendix A : Information About The Equipment Under Test	13
I/O Ports	14
Crystal Oscillators.....	14
Printed Circuit Boards.....	14
Required EUT Changes To Comply	14
Cable Information	15
Equipment Configuration Block Diagram	16
Photograph Showing Radiated Emissions	17
Photograph Showing Radiated Emissions	18
Photograph Showing Conducted Emissions	19
Photograph Showing Conducted Emissions	20
Appendix B : Measurement Data Sheets	21

SUMMARY OF RESULTS

The ComRight Technology Receiver, CRT-CM03R, was tested in accordance with ANSI C63.4 1992 for compliance with the Class B requirements of Part 15, Subpart B of the FCC Rules.

As received, the above equipment was found to be fully compliant with the Class B limits of FCC Part 15, Subpart B for both radiated and conducted emissions.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT is a receiver. It receives data from a transmitter which monitors temperature.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ± 4 dB measurement uncertainty.

PERIPHERAL DEVICES

The EUT was tested with the following peripheral devices:

Printer

Manuf: HP
Model: 2225C+
Serial: 2843S28841
FCC ID: DSI6XU2225

Keyboard

Manuf: NMB
Model: RT5158TW
Serial: B2663101
FCC ID:

Mouse

Manuf: Logitech
Model: M-CQ38
Serial: LT554205822
FCC ID: DZLM04

Modem

Manuf: Hayes
Model: 6802US
Serial: A00768023303
FCC ID: BFJ9D9 6802US

Computer

Manuf: Intel
Model: S100EDZ8FLC
Serial: A05721230
FCC ID: EJMBATTAHITI

Transmitter

Manuf: ComRight Technology
Model: CRT-CM03T
Serial: 000001
FCC ID: Pending

REPORT OF MEASUREMENTS

The following Tables 1 and 2 report the six highest radiated and conducted emissions levels recorded during the tests performed on the Receiver, CRT-CM03R. The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Six Highest Radiated Emission Levels

FREQUENCY MHz	METER READING dB μ V	CORRECTION FACTORS				CORRECTED READING dB μ V/m	SPEC LIMIT dB μ V/m	MARGIN dB	NOTES
		Ant dB	Amp dB	Cable dB	Dist dB				
36.240	65.0	-0.5	-28.1	1.0		37.4	40.0	-2.6	VDQ
52.217	54.3	10.3	-28.2	1.1		37.5	40.0	-2.5	VQ
95.244	55.7	10.7	-28.1	1.7		40.0	43.5	-3.5	VQ
110.023	53.7	13.8	-28.1	1.9		41.3	43.5	-2.2	VQ
113.099	52.3	14.4	-28.1	1.9		40.5	43.5	-3.0	VQ
113.679	52.9	14.5	-28.1	1.9		41.2	43.5	-2.3	VQ

Test Method: ANSI C63.4 1992
 Spec Limit: FCC Class B
 Test Distance: 3 Meters

NOTES: H = Horizontal Polarization
 V = Vertical Polarization
 N = No Polarization
 D = Dipole Reading
 Q = Quasi Peak Reading
 A = Average Reading

COMMENTS: The receiver is placed stand alone on the tabletop. The EUT is receiving temperature data from the transmitter. Connected to the receiver serial port is a computer which is acting as a terminal. Connected to the computer are two modems, a printer, a keyboard, and a mouse. The EUT has a power adapter connected. Voltage to power adapter is 120VAC 60Hz. Temperature: 16°C Humidity: 50%.

Table 2: Six Highest Conducted Emission Levels

FREQUENCY MHz	METER READING dB μ V	CORRECTION FACTORS				CORRECTED READING dB μ V	SPEC LIMIT dB μ V	MARGIN dB	NOTES
		Lisn dB	dB	dB	dB				
0.463649	35.5	0.0				35.5	48.0	-12.5	B
0.641849	38.1	0.0				38.1	48.0	-9.9	W
25.828580	39.3	0.0				39.3	48.0	-8.7	B
26.451180	37.0	0.0				37.0	48.0	-11.0	B
28.916680	38.5	0.0				38.5	48.0	-9.5	B
29.539280	42.9	0.0				42.9	48.0	-5.1	B

