

FCC RF TEST REPORT

APPLICANT dormakaba EAD GmbH

PRODUCT NAME data collection terminal

MODEL NAME 9600-K6 HID WiFi

TRADE NAME Terminal 96 00

BRAND NAME dormakaba

FCC ID NVI-KT9600K6HWL

47 CFR Part 15 Subpart C STANDARD(S)

ISSUE DATE 2017-09-07

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

<u>1.</u>	TECHNICAL INFORMATION
	. APPLICANT INFORMATION
<u>2.</u>	TEST RESULTS
2.1	. APPLIED REFERENCE DOCUMENTS
<u>3.</u>	47 CFR PART 15C REQUIREMENTS
3.2 3.3 3.4	. ANTENNA REQUIREMENT
<u> AN</u>	XXE A TEST UNCERTAINTY19
<u> AN</u>	NEX B TESTING LABORATORY INFORMATION19

	Change History						
Issue	Date	Reason for change					
1.0	2017-09-07	First edition					

Test Report Declaration

Applicant	dormakaba EAD GmbH
Applicant Address	Albertistr. 3, 78056 Villingen-Schwenningen, Germany
Manufacturer	In-Tech Electronics Ltd
Manufacturer Address	Unit A,13/F, Wing Tai Centre,12 Hing Yip Street, Kwun Tong Kowloon, Hong Kong
Product Name	data collection terminal
Model Name	9600-K6 HID WiFi
Brand Name	dormakaba
HW Version	02
SW Version	V5
Test Standards	47 CFR Part 15 Subpart C
Test Date	2017-08-21 to 2017-08-28
Test Result	PASS

Tested by Wang Dalong (Teşt engineer)

Approved by

Andy Yeh (Technical Director)

1. Technical Information

Note: Provided by applicant.

1.1. Applicant Information

Company:	dormakaba EAD GmbH
Address:	Albertistr. 3, 78056 Villingen-Schwenningen, Germany

1.2. Equipment under Test (EUT) Description

Product Name:	data collection terminal	
Serial No:	(N/A, marked #1 by test site)	
Hardware Version:	ersion: 02	
Software Version:	V5	
Frequency Range:	13.553MHz~13.567MHz	
Frequency:	13.56MHz	
Channel Number:	1	
Modulation Type:	ASK	
Antenna Type:	PCB Antenna	

NOTE:

- 1. The EUT is a data collection terminal which supports 125 KHz and 13.56 MHz band. Only the results for 13.56MHz were recorded in this report.
- 2. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.203	Antenna requirement	PASS
2	15.207	Conducted Emission PAS	
3	15.209	Radiated Emission	PASS
3	15.225(a)(b)(c)(d)	Radiated Effission	PASS
4	15.225(e)	Frequency Tolerance	PASS
5 15.215(c)		20dB Bandwidth	PASS

Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013. The EUT has been tested under continuous operating condition.

47 CFR Part 15c Requirements 3.

3.1. **Antenna requirement**

3.1.1. **Applicable Standard**

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

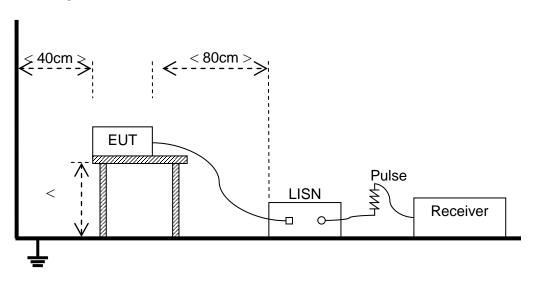
3.1.2. Result:

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

Result: Compliant

Conducted Emission 3.2.

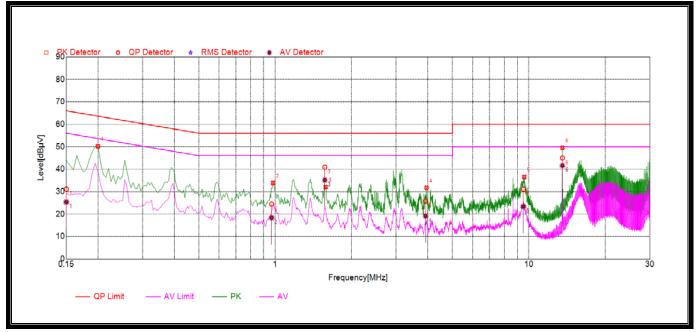
3.2.1. Test Requirement


According to FCC section 15.207, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μH/50Ω line impedance stabilization network (LISN).

