

RF Test Report:

Altiostar Networks

AWS Band iRM4451 RRH

FCC ID: NXP-44510400

SC_TR_181A

Prepared for:

Altiostar Inc.
100 Ames Pond Drive
Tewksbury
MA 01876
USA

Contents

1	Revision History	4
2	Purpose.....	4
3	Reference Documents	4
4	Test Information	5
4.1	Client.....	5
4.2	Test personnel.....	5
4.3	Test sample.....	5
5	Product Description.....	6
6	Test Configuration	7
6.1	Test sample and Operating mode	7
6.2	Equipment set-up.....	7
6.3	Support equipment.....	8
7	Summary of Tests performed.....	9
8	Transmit Power 47CFR90.1321	10
8.1	Requirement and test method.....	10
8.2	Test results: Transmit Power	11
8.3	Test results: Peak-to-average ratio.....	12
9	Spectral Power Density	14
9.1	Requirement and test method.....	14
9.2	Test results	14
10	Occupied Bandwidth	16
11	Conducted Spurious Emissions inc. Band Edge	18
11.1	Requirement and test method.....	18
11.2	Band edge results	19
11.3	Conducted spurious emissions	20
12	Radiated Spurious Emissions.....	23
12.1	Requirement and test method.....	23
12.2	Results	25
13	Test equipment	29

Tables

Table 1: Equipment under test	7
Table 2: Support Equipment	8
Table 3: Summary of tests performed	9
Table 4: Transmit power	11
Table 5: Peak-to-average measurements	12
Table 6: Transmit power spectral density	14
Table 7: Occupied Bandwidth test results	16
Table 8: CSE Band edge results.....	19
Table 9: CSE results except bandedge.....	20
Table 10: Radiated Spurious Emissions Substitution results	25
Table 11: Test Equipment.....	29

Figures

Figure 1: Configuration for test	7
Figure 2: Peak-to-Average plots	13
Figure 3: Transmit Power Spectral Density plots.....	15
Figure 4: Occupied Bandwidth plots	17
Figure 5: CSE plots	22
Figure 6: RSE pre-scans, 5 MHz channel.....	24
Figure 7: RSE final measurements	28

1 Revision History

Revision	Originator	Date	Comment
A	C Blackham	16 Dec 2015	1 st release

2 Purpose

This document details the FCC RF testing performed on the Altiostar AWS Band iRM4451 RRH (Remote Radio Head), model number iRM44510400, designed to transmit in the 2110-2155 MHz band.

3 Reference Documents

[Ref 1]	47CFR2	Title 47 Code of Federal Regulations Part 2: frequency allocations and radio treaty matters; general rules and regulations
[Ref 2]	47 CRF27	Title 47 Code of Federal Regulations Part 27: Miscellaneous Communications Services
[Ref 3]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[Ref 4]	KDB 662911 D01 v02r01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
[Ref 5]	KDB971168 D01 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.

4 Test Information

4.1 Client

Altistar Inc.
100 Ames Pond Drive
Tewksbury
MA 01876
USA

4.2 Test personnel

Antenna port tests

Testing was performed by Charlie Blackham of Sulis Consultants Ltd at Altistar UK offices on 15th December 2015 and at Hursley EMC on 16th December 2015.

Radiated Spurious Emissions (section 12)

Testing was performed by Richard Pennell of Hursley EMC services Ltd, at their FCC Registered test facility, UK designation number UK0006, on 16th December 2015 under job 15J551.

4.3 Test sample

The results herein only refer to sample detailed in section 6

5 Product Description

The basestation supports operation with 5, 10, 15 and 20 MHz bandwidths, with OFDMA modulation at the following modulation rates:

- QPSK, 3GPP test model E-TM1.1
- 16 QAM, 3GPP test model E-TM3.2
- 64 QAM, 3GPP test model E-TM3.1

The unit is fitted with four RF transceiver RF ports, Ant1, ANT2, ANT3 and Ant4. These are designed to support MIMO operation and are connected to external antennas. Typically these would be two cross polarised 2T2R antennas or a single xx-polarised 4T4R. These are provided by the licensee and gain dealt with at time of licensing.

Transmit power was set to maximum permitted of 30 W (44.7 dBm) per port.

Measurements were performed on the following channels within the band of operation:

- 5 MHz channel : 2112.5 MHz
- 10 MHz channel: 2115.0 MHz
- 15 MHz channel : 2117.5 MHz
- 20 MHz channel: 2120.0 MHz

The test waveform has a 100% duty cycle so no gating or allowance for duty cycle was required when taking measurements

6 Test Configuration

6.1 Test sample and Operating mode

The equipment under test (EUT) was:

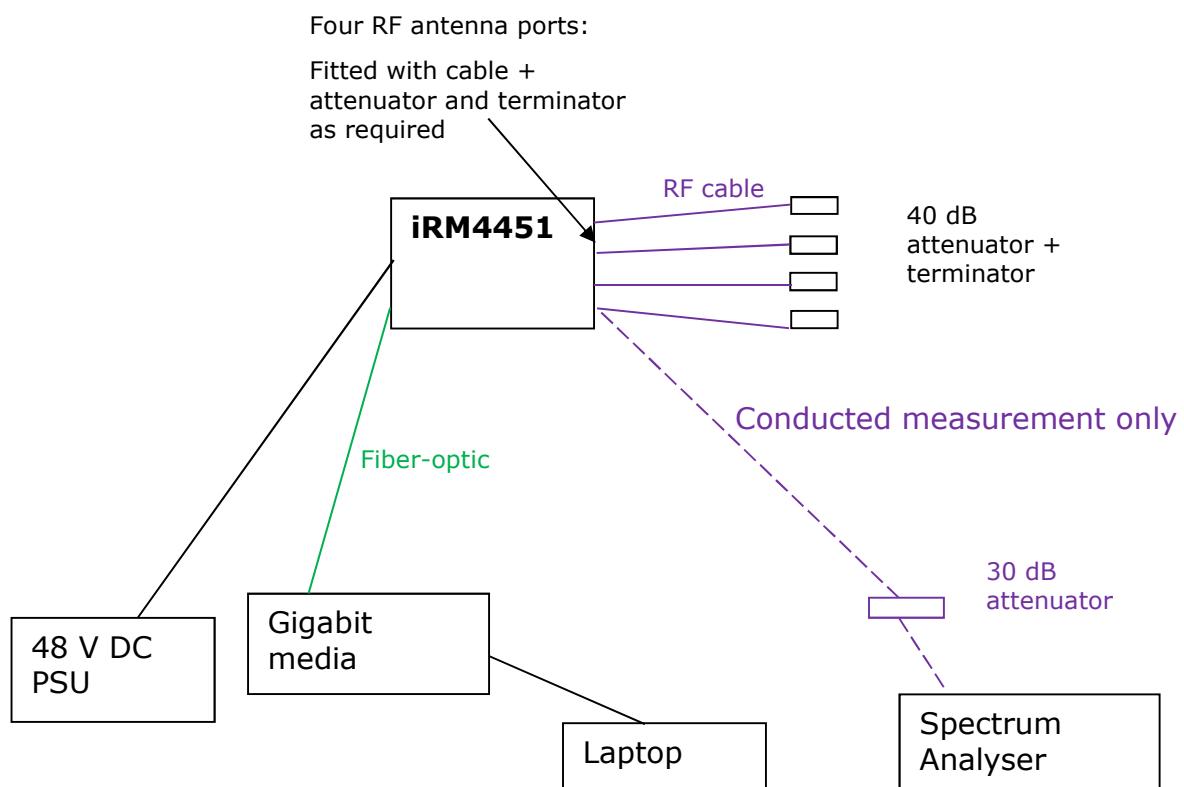

Manufacturer	Model Number	Serial Number
Altiostar	iRM44510400	PLW47150005

Table 1: Equipment under test

6.2 Equipment set-up

Equipment was configured as per figure 1:

- The iRM4451system was configured using a web browser application that allowed the unit to be placed into a test mode and the required frequency, bandwidth and power to be set
- All 4 ports were set to transmit on maximum power with the same modulation and channel bandwidth
- For conducted measurements, the insertion loss of the Attenuator and Co-ax cables were measured before testing and their combined path-loss was programmed into the analyser as a negative external gain¹.