Test Method: ANSI C63.4 1992
 Spec Limit : FCC Class B
 Test Distance: No Distance

NOTES: Q = Quasi Peak Reading
 A = Average Reading
 B = Black Lead
 W = White Lead

COMMENTS: The receiver is placed stand alone on the tabletop. The EUT is receiving temperature data from the transmitter. Connected to the receiver serial port is a computer which is acting as a terminal. Connected to the computer are two modems, a printer, a keyboard, and a mouse. The EUT has a power adapter connected. Voltage to power adapter is 120VAC 60Hz. Temperature: 20°C Humidity: 40%.

TABLE A

LIST OF TEST EQUIPMENT

Brea VCCI Acceptance No. R-301 & C-314

1. Spectrum Analyzer, Hewlett Packard, Model No. 8568A, S/N 2049A01287. Display 85680A S/N 2106A02109.
2. Preamp, Hewlett Packard, Model No. 8447D, S/N 1937A02548.
3. Quasi-Peak Adapter, Hewlett Packard, Model No. 85650A, S/N - 2030A00532.
4. Biconical Antenna, A & H Systems, Model No. SAS-200/540, S/N 220.
5. Log Periodic Antenna, A & H Systems, Model No. SAS-200/516, S/N 331.
6. LISN, Solar Electronics, Model No. 8028-50-TS-24-BNC, S/N Brea #1.
7. LISN, Solar Electronics, Model No. 50 uH, S/N Brea #2. Calibration date:
8. Brea site calibration date: May 8, 1997. Brea site calibration due date: May 8, 1998.
9. Test software, EMI Test 2.86.

EUT SETUP

The equipment under test (EUT) and the peripherals listed were setup in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Table 1 for radiated emissions, and Table 2 for conducted emissions. Additionally, a complete description of the port and I/O cable is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 1 meter above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

I/O cables were connected to the EUT and peripherals in the manner required for normal operation of the system. Excess cabling was bundled in the center in a serpentine fashion using 30-40 centimeter lengths.

During conducted emissions testing, the EUT was located 80 centimeters above the conducting ground plane on the same nonconducting table as was used for radiated testing. The metal plane was grounded to the earth through the green wire safety ground. Power to the Power Adapter was provided via 3 meters of shielded power cable from a filter grounded to the metal plane to a LISN. The LISN was also grounded to the plane and attached to the LISN was a 4 ganged grounded outlet whose source was also shielded and 60 cm in length. All other objects were kept a minimum of 1 meter away from the EUT during the conducted test.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Receiver, CRT-CM03R. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. All antennas were located at a distance of 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, a reference level of 100 dB μ V and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 and 2 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in Table 1 or Table 2. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Receiver, CRT-CM03R.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP 85650A Quasi-Peak Adapter for the HP 8568B Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

TEST METHODS

The radiated and conducted emissions data of the Receiver, CRT-CM03R, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15, Subpart B, Class B emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripherals and cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Conducted Emissions Testing

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

Tables 1 and 2 show the corrected values of the six highest readings obtained for the ComRight Technology Receiver, CRT-CM03R.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the six highest emissions readings in Tables 1 and 2. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula:

Meter reading (dB μ V)
+ Antenna Factor (dB)
+ Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)

= Corrected Reading(dB μ V/m)

This reading was then compared to the applicable specification limit to determine compliance. For conducted emissions, no correction factors were needed when 50 μ H LISN's were used.

APPENDIX A
INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 13 of 29
Report No: FB98-058

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Test Software:	Central Monitoring Program
Power Supply Manufacturer:	Wood Industries
Power Supply Part Number:	DPX 351322
The DC power cord is removable and is NOT shielded	
Line voltage used during testing: 120V 60Hz to power adapter	