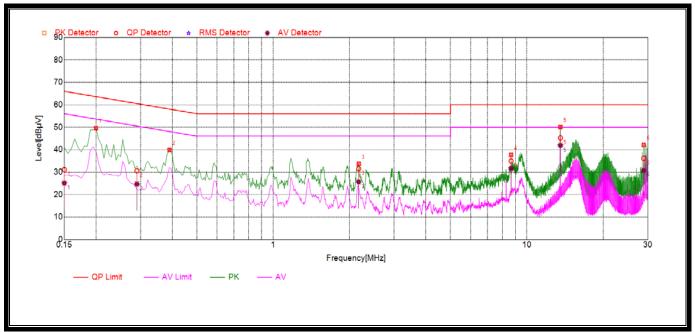
Frequency range	Conducted Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

NOTE:

- The limit subjects to the Class B digital device. a)
- The lower limit shall apply at the band edges. b)
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.


3.2.2. Test Setup

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. The RF Card is used for the call between with the EUT, and the EUT was measured by transmitter mode continuously. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.


3.2.3. Test Result

(Plot A: L Phase)

NO.	Fre.			Limit (dBµV)		Power-line	Verdict
(MHz)		Quai-peak	Average	Quai-peak	Average		1010101
1	0.15	31.14	25.34	66	56		PASS
2	0.9676	24.45	18.34	56	46		PASS
3	1.5682	40.92	35.17	56	46	Line	PASS
4	3.9138	25.85	19.18	56	46	Line	PASS
5	9.5132	31.06	23.37	60	50		PASS
6	13.5606	44.98	41.61	60	50		PASS

(Plot B: N Phase)

NO.	Fre. (MHz)			.evel (dBµV)	Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		roraiot	
1	0.15	31.14	25.11	66	56		PASS	
2	0.29	30.57	24.69	62	52		PASS	
3	2.1722	31.51	25.68	56	46	Line	PASS	
4	8.6676	34.97	31.67	60	50	LITIE	PASS	
5	13.5608	45.23	41.90	60	50		PASS	
6	28.8818	36.18	30.87	60	50		PASS	

Result: PASS

3.3. Radiated Emission

3.3.1. Test Requirement

A. Radiated Emission <30MHz (9KHz-30MHz, E-field)

According to FCC section 15.225, for <30MHz, Radiated emissions were measured according to ANSIC63.4. The EUT was set to transmit at the highest output power. The EUT was set 30 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the center of the loop. The measuring bandwidth was set to 10KHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT)

There was no detected Restricted bands and Radiated Spurious emission below 30MHz. The 30m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit(dBuV/m) = 20log(X)+40log(30/3)=20log(15848)+40log(30/3)=124dBuV

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

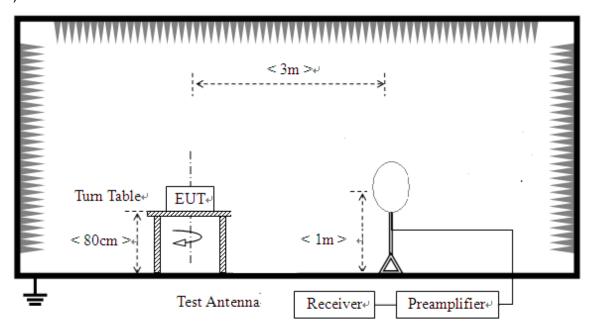
Fraguency range (MHz)	Field Stre	Field Strength@3m	
Frequency range (MHz)	μV/m	dBμV/m	dBµV/m
Below 13.110	30	29.5	69.5
13.110 ~ 13.410	106	40.5	80.5
13.410 ~ 13.553	334	50.5	90.5
13.553 ~13.567	15.848	84	124
13.567 ~ 13.710	334	50.5	90.5
13.710 ~14.010	106	40.5	80.5
Above 14.010	30	29.5	69.5

NOTE:

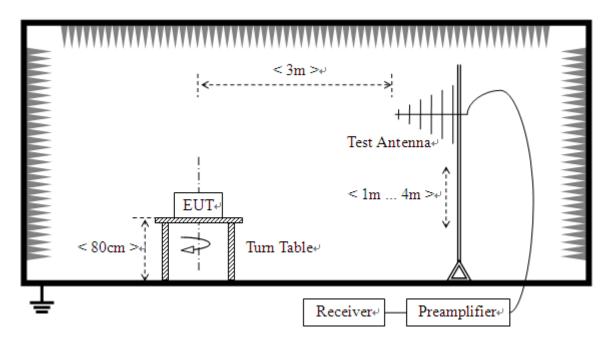
- a) Field Strength ($dB\mu V/m$) = 20*log[Field Strength ($\mu V/m$)].
- b) In the emission tables above, the tighter limit applies at the band edges.
- B. Radiated Emission >30MHz (30MHz-1GHz, E-field)

According to FCC section 15.205, the field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Fraguency range (MHz)	Field S	trength			
Frequency range (MHz)	μV/m	dBμV/m			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			


NOTE:

- Field Strength ($dB\mu V/m$) = 20*log[Field Strength ($\mu V/m$)].
- In the emission tables above, the tighter limit applies at the band edges.