Figure 1: Configuration for test

¹ Except for the 13-22 GHz Conducted Spurious Emission measurement where insertion loss was loaded into analyser as a Transducer Factor.

6.3 **Support equipment**

The support equipment was:

Description	Manufacturer	Model	Serial Number
Laptop	HP	250	Dvt-mobile altiostar
USB/Ethernet adapter	Startech		13320402522
Gigabit media converter (on laptop)	TP-Link	MC220L	2158186001559
48 V DC PSU	Agilent	N8737A	US14C3870M
40dB attenuator (Quantity 4)	Fairview microwave	SA3N1007-40	various

Table 2: Support Equipment

7 Summary of Tests performed

Test	47 CFR Part	Result	Section
Transmit Power	27.50(d)(2) / 2.1046	Pass	8
Spectral Power Density	27.50(d)(2) / 2.1046	Pass	9
Occupied Bandwidth	2.1049	Pass	10
Conducted Spurious Emissions (out of band)	27.53(h) / 2.1051	Pass	11
Radiated Spurious Emissions	27.53(h) / 2.1053	Pass	12
Frequency Stability	27.54 / 2.10	See report SC_TR_182	

Table 3: Summary of tests performed

8 Transmit Power 47CFR90.1321

8.1 Requirement and test method

27.50 Power limits and duty cycle.

(d) (2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

- (i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;
- (ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(d)(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Measurement made using KDB971168 DO1, section 5.2

The total power was summed in accordance with KDB662911D01 and the result compared against the limit. Specifically, the power was measured at Antenna port 1 and then $10\log_4$ dB, or 6 dB, was added to show total power from all four ports.

8.2 Test results: Transmit Power

The table below shows results obtained.

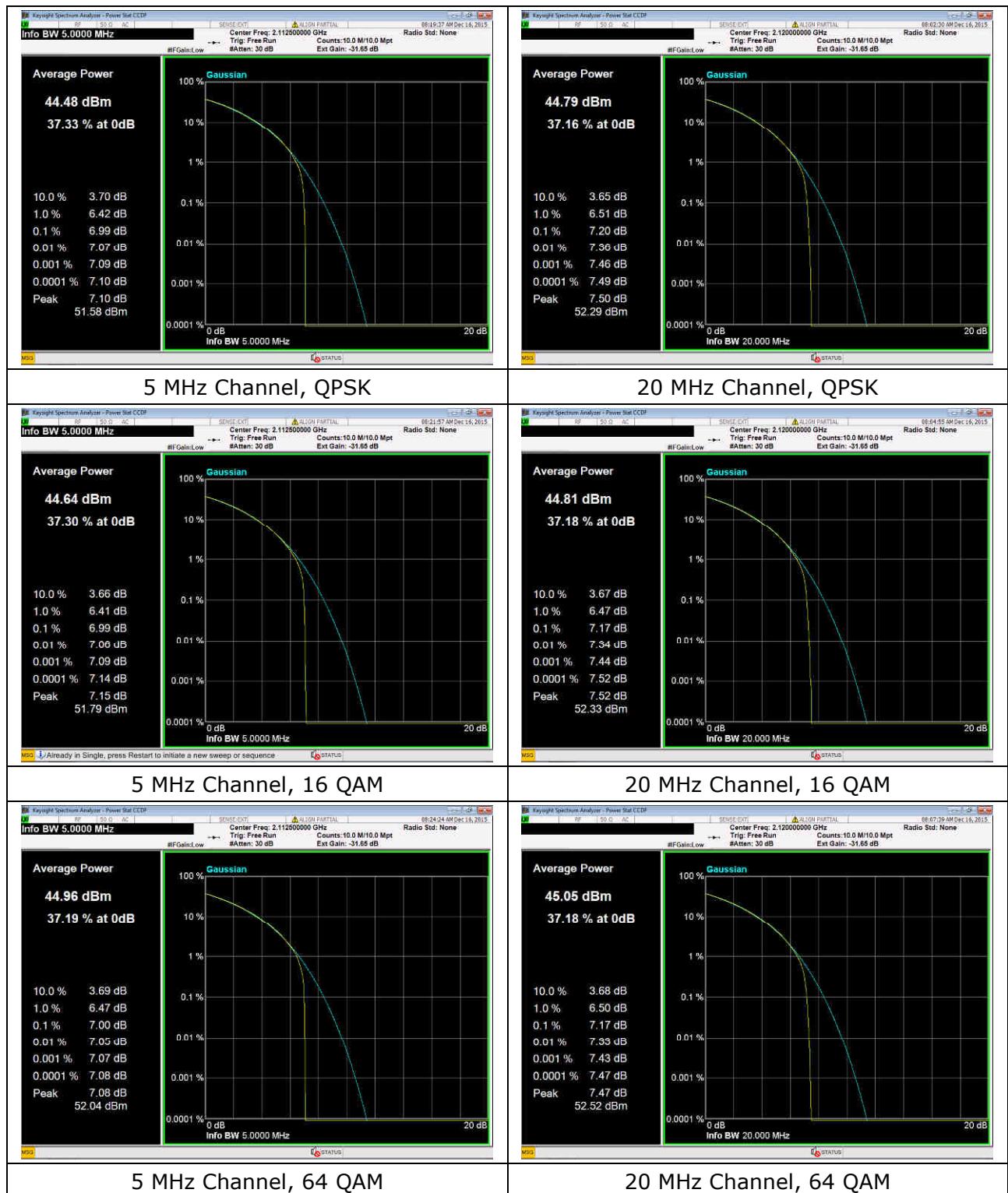
Channel Bandwidth	Modulation	TX power (dBm)	Summed TX power (dBm)	TX power (W)	Limit EIRP (W)	Result
5	QPSK	44.72	50.72	118.03	None	Pass
	16 QAM	44.60	50.60	114.82	None	Pass
	64 QAM	44.90	50.90	123.03	None	Pass
10	QPSK	44.79	50.79	119.95	None	Pass
	16 QAM	44.82	50.82	120.78	None	Pass
	64 QAM	44.84	50.84	121.34	None	Pass
15	QPSK	44.93	50.93	123.88	None	Pass
	16 QAM	44.86	50.86	121.90	None	Pass
	64 QAM	44.67	50.67	116.68	None	Pass
20	QPSK	44.88	50.88	122.46	None	Pass
	16 QAM	44.88	50.88	122.46	None	Pass
	64 QAM	44.77	50.77	119.40	None	Pass

Table 4: Transmit power

Plots are provided in SC_TR_181-plots.

Notes:

1. All emission bandwidths are > 1 MHz so limit is EIRP/MHz as discussed in section 9.
2. Two plots are shown for each measurement to capture lower and upper bandedge marker measurements for section 11.