I/O PORTS	
Type	#
Serial	1

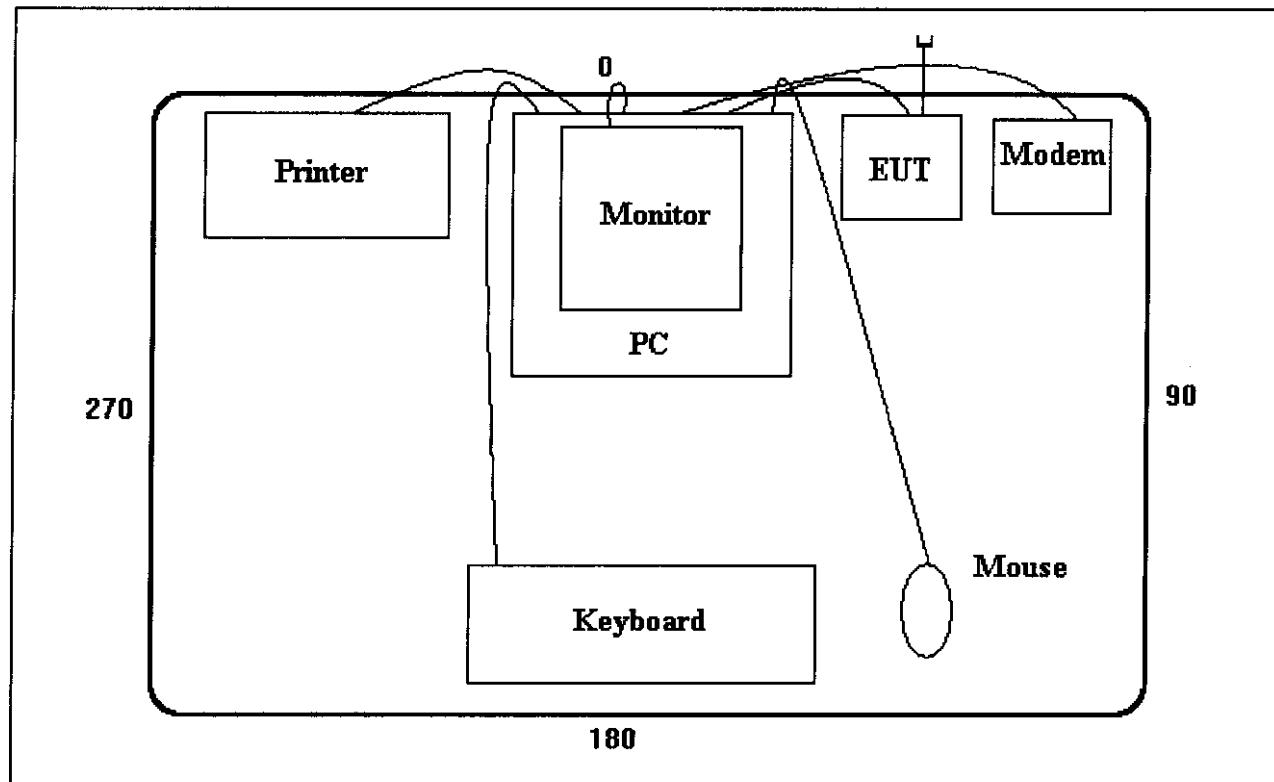
CRYSTAL OSCILLATORS	
Type	Freq. In MHz
Crystal	3.6864

PRINTED CIRCUIT BOARDS

Function	Model & Rev	Clocks, MHz	Layers	Location
Receiver	CRT-CM03R02	3.6864	2	In chassis

REQUIRED EUT CHANGES TO COMPLY:

- Removed three wire filter from DC plus lead and replaced it with a 120 μ H inductor.
- Installed a 120 μ H inductor in DC minus lead.


CABLE INFORMATION

Cable #: 1	Cable(s) of this type: 1
Cable Type: Serial	Shield Type: Aluminized Mylar
Construction: Round	Length In Meters: 2
Connected To End (1): EUT	Connected To End (2): PC
Connector At End (1): DB 9	Connector At End (2): DB 9
Shield Grounded At (1): Connector	Shield Grounded At (2): Connector
Part Number:	Number of Conductors: 9
Notes:	

Cable Routing For Worst Case Emissions:

Cable length only allows routing as shown in photograph.