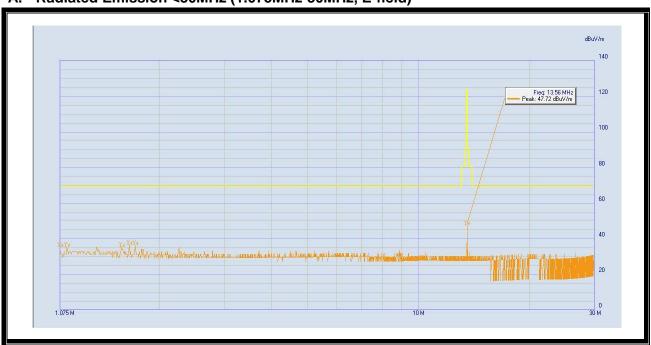


3.3.2. Test Setup

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.

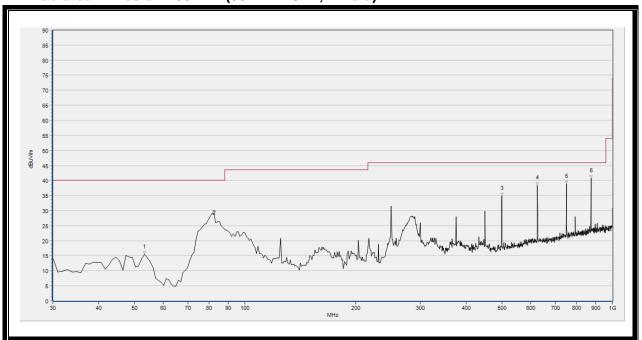


For the test Antenna:

- 1) In the frequency range of 9KHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

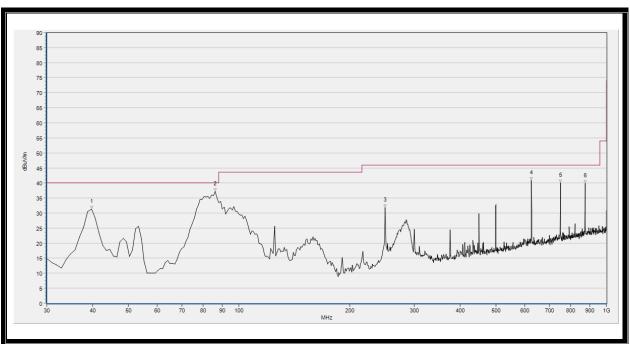
3.3.3. Test Result

A. Radiated Emission <30MHz (1.075MHz-30MHz, E-field)



(Plot A: 1.075MHz - 30MHz)

NO	Frequency	Detector Type	Level at 3m	Limit at 3m
NO.	(MHz)	Detector Type	$(dB\mu V/m)$	(dBμV/m)
1	1.075	Quasi Peak	35.35	69.5
2	1.12	Quasi Peak	35.34	69.5
3	1.575	Quasi Peak	35.26	69.5
4	1.65	Quasi Peak	36.26	69.5
5	1.715	Quasi Peak	36.25	69.5
6	13.56	Quasi Peak	47.72	124


B. Radiated Emission >30MHz (30MHz-1GHz, E-field)

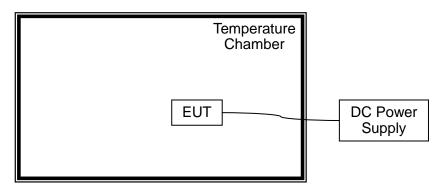
(Plot B: 30MHz - 1GHz, Test Antenna Horizontal)

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m		
1	53.280	15.39	N/A	N/A	N/A	40.00	N/A	Н	Pass
2	82.380	28.94	N/A	N/A	N/A	40.00	N/A	Н	Pass
3	500.450	34.80	N/A	N/A	N/A	46.00	N/A	Н	Pass
4	624.610	38.40	N/A	N/A	N/A	46.00	N/A	Н	Pass
5	749.740	38.89	N/A	N/A	N/A	46.00	N/A	Н	Pass
6	874.870	40.68	N/A	N/A	N/A	46.00	N/A	Н	Pass

(Plot C: 30MHz - 1GHz, Test Antenna Vertical)

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m		
1	39.700	31.36	N/A	N/A	N/A	40.00	N/A	V	Pass
2	86.260	37.22	N/A	N/A	N/A	40.00	N/A	V	Pass
3	250.190	31.89	N/A	N/A	N/A	46.00	N/A	V	Pass
4	624.610	40.84	N/A	N/A	N/A	46.00	N/A	V	Pass
5	749.740	40.13	43.79	40.20	N/A	46.00	N/A	V	Pass
6	874.870	39.86	N/A	N/A	N/A	46.00	N/A	V	Pass