8.3 Test results: Peak-to-average ratio

The Peak to average waveform is related to modulation and not to frequency of operation of bandwidth. Results are presented for 5 and 20 MHz channels.

Peak to Average (PAR) ratio is controlled using crest factor reduction techniques and worst case is 7.36dBm.

Channel Bandwidth	Modulation	0.1% PAR	Limit	Result
5	QPSK	7.07	13.00	Pass
	16 QAM	6.99	13.00	Pass
	64 QAM	7.00	13.00	Pass
20	QPSK	7.36	13.00	Pass
	16 QAM	7.17	13.00	Pass
	64 QAM	7.33	13.00	Pass

Table 5: Peak-to-average measurements

Figure 2: Peak-to-Average plots

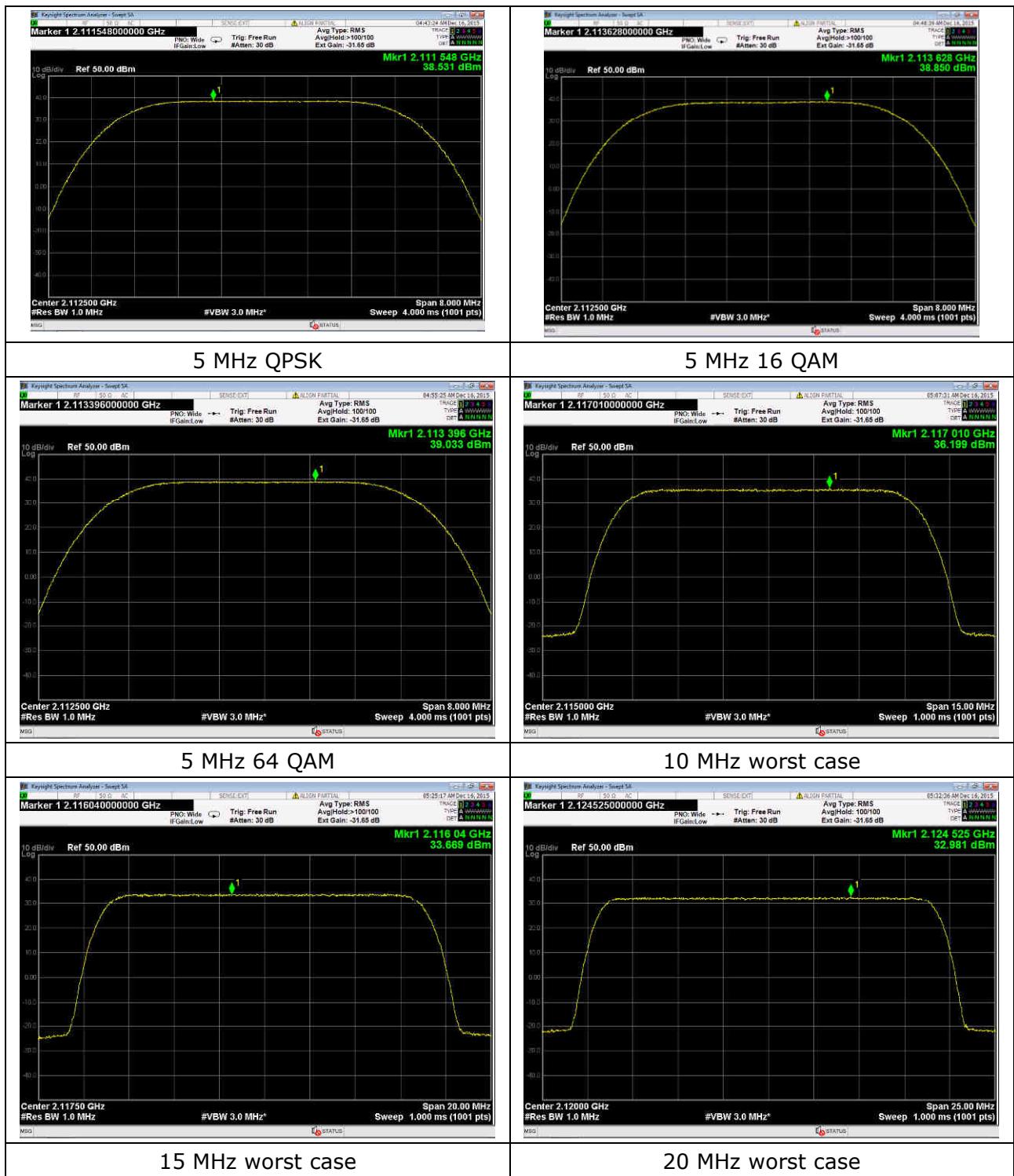
9 Spectral Power Density

9.1 Requirement and test method

As per section 8.1

Measured using 1 MHz RBW and peak search

9.2 Test results


The table below shows results for plots in figure 3.

Channel B'width (MHz)	TX power (dBm/MHz)	Summed TX power (dBm/MHz)	TX power EIRP (W/MHz)	Limit EIRP (W/MHz) See note	Result	Modulation
5	38.53	44.53	28.38	1640.0	Pass	QPSK
	38.85	44.85	30.55	1640.0	Pass	16 QAM
	39.03	45.03	31.84	1640.0	Pass	64 QAM
10	36.20	42.20	16.60	1640.0	Pass	64 QAM
15	33.67	39.67	9.27	1640.0	Pass	64 QAM
20	32.98	38.98	7.91	1640.0	Pass	64 QAM

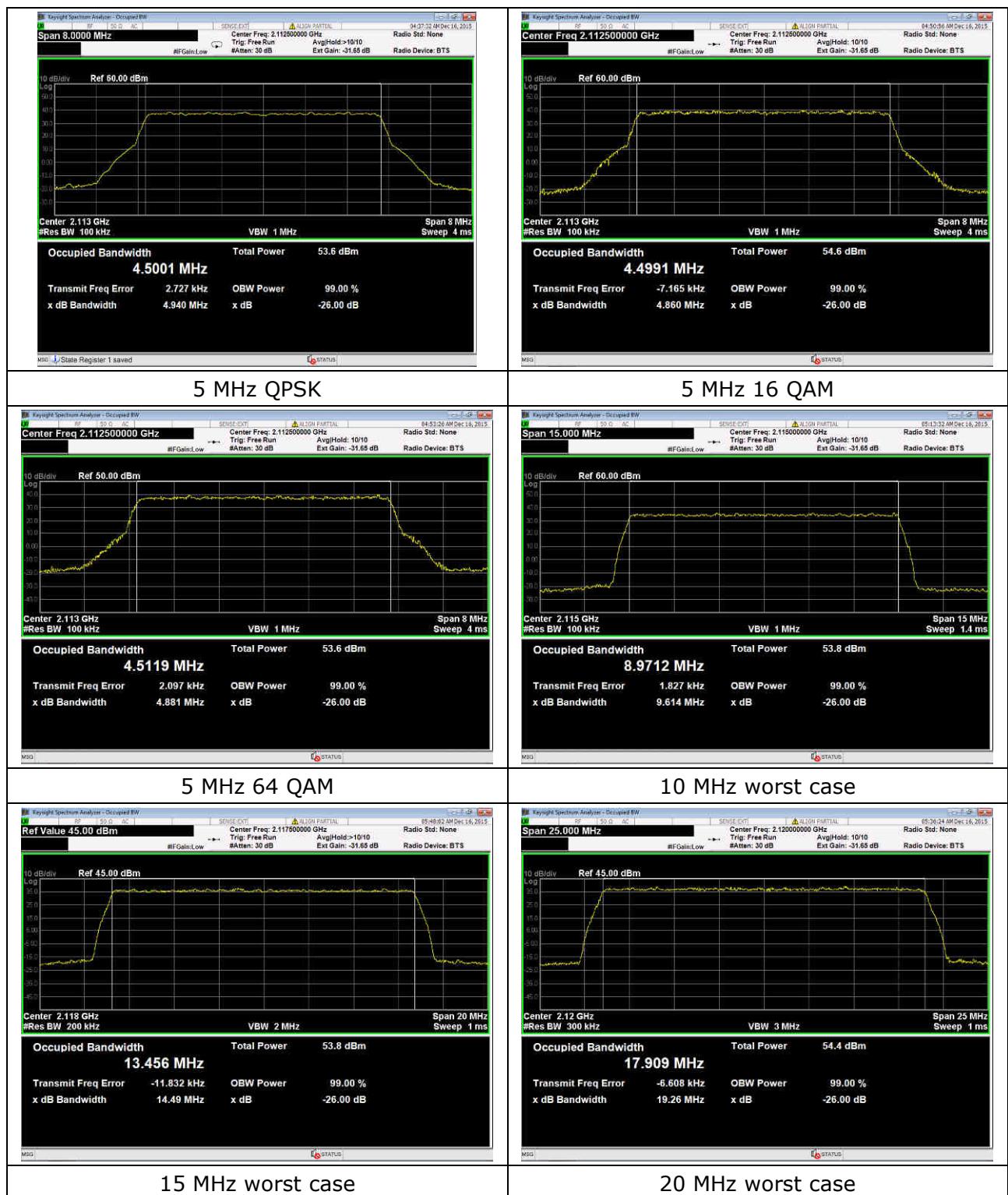
Table 6: Transmit power spectral density