EQUIPMENT CONFIGURATION BLOCK DIAGRAM

Receiver CRT-CM03R

NOTES:

APPENDIX B
MEASUREMENT DATA SHEETS

Page 21 of 29
Report No: FB98-058

Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: **ComRight Technology** Date: Apr-01-98
 Specification: **FCC B RADIATED** Time: 12:17
 Test Type: **Maximized Emissions** Sequence#: 1
 Equipment: **Receiver**
 Manufacturer: ComRight Technology
 Model: CRT-CM03R
 S/N: 000001
 Tested By: Stu Yamamoto

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Receiver*	ComRight Technology	CRT-CM03R	000001
Power Adapter	Woods Industries	DPX351322	

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	2225C+	2843S28841
Keyboard	NMB	RT5158TW	B2663101
Mouse	Logitech	M-CQ38	LT554205822
Modem	Hayes	6802US	A00768023303
Computer	Intel	S100EDZ8FLC	A05721230
Transmitter	ComRight Technology	CRT-CM03T	000001

Test Conditions / Notes:

The receiver is placed stand alone on the tabletop. The EUT is receiving temperature data from the transmitter. Connected to the receiver serial port is a computer which is acting as a terminal. Connected to the computer are two modems, a printer, a keyboard, and a mouse. The EUT has a power adapter connected. Voltage to power adapter is 120VAC 60Hz. Temperature: 16°C Humidity: 50%.

Measurement Data:

Sorted by Margin

Test Distance: 3 Meters

#	Freq MHz	Rdng dB μ V	AMP CABLE BICON			Dist dB	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar
			dB	dB	dB					
1	110.023	53.7	-28.1 +0.0	+1.9	+13.8	+0.0	41.3	43.5	-2.2	Vert
	Quasi Peak									
2	113.679	52.9	-28.1 +0.0	+1.9	+14.5	+0.0	41.2	43.5	-2.3	Vert
	Quasi Peak									
3	52.217	54.3	-28.2 +0.0	+1.1	+10.3	+0.0	37.5	40.0	-2.5	Vert
	Quasi Peak									
4	36.240	65.0	-28.1 -0.5	+1.0	+0.0	+0.0	37.4	40.0	-2.6	Vert
	Dipole QP									
5	109.991	53.1	-28.1 +0.0	+1.9	+13.8	+0.0	40.7	43.5	-2.8	Horiz
	Quasi Peak									
6	113.099	52.3	-28.1 +0.0	+1.9	+14.4	+0.0	40.5	43.5	-3.0	Vert
	Quasi Peak									
7	95.244	55.7	-28.1 +0.0	+1.7	+10.7	+0.0	40.0	43.5	-3.5	Vert
	Quasi Peak									

8	51.606	53.0	-28.2	+1.1	+10.5	+0.0	36.3	40.0	-3.7	Vert
	Quasi Peak		+0.0							
9	36.856	63.5	-28.1	+1.0	+0.0	+0.0	36.1	40.0	-3.9	Vert
	Dipole QP		-0.3							
10	117.979	50.5	-28.1	+1.9	+15.3	+0.0	39.6	43.5	-3.9	Vert
	Quasi Peak		+0.0							
11	48.535	51.6	-28.2	+1.1	+11.6	+0.0	36.1	40.0	-3.9	Vert
	Quasi Peak		+0.0							
12	111.234	51.7	-28.1	+1.9	+14.1	+0.0	39.6	43.5	-3.9	Vert
	Quasi Peak		+0.0							
13	117.365	50.5	-28.1	+1.9	+15.2	+0.0	39.5	43.5	-4.0	Vert
	Quasi Peak		+0.0							
14	98.929	54.2	-28.1	+1.8	+11.6	+0.0	39.5	43.5	-4.0	Vert
	Quasi Peak		+0.0							
15	116.744	50.1	-28.1	+1.9	+15.1	+0.0	39.0	43.5	-4.5	Vert
	Quasi Peak		+0.0							
16	110.602	51.2	-28.1	+1.9	+14.0	+0.0	39.0	43.5	-4.5	Vert
	Quasi Peak		+0.0							
17	31.326	64.3	-28.1	+0.9	+0.0	+0.0	35.4	40.0	-4.6	Vert
	Dipole QP		-1.7							
18	113.681	50.5	-28.1	+1.9	+14.5	+0.0	38.8	43.5	-4.7	Horiz
	Quasi Peak		+0.0							
19	114.289	55.5	-28.1	+1.9	+0.0	+0.0	38.6	43.5	-4.9	Vert
	Dipole QP		+9.3							
20	109.410	51.0	-28.1	+1.9	+13.7	+0.0	38.5	43.5	-5.0	Vert
	Quasi Peak		+0.0							
21	109.405	50.5	-28.1	+1.9	+13.7	+0.0	38.0	43.5	-5.5	Horiz
	Quasi Peak		+0.0							
22	35.630	61.4	-28.1	+1.0	+0.0	+0.0	33.7	40.0	-6.3	Vert
	Dipole QP		-0.6							
23	37.470	60.9	-28.1	+1.0	+0.0	+0.0	33.6	40.0	-6.4	Vert
	Dipole QP		-0.2							
24	36.254	60.4	-28.1	+1.0	+0.0	+0.0	32.8	40.0	-7.2	Horiz
	Dipole QP		-0.5							
25	54.065	56.7	-28.2	+1.1	+0.0	+0.0	32.6	40.0	-7.4	Vert
	Dipole QP		+3.0							
26	54.683	56.5	-28.2	+1.1	+0.0	+0.0	32.5	40.0	-7.5	Vert
	Dipole QP		+3.1							
27	36.854	57.7	-28.1	+1.0	+0.0	+0.0	30.3	40.0	-9.7	Horiz
	Dipole QP		-0.3							
28	35.632	57.8	-28.1	+1.0	+0.0	+0.0	30.1	40.0	-9.9	Horiz
	Dipole QP		-0.6							
29	31.330	59.0	-28.1	+0.9	+0.0	+0.0	30.1	40.0	-9.9	Horiz
	Dipole		-1.7							

Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: **ComRight Technology** Date: **Apr-01-98**
 Specification: **FCC B COND** Time: **12:20**
 Test Type: **Conducted Emissions** Sequence#: **2**
 Equipment: **Receiver**
 Manufacturer: **ComRight Technology** Tested By: **Stu Yamamoto**
 Model: **CRT-CM03R**
 S/N: **000001**

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Receiver*	ComRight Technology	CRT-CM03R	000001
Power Adapter	Woods Industries	DPX351322	

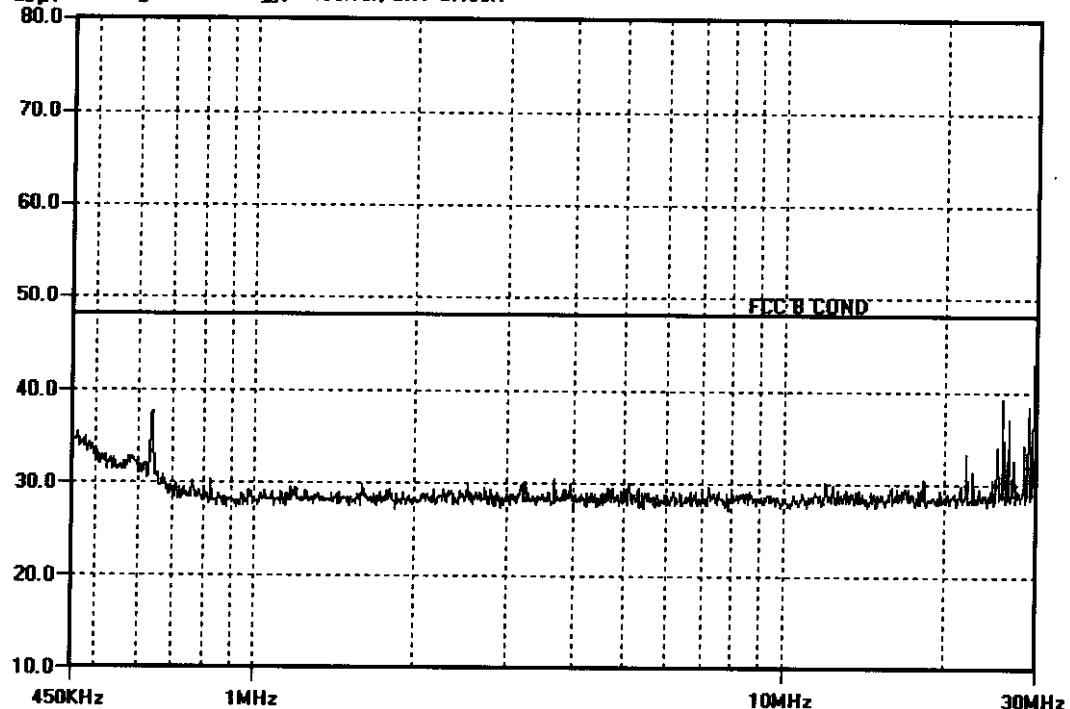
Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	2225C+	2843S28841
Keyboard	NMB	RT5158TW	B2663101
Mouse	Logitech	M-CQ38	LT554205822
Modem	Hayes	6802US	A00768023303
Computer	Intel	S100EDZ8FLC	A05721230
Transmitter	ComRight Technology	CRT-CM03T	000001