Result: PASS



3.4. Frequency Tolerance

3.4.1. Test Requirement

According to FCC section 15.225, the devices operating in the 13.553~13.567 MHz shall maintain the carrier frequency within 0.01% of the operating frequency over the temperature variation of -20°C to +50°C using an environmental chamber. The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

3.4.2. Test Setup

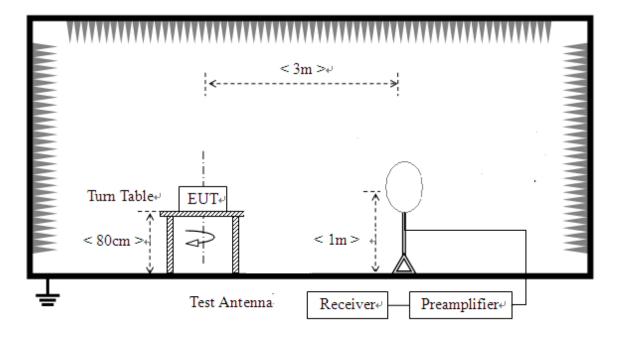
The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT was measured by transmitter mode continuously.

3.4.3. Test Result

Operating Frequency: 13,560,000 Hz

Deference Voltage: 48V Deviant Limit: ±0.01%

	Test Conditions				
VOLTAGE(%)	Power	Temperature	Frequency(Hz)	Deviation(%)	Verdict
	(VDC)	(°C)			
100		-20	13,560,022	0.0001622	
100		-10	13,560,017	0.0001254	
100		0	13,560,057	0.0004204	
100		+10	13,559,784	0.0015929	
100	48	+20	13,559,562	0.0032301	
100		+25	13,559,585	0.0030605	DACC
100		+30	13,559,599	0.0029572	PASS
100		+40	13,560,052	0.0003835	
100		+50	13,560,034	0.0002507	
Battery End Point	44	+20	13,560,027	0.0001991	
115	57	+20	13,559,611	0.0028687	



3.5.20dB Bandwidth

3.5.1. Test Requirement

According to FCC section 15.215(c), the 20dB bandwidth should be contained within the frequency band designated in the rule section under which the EUT is operated, it was measured with a spectrum analyzer connected the EUT while the EUT is operating in transmission mode.

3.5.2. Test Setup

3.5.3. Test Result

0	Meas	surement	Lim	it	
Centre Frequency	20dB Bandwidth (KHz)	Frequency Range (MHz)	20dB Bandwidth (KHz)	Frequency Range(MHz)	Verdict
13.56MHz	1.92	13.55892~13.56084	14	13.553~13.5 67	Pass

Please refer to the following plot:

ANXXE A Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	±1.8dB
Uncertainty of Radiated Emission:	±3.1dB

ANNEX B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

<u> </u>	<u> </u>		
Company Name: Shenzhen Morlab Communications Technology Co., Ltd			
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChan			
	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			

3. Accreditation Certificate

Accredited Testing Laboratory:	The FCC designation number is CN1192
	(Shenzhen Morlab Communications Technology Co., Ltd.)

4. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	20 - 75
Atmospheric Pressure (kPa):	86 - 106

5. Test Equipments Utilized

5.1 Test Equipment

5.1 lest Equipi					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	N9038A	MY54130016	2017.05.17	2018.05.16
LISN	Schwarzbeck	NSLK 8127	812744	2017.05.17	2018.05.16
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9537	2017.05.24	2018.05.23
Coaxial Cable	Morlab	EMC01	CB05	(n.a.)	(n.a.)
Coaxial Cable	Morlab	EMC02	CB06	(n.a.)	(n.a.)
MXE EMI Receiver	Agilent	N9038A	MY54130016	2017.05.17	2018.05.16
Anechoic Chamber	Changning	9m*6m*6m	N/A	2017.01.11	2018.01.10
Test Antenna – Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.12.09	2017.12.08
Test Antenna -Loop	Schwarzbeck	FMZB 1519	1519-022	2017.03.07	2018.03.06
Spectrum Analyzer	Agilent	E7405A	US44210471	2017.05.17	2018.05.16
DC Power Supply	Good Will	GPS-3030DD	EF920938	2017.05.24	2018.05.23
Temperature Chamber	YinHe Experimental Equip.	HL4003T	(n.a.)	2017.01.11	2018.01.10
RF cable	Morlab	RF03	CB03	(n.a.)	(n.a.)

5.2 Test Software Utilized

Model	Version Number	Producer	
TS+ -[JS32-CE]	Version 2.5.0.0	Tonscend	
MORLAB EMCR V1.2	Version 1.0	MORLAB	

**** END OF REPORT ****