Notes:

1. Maximum antenna gain for compliance with the limit is dealt with at time of licensing.

Figure 3: Transmit Power Spectral Density plots

10 Occupied Bandwidth


The occupied bandwidth was measured using the inbuilt function on the Signal Analyser set to measure the -26 dB emission bandwidth. Measurement was made using a peak detector.

There is no pass/fail criterion so measurement results are reported without reference to a limit for measurements on antenna port 1.

The table below shows worst case results for plots in figure 4.

Channel Bandwidth	TX Freq (MHz)	-26dB Occupied Bandwidth (MHz)	Modulation
5	2112.5	4.94	QPSK
		4.86	16 QAM
		4.88	64 QAM
10	2115.0	9.61	QPSK
15	2117.5	14.49	QPSK
20	2120.0	19.26	QPSK

Table 7: Occupied Bandwidth test results

Figure 4: Occupied Bandwidth plots

11 Conducted Spurious Emissions inc. Band Edge

11.1 Requirement and test method

27.53(h) AWS emission limits—

- (1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.
- (3) *Measurement procedure.*
 - (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The licensed band of operation was considered to be a single 5 MHz channel for 5 MHz operation, a single 10 MHz channel for 10 MHz operation and so on.

Emissions within 1 MHz of the bandedge were measured using a narrow resolution bandwidth as per 27.53(h).

Transmit power was measured using an RMS detector so spurious emissions have also been measured using an RMS detector.

Emissions between 1 and 3 MHz from the band edge were measured using adjacent channel power measurement capability of the spectrum analyser..

Determination of total spurious emission was done by adding $10 \log (4)$, or 6.0 dB to the emission level measured on port Ant1 and this was compares with limit of -13dBm as per KDB 662911 section 3(a)(iii)