Test Conditions / Notes:

The receiver is placed stand alone on the tabletop. The EUT is receiving temperature data from the transmitter. Connected to the receiver serial port is a computer which is acting as a terminal. Connected to the computer are two modems, a printer, a keyboard, and a mouse. The EUT has a power adapter connected. Voltage to power adapter is 120VAC 60Hz. Temperature: 20°C Humidity: 40%.

Measurement Data:


Sorted by Margin

Test Lead: Black

#	Freq	Rdng dB μ V	dB	dB	dB	Dist dB	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar
1	29.539M	42.9				+0.0	42.9	48.0	-5.1	Black
2	25.829M	39.3				+0.0	39.3	48.0	-8.7	Black
3	28.917M	38.5				+0.0	38.5	48.0	-9.5	Black
4	639.574k	37.7				+0.0	37.7	48.0	-10.3	Black
5	26.451M	37.0				+0.0	37.0	48.0	-11.0	Black
6	463.649k	35.5				+0.0	35.5	48.0	-12.5	Black
7	452.654k	35.0				+0.0	35.0	48.0	-13.0	Black

8	478.815k	34.9	+0.0	34.9	48.0	-13.1	Black
9	28.294M	34.3	+0.0	34.3	48.0	-13.7	Black
10	484.882k	34.3	+0.0	34.3	48.0	-13.7	Black
11	25.206M	34.1	+0.0	34.1	48.0	-13.9	Black
12	493.981k	34.0	+0.0	34.0	48.0	-14.0	Black
13	502.322k	33.7	+0.0	33.7	48.0	-14.3	Black
14	22.118M	33.3	+0.0	33.3	48.0	-14.7	Black
15	515.213k	33.0	+0.0	33.0	48.0	-15.0	Black

CKC LABORATORIES INC Date: Wed Apr-01-1998 Time: 12:19:41 WO#: 68361
FCC B COND Test Lead: Black Sequence#: 2
dBuV ComRight Technology, Receiver, CRT-CM03R

Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer: **ComRight Technology** Date: Apr-01-98
 Specification: **FCC B COND** Time: 12:21
 Test Type: **Conducted Emissions** Sequence#: 3
 Equipment: **Receiver**
 Manufacturer: ComRight Technology
 Model: CRT-CM03R
 S/N: 000001
 Tested By: Stu Yamamoto

Equipment Under Test (* = EUT):

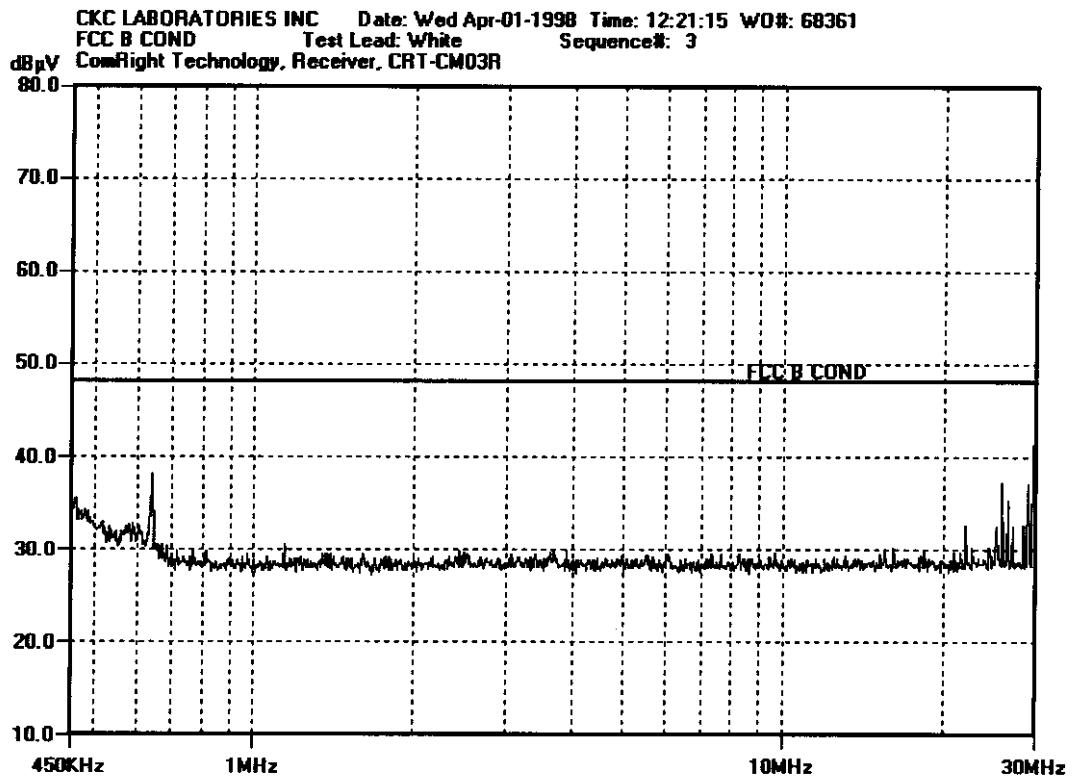
Function	Manufacturer	Model #	S/N
Receiver*	ComRight Technology	CRT-CM03R	000001
Power Adapter	Woods Industries	DPX351322	

Support Devices:

Function	Manufacturer	Model #	S/N
Printer	HP	2225C+	2843S28841
Keyboard	NMB	RT5158TW	B2663101
Mouse	Logitech	M-CQ38	LT554205822
Modem	Hayes	6802US	A00768023303
Computer	Intel	S100EDZ8FLC	A05721230
Transmitter	ComRight Technology	CRT-CM03T	000001

Test Conditions / Notes:

The receiver is placed stand alone on the tabletop. The EUT is receiving temperature data from the transmitter. Connected to the receiver serial port is a computer which is acting as a terminal. Connected to the computer are two modems, a printer, a keyboard, and a mouse. The EUT has a power adapter connected. Voltage to power adapter is 120VAC 60Hz. Temperature: 20°C Humidity: 40%.


Measurement Data:		Sorted by Margin				Test Lead: White				
#	Freq	Rdng dB μ V	dB	dB	dB	Dist dB	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar
1	29.514M	41.2				+0.0	41.2	48.0	-6.8	White
2	641.849k	38.1				+0.0	38.1	48.0	-9.9	White
3	25.829M	37.2				+0.0	37.2	48.0	-10.8	White
4	28.892M	37.0				+0.0	37.0	48.0	-11.0	White
5	638.815k	35.7				+0.0	35.7	48.0	-12.3	White
6	460.237k	35.4				+0.0	35.4	48.0	-12.6	White
7	26.426M	35.3				+0.0	35.3	48.0	-12.7	White

Testing the Future

LABORATORIES, INC.

8	451.517k	34.8	+0.0	34.8	48.0	-13.2	White
9	481.090k	34.2	+0.0	34.2	48.0	-13.8	White
10	468.199k	34.2	+0.0	34.2	48.0	-13.8	White
11	487.915k	34.0	+0.0	34.0	48.0	-14.0	White
12	516.730k	33.0	+0.0	33.0	48.0	-15.0	White
13	591.043k	32.8	+0.0	32.8	48.0	-15.2	White
14	28.269M	32.7	+0.0	32.7	48.0	-15.3	White
15	22.118M	32.7	+0.0	32.7	48.0	-15.3	White