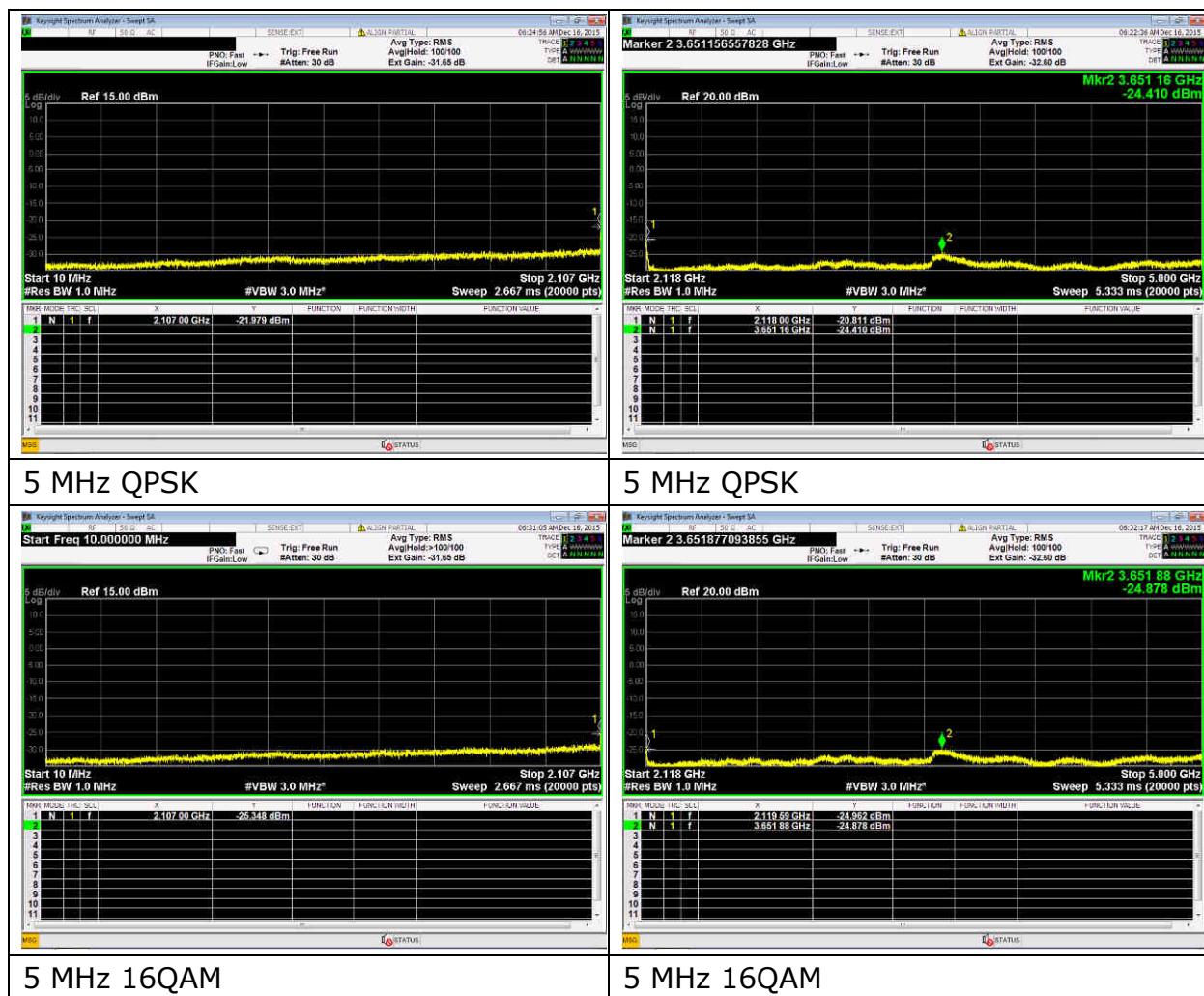
11.2 Band edge results

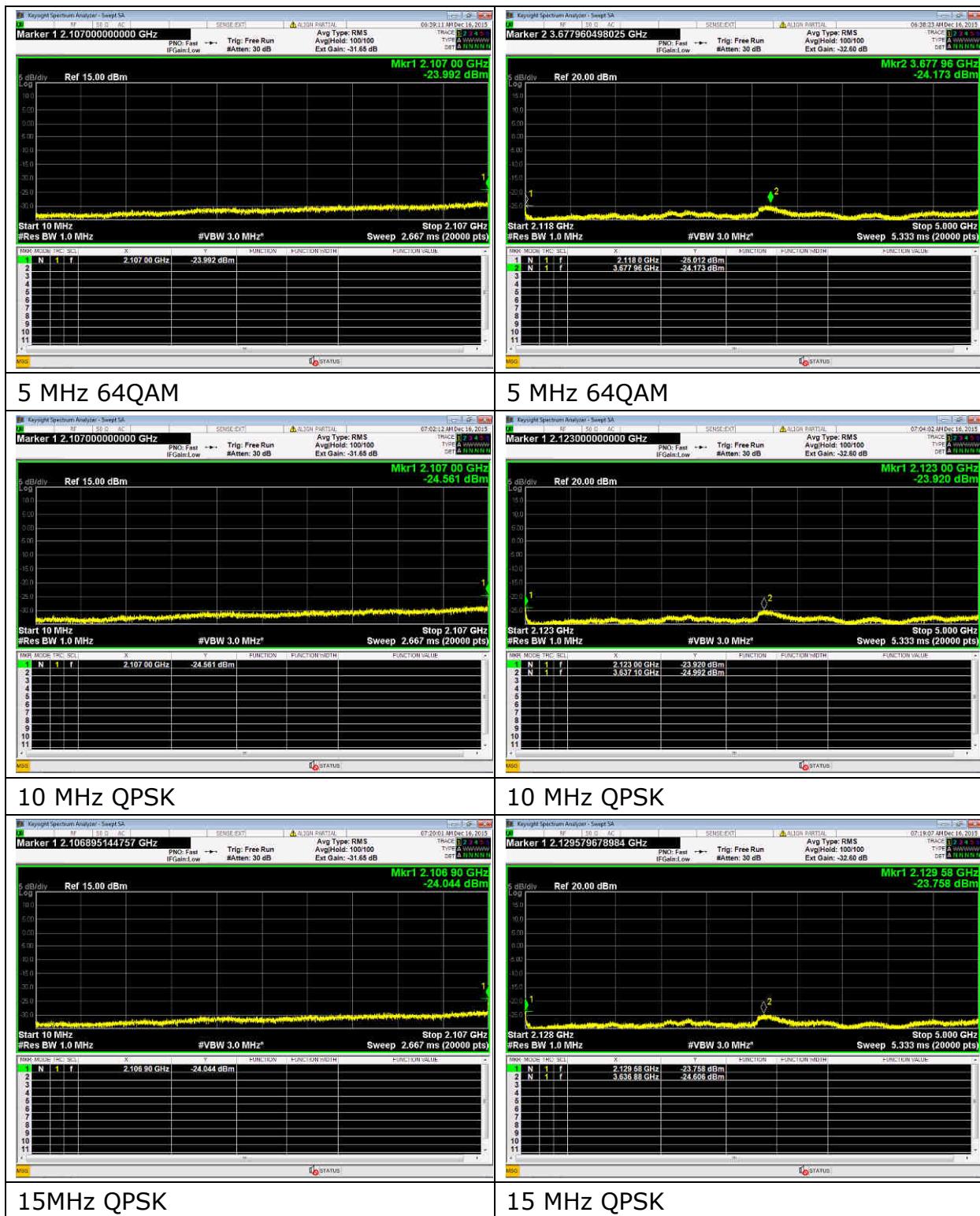
Plots for band-edge compliance are shown in SC_TR_181-plots.

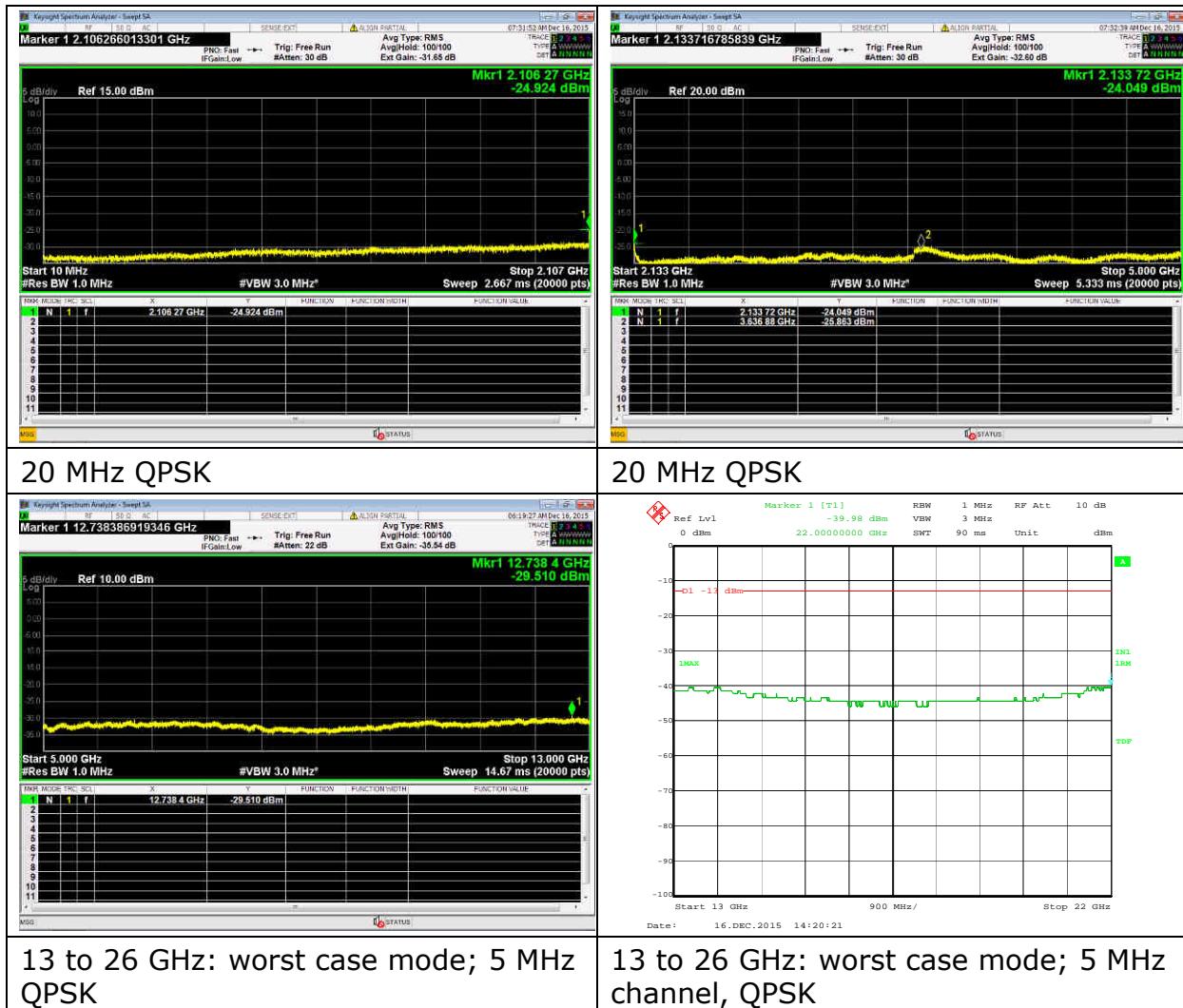
Worst case emission is the highest emission within 3 MHz of bandedge:

- Narrow RBW peak search within 0-1 MHz of band edge
- **Or** Integrated power measurement for the next two 1 MHz blocks

Channel Bandwidth	Modulation	Worst case emission	Summed TX power (dBm)	Limit (dBm)	Result
5	QPSK	-19.95	-13.95	-13.0	Pass
	16 QAM	-23.28	-17.28	-13.0	Pass
	64 QAM	-21.23	-15.23	-13.0	Pass
10	QPSK	-23.78	-17.78	-13.0	Pass
	16 QAM	-24.92	-18.92	-13.0	Pass
	64 QAM	-21.71	-15.71	-13.0	Pass
15	QPSK	-22.78	-16.78	-13.0	Pass
	16 QAM	-23.14	-17.14	-13.0	Pass
	64 QAM	-24.89	-18.89	-13.0	Pass
20	QPSK	-24.61	-18.61	-13.0	Pass
	16 QAM	-24.35	-18.35	-13.0	Pass
	64 QAM	-23.90	-17.90	-13.0	Pass


Table 8: CSE Band edge results


11.3 Conducted spurious emissions


Conducted Spurious emissions were investigated from 10 MHz to 22 GHz at frequencies ≥ 3 MHz from the bandedge, the worst case results are shown in table 10 and accompanying plots in figure 5.

Channel Bandwidth	Worst case emission	Summed TX power (dBm)	Limit (dBm)	Result
5	-20.81	-14.81	-13.0	Pass
10	-23.92	-17.92	-13.0	Pass
15	-23.76	-17.76	-13.0	Pass
20	-24.05	-18.05	-13.0	Pass

Table 9: CSE results except bandedge

Figure 5: CSE plots

12 Radiated Spurious Emissions

12.1 Requirement and test method

27.53(h) AWS emission limits—

- (1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.
- (3) *Measurement procedure.*
 - (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

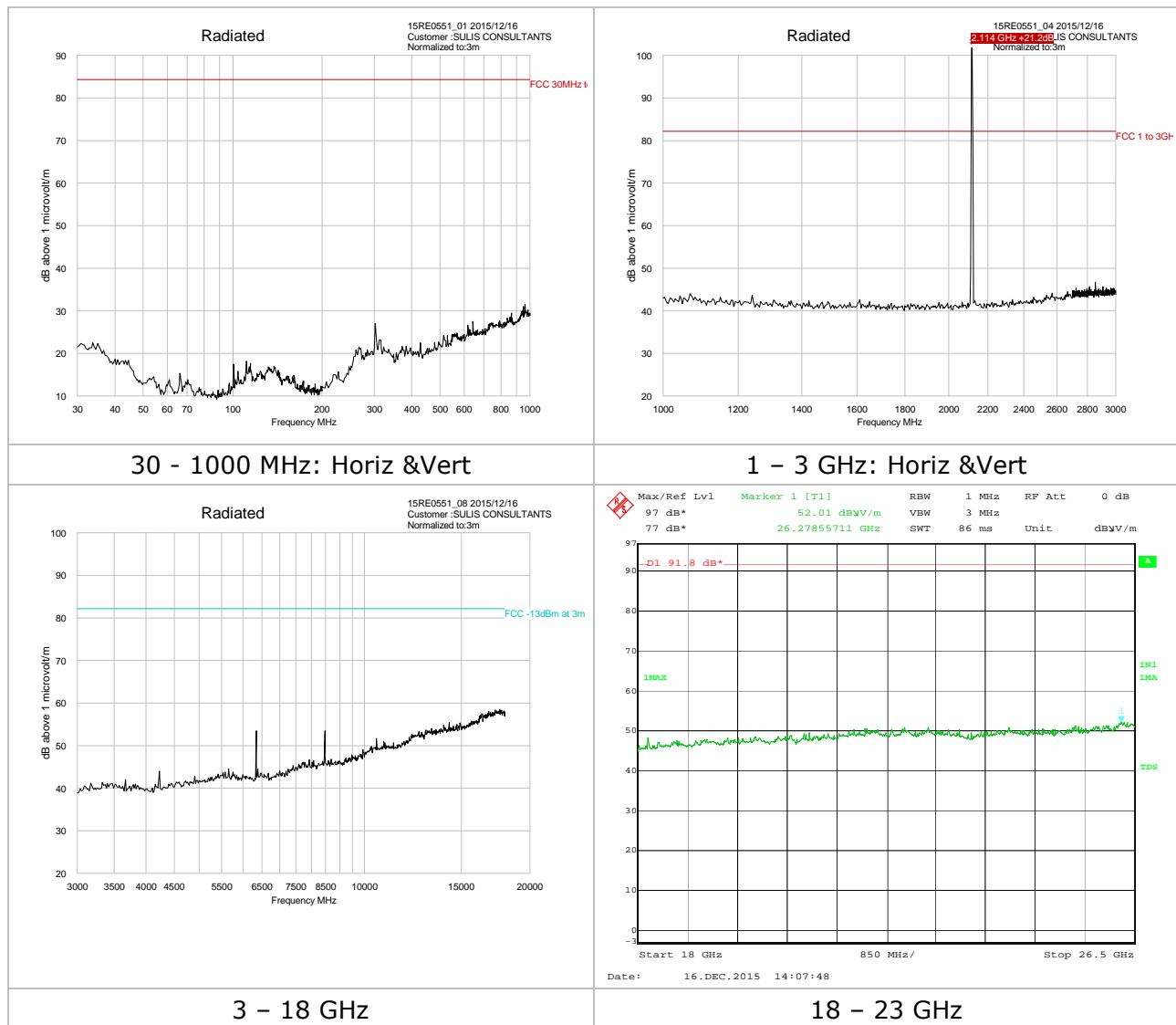
The licensed band of operation was considered to be a single 5 MHz channel for 5 MHz operation, a single 10 MHz channel for 10 MHz operation and so on.

Emissions within 1 MHz of the bandedge were measured using a narrow resolution bandwidth as per 27.53(h).

Attenuation of $43+10\log(P)$ dBm equates to an absolute limit of -13dBm.

All measurements below 18 GHz were performed at 3m distance

Emissions above 18 GHz were measured at 1m.


Pre-scan measurements were performed with a spectrum analyser, using a peak detector with 100 kHz RBW for frequencies below 1 GHz and 1 MHz for frequencies above 1 GHz.

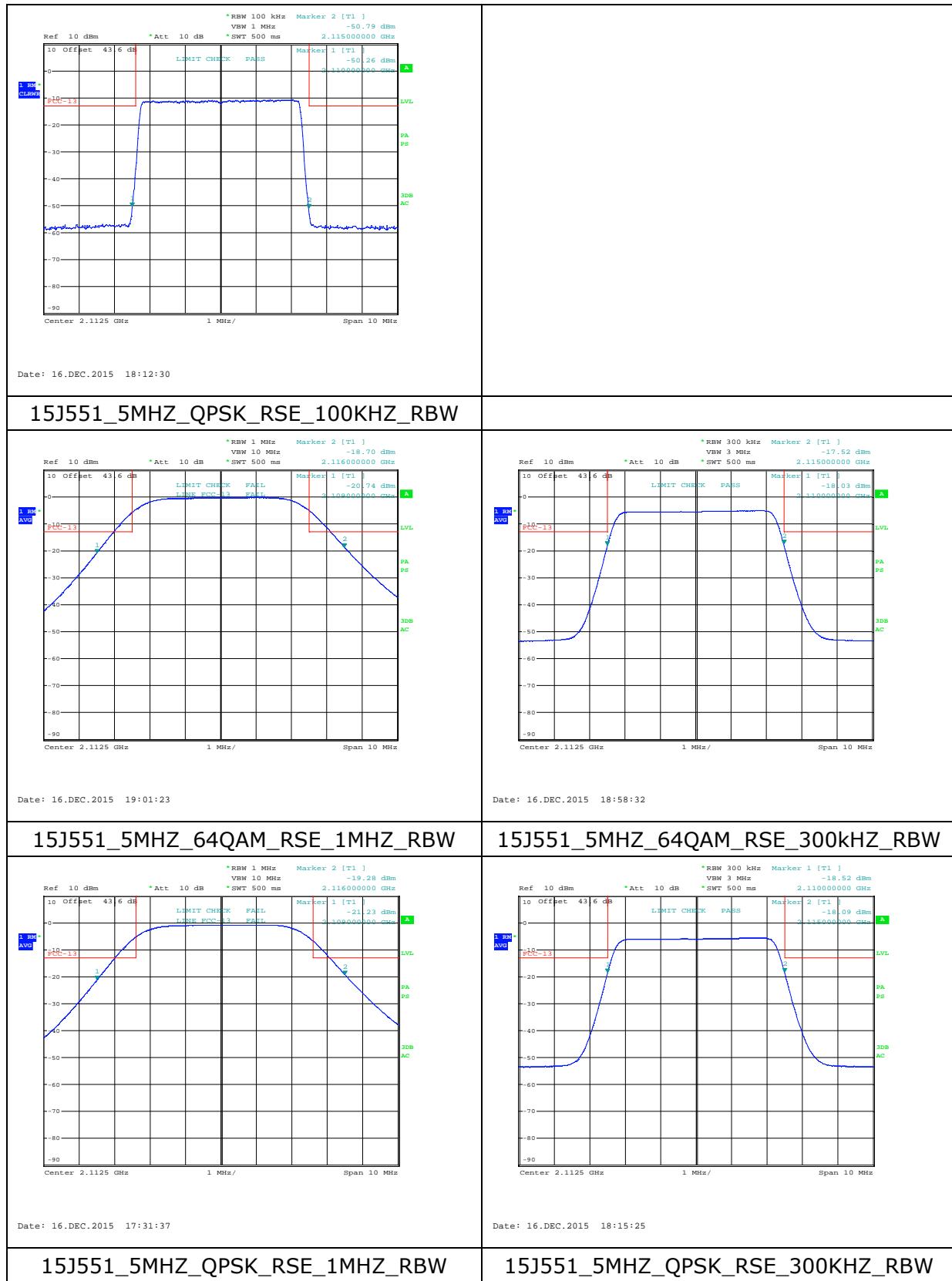
The cabinet radiation was performed while antenna ports were terminated with attenuators and 50Ω loads. Since all ports were transmitting, no summation of spurious emissions is required for radiated tests.

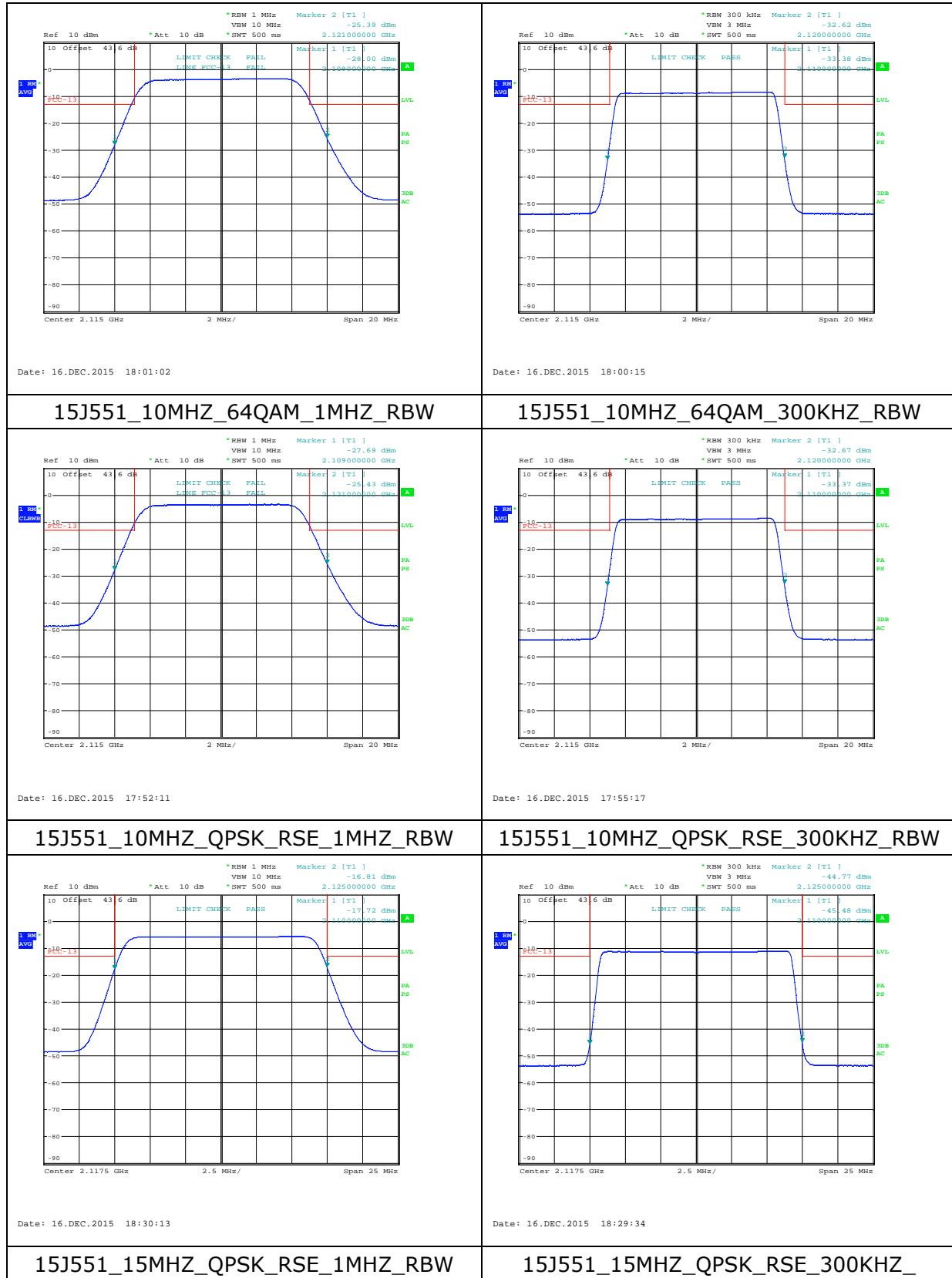
Initial pre-scan measurements were performed with limit determined by

$$E = EIRP - 20\log D + 104.8$$

Where pre-scans showed emissions within 20dB of the limit, final measurement was made using substitution method, with results presented in section 12.2.

Figure 6: RSE pre-scans, 5 MHz channel


12.2 Results


Final pre-scans were performed and emissions maximised for any emissions within 20dB of the limit, a substitution test was performed which was only required for band edge and was performed for all channel bandwidths and modulations:

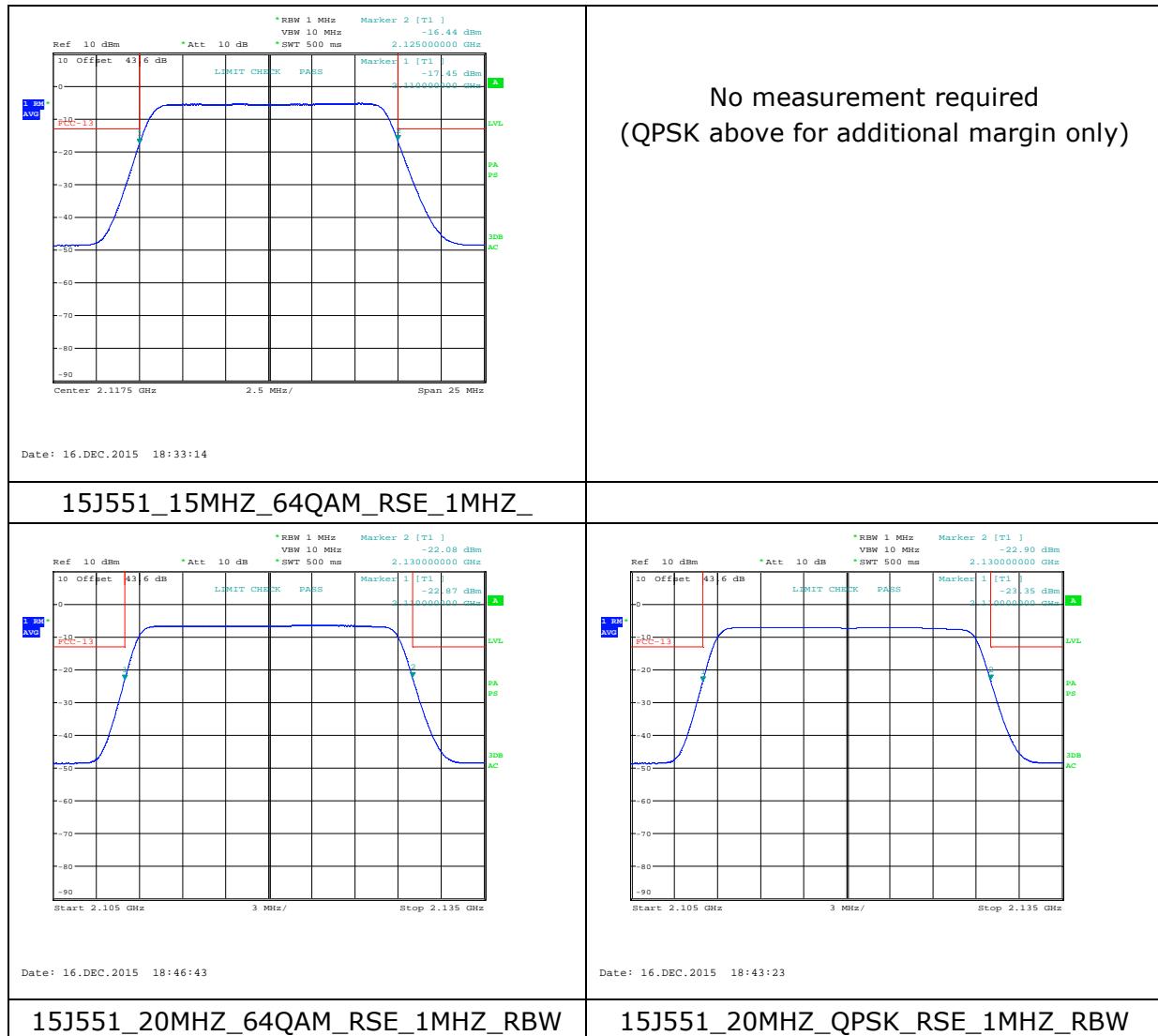

Channel Bandwidth	Modulation	Frequency (MHz)	Measurement bandwidth	Emission level (dBm)	Limit (dBm)	Result
5	QPSK	2110.0	100 kHz	-50.26	-13.0	Pass
	QPSK	2115.0	100 kHz	-50.79	-13.0	Pass
	QPSK	2110.0	300 kHz	-18.52	-13.0	Pass
	QPSK	2115.0	300 kHz	-18.09	-13.0	Pass
	64 QAM	2110.0	300 kHz	-18.03	-13.0	Pass
	64 QAM	2115.0	300 kHz	-17.52	-13.0	Pass
10	QPSK	2110.0	300 kHz	-33.37	-13.0	Pass
	QPSK	2120.0	300 kHz	-32.67	-13.0	Pass
	64 QAM	2110.0	300 kHz	-33.38	-13.0	Pass
	64 QAM	2120.0	300 kHz	-32.62	-13.0	Pass
15	QPSK	2110.0	300 kHz	-45.48	-13.0	Pass
	QPSK	2125.0	300 kHz	-44.77	-13.0	Pass
	QPSK	2110.0	1 MHz	-17.72	-13.0	Pass
	QPSK	2125.0	1 MHz	-16.81	-13.0	Pass
	64 QAM	2110.0	1 MHz	-17.45	-13.0	Pass
	64 QAM	2125.0	1 MHz	-16.44	-13.0	Pass
20	QPSK	2110.0	1 MHz	-23.35	-13.0	Pass
	QPSK	2130.0	1 MHz	-22.90	-13.0	Pass
	16 QAM	2110.0	1 MHz	-22.87	-13.0	Pass
	64 QAM	2130.0	1 MHz	-22.08	-13.0	Pass

Table 10: Radiated Spurious Emissions Substitution results

Note: some results are presented with more than one permitted measurement bandwidth.

Figure 7: RSE final measurements

13 Test equipment

Description	Manufacturer	Name	Serial Number	Calibration certificate
Testing at Altiostar				
PXA Signal Analyser	Agilent	N9030A	MY541702228	4105006-4886110-1 Due 05/06/16
Network Analyser	HP	8719D	US38110410	Electroservices T469471R Due 15/10/16
Attenuator	Fairview Microwave	SA18N100-30	None	Calibrated before test using Network Analyser
RF cable	Times Microwave	SLU18-SMNM-01.50m	3155	
			3950	
Testing at Hursley ²				
Pink 30M-2G Antenna	CHASE	CBL 6141	HEMC #ID 452	Cal due 01/10/2018
1-10GHz Horn	Schwarzbeck	BBHA 9120 571	HEMC #ID 466	Cal due 29/01/2016
2-18GHz Horn	Schwarzbeck	BBHA 9120 C	HEMC #ID 676	Cal due 28/07/2018
40GHz receiver	Rohde & Schwarz	ESIB 40 no.2	HEMC #ID 651	Cal due 19/02/2016
CISPR 7GHz Receiver	Rohde & Schwarz	ESCI 7	HEMC #ID 289	Cal due 12/06/2016
Spectrum analyser	HP	8593EM	HEMC #ID 033	Cal due 22/09/2016
RF cable	Intelliconnect	yellow H duty	HEMC #ID 644	Cal due 05/02/2016
Horn antenna (1-10GHz)	Schwarzbeck	BBHA9120B	HEMC #ID 073	Cal due 03/07/2016

Table 11: Test Equipment

² Calibration data held by Hursley EMC Services Ltd under their UKAS accreditation, no. 1871